HY Stochastic analysys, home-exam, fall 2011

December 14, 2011

Give detailed solutions of exercises:
1.b, $6,7,9,13,14,16,20,21,22,29$

1. (a) Show that

$$
(t, x) \mapsto p(t ; x, y):=\frac{1}{\sqrt{2 \pi t}} e^{-(x-y)^{2} / 2 t}
$$

solves the partial differential equation

$$
\frac{\partial p}{\partial t}=\frac{1}{2} \frac{\partial^{2} p}{\partial x^{2}} .
$$

(b) Show that

$$
(t, x) \mapsto p^{(\mu)}(t ; x, y):=\frac{1}{\sqrt{2 \pi t}} e^{-(x-y-\mu t)^{2} / 2 t}
$$

solves

$$
\frac{\partial p}{\partial t}=\frac{1}{2} \frac{\partial^{2} p}{\partial x^{2}}+\mu \frac{\partial p}{\partial x}
$$

For which equation the function

$$
(t, y) \mapsto p^{(\mu)}(t ; x, y)
$$

is a solution?
2. Show that for every $x>0$

$$
\frac{x}{1+x^{2}} e^{-x^{2} / 2} \leq \int_{x}^{\infty} e^{-u^{2} / 2} d u \leq \frac{1}{x} e^{-x^{2} / 2} .
$$

3. Show that the transition density of BM on $(-\infty, a]$ reflected at a has the same form as the transition density of BM on $[a,+\infty)$ reflected at a; that is for $x, y \leq a$

$$
p(t ; x, y)=\frac{1}{\sqrt{2 \pi t}}\left(e^{-(x-y)^{2} / 2 t}+e^{-(x+y-2 a)^{2} / 2 t}\right) .
$$

4. (a) Prove using independence of the increments that the finite dimensional distributions of B are given for $0<t_{1}<t_{2}<\cdots<t_{n}$ by

$$
\begin{aligned}
& \mathbf{P}_{0}\left(B_{t_{1}} \in A_{1}, B_{t_{2}} \in A_{2}, \ldots, B_{t_{n}} \in A_{n}\right) \\
& =\int_{A_{1}} d x_{1} p\left(t_{1} ; 0, x_{1}\right) \int_{A_{2}} d x_{2} p\left(t_{2}-t_{1} ; x_{1}, x_{2}\right) \cdot \ldots \int_{A_{n}} d x_{n} p\left(t_{n}-t_{n-1} ; x_{n-1}, x_{n}\right)
\end{aligned}
$$

(b) Prove that for $t_{1}<t_{2}<\cdots<t_{n}<t$

$$
\mathbf{P}_{0}\left(B_{t} \in A \mid \sigma\left\{B_{t_{1}}, \ldots, B_{t_{n}}\right\}\right)=\int_{A} p\left(t-t_{n} ; B_{t_{n}}, y\right) d y
$$

5. (a) Let for a fixed t

$$
G_{0}^{t}:=\sup \left\{s<t: B_{s}=0\right\} .
$$

Show that for $u<t$

$$
\mathbf{P}_{0}\left(G_{0}^{t} \in d u\right)=\frac{d u}{\pi \sqrt{u(t-u)}}
$$

or, equivalently,

$$
\mathbf{P}_{0}\left(G_{0}^{t}<u\right)=\frac{2}{\pi} \arcsin \sqrt{\frac{u}{t}}, \quad u<t
$$

(b) Let

$$
D_{0}^{t}:=\inf \left\{s>t: B_{s}=0\right\}
$$

Show that for $u \leq t \leq v$

$$
\mathbf{P}_{0}\left(G_{0}^{t}<u, D_{0}^{t}>v\right)=\frac{2}{\pi} \arcsin \sqrt{\frac{u}{v}}
$$

6. Consider for a given $t>0$ the function

$$
C_{t}:=\int_{0}^{t} B_{s} d s
$$

(a) Explain why C_{t} is normally distributed.
(b) Show that $\mathbf{E} C_{t}=0$ and $\mathbf{E} C_{t}^{2}=t^{3} / 3$ [Hint:

$$
\mathbf{E} C_{t}^{2}=\mathbf{E}\left(\left(\int_{0}^{t} B_{s} d s\right)^{2}\right)=\mathbf{E}\left(\int_{0}^{t} B_{u} d u \int_{0}^{t} B_{v} d v\right)=\int_{0}^{t} \int_{0}^{t} \mathbf{E}\left(B_{u} B_{v}\right) d u d v
$$

7. Let $B^{(i)}, i=1,2, \ldots, n$, be independent standard Brownian motions and $\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$ such that $\sum_{i=1}^{n} x_{i}^{2}=1$ set

$$
Z_{t}:=\sum_{i=1}^{n} x_{i} B_{t}^{(i)}
$$

Show that Z is a standard Brownian motion. Is the converse true?
8. Let B be a BM started at 0 . Show that the process $\left\{X_{t}:=x+\frac{l-t}{l} B\left(\frac{l t}{l-t}\right)\right.$: $0 \leq t \leq l\}$, where we define $X_{l}=x$, is a Brownian bridge of length l from x to x.
9. Let $Z_{t}:=e^{B_{t}}$ be the so called geometrical BM. Find the limits

$$
\lim _{h \downarrow 0} \frac{\mathbf{E}\left(Z_{t+h}-Z_{t} \mid Z_{t}=y\right)}{h}
$$

and

$$
\lim _{h \downarrow 0} \frac{\mathbf{E}\left(\left(Z_{t+h}-Z_{t}\right)^{2} \mid Z_{t}=y\right)}{h}
$$

Determine also $\mathbf{E}_{y}\left(Z_{t}\right)$ and $\mathbf{E}_{y}\left(Z_{t}^{2}\right)$.
10. Use optional stopping theorem to prove that for BM

$$
\mathbf{P}_{x}(\text { hit } a \text { before } b)=\frac{b-x}{b-a}, \quad a<x<b
$$

11. Show that for $a>0$

$$
\mathbf{P}_{a}\left(B_{s} \neq 0 \text { for } 0 \leq s \leq t \mid B_{t}=a\right)=1-e^{-2 a^{2} / t}
$$

12. Use absolute continuity to derive the distribution of the first passage time for Brownian motion with drift. Compute also the Laplace transform of the distribution.
13. Using Itô's formula show that the following are martingales
(a) $\left\{B_{t}^{3}-3 t B_{t}: t \geq 0\right\}$
(b) $\left\{B_{t}^{4}-6 t B_{t}^{2}+3 t^{2}: t \geq 0\right\}$.
14. Let $\tau:=\inf \left\{t:\left|B_{t}\right|>a\right\}, a>0$. Show that
(a) $\mathbf{E}_{0} \tau=\mathbf{E}_{0} B_{\tau}^{2}=a^{2}$
(b) $3 \mathbf{E}_{0} \tau^{2}=\mathbf{E}_{0}\left(-B_{\tau}^{4}+6 \tau B_{\tau}^{2}\right)=5 a^{4}$.
15. Let $B^{(i)}, i=1, \ldots, n$, be independent standard Brownian motions and set

$$
S_{t}=\sum_{i=1}^{n}\left(B_{t}^{(i)}\right)^{2}
$$

Show that $\left\{S_{t}-n t: t \geq 0\right\}$ is a martingale and

$$
<S>_{t}=\int_{0}^{t} 4 S_{r} d r
$$

16. Let $B^{(i)}, i=1, \ldots, n$, and S be as above and set $R_{t}=\sqrt{S_{t}}$. Introduce

$$
\varphi(x)= \begin{cases}\ln |x|, & n=2 \\ |x|^{2-n}, & n \geq 3\end{cases}
$$

Show that $\left\{\varphi\left(R_{t}\right): t \geq 0\right\}$ is a local martingale.
17. (a) Let $\left\{L_{t}^{y}: t \geq 0, y \in \mathbf{R}\right\}$ be the local time of the standard Brownian motion. Show that

$$
\mathbf{E}_{x}\left(L_{H_{a} \wedge H_{b}}^{y}\right)=u(x, y), \quad a \leq x \leq y \leq b
$$

where $H_{a}:=\inf \left\{s: B_{s}=a\right\}$ and

$$
u(x, y)=\frac{(x-a)(b-y)}{b-a}
$$

(b) For $a \leq y \leq x \leq b$ set $u(x, y)=u(y, x)$, and prove that

$$
\mathbf{E}_{x}\left(\int_{0}^{T_{a} \wedge T_{b}} f\left(B_{s}\right) d s\right)=2 \int_{a}^{b} u(x, y) f(y) d y
$$

where f is a positive, bounded, and Borel-measurable function.
18. (a) Let $S_{t}=\sup \left\{B_{s}: s \leq t\right\}$ and L_{t} be the local time of B at zero. Show that for $\alpha>0$ the processes $\left\{\left(S_{t}-B_{t}+\alpha^{-1}\right) \exp \left(-\alpha S_{t}\right): t \geq 0\right\}$ and $\left\{\left(\left|B_{t}\right|+\alpha^{-1}\right) \exp \left(-2 \alpha L_{t}\right): t \geq 0\right\}$ are local martingales.
(b) Let $U_{x}:=\inf \left\{t: S_{t}-B_{t}>x\right\}$ and $T_{x}:=\inf \left\{t:\left|B_{t}\right|>x\right\}$. Prove that both $S_{U_{x}}$ and $2 L_{T_{x}}$ are exponentially distributed with parameter $1 / x$.
19. Let $c>0$.
(a) Show that

$$
\left\{\left(B_{t}, L_{t}^{a}\right): t \geq 0, a \in \mathbf{R}\right\} \sim\left\{\left(\frac{1}{\sqrt{c}} B_{c_{t}}, \frac{1}{\sqrt{c}} L_{c_{t}}^{a / \sqrt{c}}\right): t \geq 0, a \in \mathbf{R}\right\}
$$

(b) Let $\tau_{t}:=\inf \left\{s: L_{s}>t\right\}$. Show that

$$
\left\{\tau_{t}: t \geq 0\right\} \sim\left\{\frac{1}{c} \tau_{\sqrt{c_{t}}}: t \geq 0\right\}
$$

(c) Let $H_{a}:=\inf \left\{s: B_{s}=a\right\}$. Show that

$$
\left\{L_{H_{a}}^{x}: x \in \mathbf{R}, a \geq 0\right\} \sim\left\{\frac{1}{c} L_{H_{c} a}^{c x}: x \in \mathbf{R}, a \geq 0\right\}
$$

20. Show that the process

$$
\left\{Z_{t}:=\int_{0}^{t} \operatorname{sgn}\left(B_{s}\right) d B_{s}, t \geq 0\right\}
$$

is a standard Brownian motion.
21. Let B be a standard linear BM. Show that $\left\{f\left(B_{t}\right): t \geq 0\right\}$ is a local-\mathcal{F}_{t}-submartingale if and only if f is convex. (Recall that f is convex if $\left.f\left(\theta x_{1}+(1-\theta) x_{2}\right) \leq \theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right), 0 \leq \theta \leq 1.\right)$
22. Let f be a locally bounded Borel function on R_{+}and B a standard BM. Prove that the process

$$
\left\{Z_{t}:=\int_{0}^{t} f(s) d B_{s}: t \geq 0\right\}
$$

is Gaussian and compute its covariance $\Gamma(s, t)$. Prove that $\exp \left(Z_{t}-\right.$ $\left.\frac{1}{2} \Gamma(t, t)\right)$ is a martingale.
23. Consider the SDE

$$
\begin{aligned}
d N_{t} & =r N_{t} d t+\alpha N_{t} d B_{t} \\
N_{0} & =\xi
\end{aligned}
$$

Then

$$
N_{t}=\xi e^{\left(r-\frac{1}{2} \alpha^{2}\right) t+\alpha B_{t}}
$$

is the unique strong solution. Show that if ξ and $\left\{B_{t}: t \geq 0\right\}$ are independent then

$$
\mathbf{E} N_{t}=e^{r t} \mathbf{E} \xi
$$

24. Solve the SDE

$$
d X_{t}=\left(\sqrt{1+X_{t}^{2}}+\frac{1}{2} X_{t}\right) d t+\sqrt{1+X_{t}^{2}} d B_{t}
$$

Hint: Solve first the equation

$$
d X_{t}=\sqrt{1+X_{t}^{2}} d B_{t}+\frac{1}{2} X_{t} d t
$$

and try to use the fact that the first drift term and the diffusion term are equal.
25. Solve the SDE

$$
d X_{t}=\left[\frac{2}{1+t} X_{t}-a(1+t)^{2}\right] d t+a(1+t)^{2} d B_{t}
$$

26. Show that

$$
X_{t}=\xi e^{-\alpha t}+\sigma \int_{0}^{t} e^{-\alpha(t-s)} d B_{s}
$$

is the unique strong solution of the equation

$$
\begin{aligned}
d X_{t} & =-\alpha X_{t} d t+\sigma d B_{s} \\
X_{0} & =\xi
\end{aligned}
$$

Use Problem 21 to prove that

$$
X \sim e^{-\alpha t} B\left(\frac{e^{2 \alpha t}-1}{2 \alpha}\right)
$$

where it is assumed $B_{0}=\xi$. (Hint: Consider the process $\left\{e^{\alpha t} X_{t}: t \geq 0\right\}$.)
27. Consider for a given $x \in \mathbf{R}$ the linear stochastic differential equation

$$
\begin{aligned}
& d X_{t} \quad=A(t) X_{t} d t+\sigma d B_{t} \\
X_{0} \quad & =x
\end{aligned}
$$

Assume that $A(t) \leq-\alpha<0$ for all $t \geq 0$ and show that

$$
\mathbf{E} X_{t}^{2} \leq \frac{\sigma^{2}}{2 \alpha}+\left(x^{2}-\frac{\sigma^{2}}{2 \alpha}\right) e^{-2 \alpha t}
$$

(Hint: Use Itô's formula to find an integral equation for $s \mapsto \mathbf{E} X_{s}^{2}$. Use then the assumption on A and iterate, in other words use Gronwall's lemma: Let $t \mapsto g(t)$ be a continuous function such that for all $t>0$

$$
0 \leq g(t) \leq \alpha(t)+\beta \int_{0}^{t} g(s) d s
$$

with $\beta \geq 0$ and $t \mapsto \alpha(t)$ integrable. Then

$$
g(t) \leq \alpha(t)+\beta \int_{0}^{t} \alpha(s) e^{\beta(t-s)} d s
$$

28. Consider the system

$$
\begin{aligned}
d X_{t} & =Y_{t} d t \\
d Y_{t} & =-\beta X_{t} d t-\alpha Y_{t} d t+\sigma d B_{t}
\end{aligned}
$$

where α, β, σ are positive constants.
(a) Solve the system.
(b) Show that if $\left(X_{0}, Y_{0}\right)$ has a Gaussian distribution then $\left(X_{t}, Y_{t}\right)$ is a time homogeneous Gaussian process.
(c) Find the covariance function of this process.
29. (a) Prove that for $t \in[0,1)$ and $x \in \mathbf{R}$ the solution to the SDE

$$
X_{t}^{x}=B_{t}+\int_{0}^{t} \frac{x-X_{s}^{x}}{1-s} d s
$$

is given by

$$
X_{t}^{x}=x t+B_{t}-(1-t) \int_{0}^{t} \frac{B_{s} d s}{(1-s)^{2}}=x t+(1-t) \int_{0}^{t} \frac{d B_{s}}{1-s}
$$

(b) Prove that

$$
\lim _{t \uparrow 1} X_{t}^{x}=x \quad \text { a.s. }
$$

and that, if we set $X_{1}^{x}=x$, then $X_{t}^{x}, t \in[0,1]$, is a Brownian bridge, that is $\left\{X_{t}^{x}: 0 \leq t \leq 1\right\}$ is a Gaussian process such that $\mathbf{E} X_{t}^{x}=x t$, and for $x=0, \mathbf{E}\left(X_{s}^{x} X_{t}^{x}\right)=s(1-t), s \leq t \leq 1$.

Hint: to prove (\dagger) use the following result: Suppose that a) g is decreasing and continuous on $[0,1]$ and $g(1)=0, \mathrm{~b}) f$ is positive on $[0,1), \mathrm{c})$ $\int_{0}^{1} f(x) g(x) d x<\infty$ then

$$
\lim _{t \rightarrow 1-} g(t) \int_{0}^{t} f(s) d s=0
$$

