Differential Equation I

Exercise 5, fall 2012

1. Study by the Wronskian determinant, which of the pairs y_{1} and y_{2} can in principle form a fundamental solution set on the whole \mathbf{R} for a homogeneous equation of second order, when
(a) $y_{1}(x)=x^{3}$ and $y_{2}(x)=x$, (b) $y_{1}(x)=\sin 2 x$ and $y_{2}(x)=\cos 2 x$,
(c) $y_{1}(x)=\sin 2 x$ and $y_{2}(x)=\cos x$.
2. Solve the equations

$$
\text { (a) } 3 y^{\prime \prime}+2 y^{\prime}+y=0, \quad \text { (b) } \quad \ddot{x}-4 \dot{x}+4 x=0 \text {. }
$$

3. Solve the equation

$$
\ddot{x}+9 x=4 t-2+e^{-3 t}
$$

by using an appropriate direct try (the method of undetermined coefficients).
4. Solve the equation

$$
\ddot{x}-9 x=e^{-3 t}
$$

by variation. So, what would have been an appropriate form for a direct try?
5. Study on the interval $] 0, \infty[$ the homogeneous equation

$$
4 x^{2} y^{\prime \prime}+4 x y^{\prime}-y=0
$$

(a) Find by an appropriate direct try a fundamental solution pair on that.
(b) Solve the equation on that by changing appropriately the free variable x.
6. The homogeneous equation

$$
(x-2) y^{\prime \prime}-(4 x-7) y^{\prime}+(4 x-6) y=0
$$

has a solution $e^{2 x}$ on \mathbf{R}. Find another independent solution by using the method of variation and give also a general solution on \mathbf{R}. Does that directly give all the solutions?

