Stochastic analysis, autumn 2011, Exercises-9, 15.11.2011

1. (Martingale characterization) Let $M_t(\omega)$ adapted to the filtration $\mathbb{F} = (\mathcal{F}_t : t \in \mathbb{R}^+)$, with $E(|M_t|) < \infty \forall t$. Then (X_t) is an \mathbb{F} -martingale if and only if $\forall \mathbb{F}$ -stopping times $\tau(\omega)$ which can take at most two finite values

$$E(M_{\tau}) = E(M_0)$$

Hint: the necessity is just Doob optional sampling theorem, for sufficiency for $s \leq t$ and $A \in \mathcal{F}_s$ define $\tau(\omega) = t\mathbf{1}_A + s\mathbf{1}_{A^c}$ and show that it is a stopping time. Then use the hypothesis to show that $E((M_t - M_s)\mathbf{1}_A) = 0$.

Solution

$$\{\tau \le r\} = \begin{cases} \Omega & \text{when } t \le r \\ A^c & \text{when } s \le r < t \\ \emptyset \text{ when } 0 \le s < r \end{cases}$$

and we see that in all cases $\{\tau \leq r\} \in \mathcal{F}_r$.

$$0 = E(M_{\tau} - M_s) = E(M_t \mathbf{1}_A + M_s(1 - 1_A) - M_s)$$

= $E((M_t - M_s)\mathbf{1}_A)$

2. (Lenglart's inequality)

Let $X_t(\omega) \ge 0$ and $A_t(\omega) \ge 0$ continuous processes adapted with respect to $\mathbb{F} = (\mathcal{F}_t : t \in \mathbb{R}^+)$, with $X_0 = 0$, and we assume that A_t is non-decreasing such that for all **bounded** stopping times $\tau(\omega)$

$$E(X_{\tau}) \le E(A_{\tau})$$

We introduce the running maximum $X_t^*(\omega) = \max_{0 \le s \le t} X_s(\omega)$

Prove the following inequalities for **all** \mathbb{F} -stopping times τ , (also unbounded): $\forall \varepsilon, \delta > 0$

$$\begin{aligned} \mathbf{a}) & P(X_{\tau}^* > \varepsilon) \leq \frac{E(A_{\tau})}{\varepsilon} \\ \mathbf{b}) & P(X_{\tau}^* > \varepsilon, A_{\tau} \leq \delta) \leq \frac{E(A_{\tau} \wedge \delta)}{\varepsilon} \\ \mathbf{c}) & P(X_{\tau}^* > \varepsilon) \leq \frac{E(\delta \wedge A_{\tau})}{\varepsilon} + P(A_{\tau} > \delta) \end{aligned}$$

Hint: show it first for bounded stopping times, then use monotone convergence.

Solution Let τ be a \mathbb{F} -stopping time. Define also $\sigma = \inf\{s : X_s > \varepsilon\}$ Note that

$$X_{\sigma} \mathbf{1}(\sigma \leq t \wedge \tau) = X_{\tau \wedge \sigma \wedge t} \mathbf{1}(X_{\tau \wedge \sigma \wedge t}^* > \varepsilon) = \\ \geq \varepsilon \mathbf{1}(X_{\tau \wedge \sigma \wedge t}^* > \varepsilon)$$

Taking expectation and using the assumption

$$\varepsilon P(X^*_{\tau \wedge \sigma \wedge t} > \varepsilon) \le E\left(X_{\tau \wedge \sigma \wedge t} \mathbf{1}(X^*_{\tau \wedge \sigma \wedge t} > \varepsilon)\right) \le E(X_{\tau \wedge \sigma \wedge t}) \le E(A_{\tau \wedge \sigma \wedge t})$$

and as $t \uparrow \infty$ by monotone convergence on the left and right hand side

$$\varepsilon P(X_{\tau}^* > \varepsilon) = \varepsilon P(X_{\tau \wedge \sigma}^* > \varepsilon)$$

$$\leq E(A_{\tau \wedge \sigma}) \leq E(A_{\tau})$$

Let $\rho = \inf\{s : A_s > \delta\}.$

$$P(X_{\tau}^* > \varepsilon, A_{\tau} \le \delta) = P(X_{\tau \land \rho}^* > \varepsilon)$$
$$\le \frac{1}{\varepsilon} E(A_{\tau \land \rho}) \le \frac{1}{\varepsilon} E(A_{\tau} \land \delta)$$

and since

$$P(X_{\tau}^* > \varepsilon) \le P(X_{\tau}^* > \varepsilon, A_{\tau} \le \delta) + P(A_{\tau} > \delta)$$

the last equation follows.

3. Let M_t a continuous \mathbb{F} -local martingale. The \mathbb{F} -predictable variation $\langle M \rangle_t$ is the non-decreasing process with $\langle M \rangle_0 = 0$ such that

$$M_t^2 - \langle M \rangle_t$$

is a \mathbb{F} -local martingale.

Show that for any $\mathbb F\text{-stopping time }\tau$

$$P\left(\max_{0 \le s \le t} |M_s(\omega)| > \varepsilon\right) \le \frac{E(\delta \land \langle M \rangle_{\tau})}{\varepsilon^2} + P(\langle M \rangle_{\tau} > \delta)$$

Solution Let $\tau'_n \uparrow \infty$ be a localizing sequence for the martingale (M_t) . Note that also $(\tau'_n \land n)$ is a localizing sequence since if $(M_{t \land \tau_n} : t \in \mathbb{R}^+)$ is a true martingale, also the stopped process $(M_{t \land \tau_n \land n} : t \in \mathbb{R}^+)$ is a true martingale. This means that we can always choose a localizing sequence of bounded stopping times.

Let also $\tau_n'' \uparrow$ be a localizing sequence for the local martingale $(M_t^2 - \langle M \rangle_t)$. By choosing $\tau_n = \tau_n' \land \tau_n'' \land n$ we obtain a sequence of stopping

So $(M_{t \wedge \tau_n} : t \in \mathbb{R}^+)$ and $(M_{t \wedge \tau_n}^2 - \langle M \rangle_{t \wedge \tau_n} : t \in \mathbb{R}^+)$ are true martingales and τ_n is bounded for each n.

By Doob optional stopping theorem, for every stopping time σ

$$E(M^2_{\tau_n \wedge \sigma}) = E(\langle M \rangle_{\tau_n \wedge \sigma})$$

By Lenglart's inequality

$$P\left(\sup_{0\leq s\leq \tau_n\wedge\sigma}|M_s|>\varepsilon\right)\leq \frac{1}{\varepsilon^2}E_P\left(\langle M\rangle_{\tau_n\wedge\sigma}\right)$$

and also

$$P\left(\sup_{0\leq s\leq \tau_n\wedge\sigma}|M_s|>\varepsilon\right)\leq \frac{1}{\varepsilon^2}E_P\left(\langle M\rangle_{\tau_n\wedge\sigma}\wedge\delta\right)+P(\langle M\rangle_{\tau_n\wedge\sigma}>\delta)$$

and as $\tau_n \uparrow \infty$ for $n \uparrow \infty$, by monotone convergence we get

$$P\left(\sup_{0\leq s\leq\sigma}|M_s|>\varepsilon\right)\leq \frac{1}{\varepsilon^2}E_P\left(\langle M\rangle_{\sigma}\right)$$
$$P\left(\sup_{0\leq s\leq\sigma}|M_s|>\varepsilon\right)\leq \frac{1}{\varepsilon^2}E_P\left(\langle M\rangle_{\sigma}\wedge\delta\right)+P(\langle M\rangle_{\sigma}>\delta)$$

4. $\{M_t^{(n)}(\omega)\}_{n\in\mathbb{N}}$ a sequence of \mathbb{F} -local martingales and τ a \mathbb{F} -stopping time. Show that

$$\langle M^{(n)} \rangle_{\tau} \xrightarrow{P} 0 \implies \max_{0 \le s \le \tau} |M_s(\omega)| \xrightarrow{P} 0$$

where we use convergence in probability.

5. (A discontinuous martingale) Consider a random time $\tau(\omega) \in [0, \infty]$ with distribution function $F(t) = P(\tau \leq t)$.

Define the Riemann Stieltjes integrals

$$\Lambda_t = \int_0^t \frac{1}{1 - F(s)} F(ds) = \int_0^t \frac{1}{P(\tau \ge s)} F(ds) = \int_0^t P(\tau \in ds | \tau \ge s), \quad t \ge 0$$

For simplicity you can assume that F is continuous or even absolutely continuous.

Consider counting process $N_t(\omega) := \mathbf{1}(\tau(\omega) \leq t)$ which has one jump at size 1 at time τ , And let $\mathbb{F} = (\mathcal{F}_t : t \in \mathbb{R}^+)$. with $\mathcal{F}_t = \sigma(N_s : s \leq t)$.

- Show that τ is \mathbb{F} -stopping time.
- Show that $M_t := N_t(\omega) \Lambda(t \wedge \tau(\omega))$ is a \mathbb{F} -martingale. Hint: show that

$$\mathcal{F}_s = \left\{ \Omega, \emptyset, \{\tau(\omega) > s\} \text{and } \{\tau(\omega) \in B\}, \{\tau \in (s, \infty) \cup B\} : B \subset [0, s] \text{ Borel } \right\}$$

Solution For fixed s, $(a, b] \subseteq [0, s]$, since τ is a stopping time

 $\{\tau \in (a,b]\} = \{\tau \le b\} \setminus \{\tau \le a\} \in \mathcal{F}_s$

by taking countable unions and intersections it follows $\{\tau \in B\} \in \mathcal{F}_s$ for all Borel sets $B \in [0, s]$

Also $\{\tau > s\} = \{\tau \leq s\}^c \in \mathcal{F}_s$. There are no other sets. In fact when $B \subseteq [0, s]$ obviously $\{\tau > s\} \cap \{\tau \in B\} = \emptyset \in \mathcal{F}_s$ and $\{\tau \in (s, \infty) \cup B\} \in \mathcal{F}_s$ For such sets $A \in \mathcal{F}_s$ and $s \leq t$ compute $E((M_t - M_s)\mathbf{1}_A)$.

Solution For $A = \{\tau \in B\}$ Âăwith $B \subset [0, s]$ Borel

$$N_t \mathbf{1}(\tau \in B) = N_s \mathbf{1}(\tau \in B) = \mathbf{1}(\tau \in B)$$
$$\Lambda_{t \wedge \tau} \mathbf{1}(\tau \in B) = \Lambda_{s \wedge \tau} \mathbf{1}(\tau \in B) = \Lambda_{\tau} \mathbf{1}(\tau \in B)$$

and

$$0 = E\left((N_t - N_s)\mathbf{1}(\tau \in B)\right) = E\left((\Lambda_{t\wedge\tau} - \Lambda_{s\wedge\tau})\mathbf{1}(\tau \in B)\right)$$

 Also

$$E((N_t - N_s)\mathbf{1}(\tau > s)) = P(\tau \in (s, t)) = F(t) - F(s)$$

Note that when $s \mapsto F(s)$ is continuous

$$\begin{split} \Lambda(t) - \Lambda(s) &= \int_s^t \frac{1}{1 - F(r)} F(dr) = -\int_s^t d_r \log P(\tau > r) = \\ \log P(\tau > s) - \log P(\tau > t) = \log P(\tau > s) P(\tau > t) \end{split}$$

Therefore

$$E\left((\Lambda_{s\wedge\tau} - \Lambda_{s\wedge\tau})\mathbf{1}(\tau > s)\right) = \int_{s}^{\infty} \left(\log(1 - F(r \wedge s)) - \log((1 - F(r \wedge t)))\right) F(dr) = \log(1 - F(s))(1 - F(s)) - \log(1 - F(t))(1 - F(t)) + \int_{s}^{t} \log(1 - F(r))d_{r}(1 - F(r)) = -\int_{s}^{t} (1 - F(r))d\log(1 - F(r)) = -\int_{s}^{t} (1 - F(r))\frac{1}{(1 - F(r))}d_{r}(1 - F(r)) = F(t) - F(s)$$

using integration by parts.