## Stochastic analysis, autumn 2011, Exercises-7, 01.11.2011

1. Suppose we have an urn which contains at time $t=0$ two balls, one black and one white. At each time $t \in N$ we draw uniformly at random from the urn one ball, and we put it back together with a new ball of the same colour.

We introduce the random variables
$X_{t}(\omega)=\mathbf{1}\{$ the ball drawn at time $t$ is black $\}$
and denote $S_{t}=\left(1+X_{1}+\cdots+X_{t}\right)$,
$M_{t}=S_{t} /(t+2)$, the proportion of black balls in the urn.
We use the filtration $\left\{\mathcal{F}_{n}\right\}$ with $\mathcal{F}_{n}=\sigma\left\{X_{s}: s \in \mathbb{N}, s \leq t\right\}$.
i) Compute the Doob decomposition of $\left(S_{t}\right), S_{t}=S_{0}+N_{t}+A_{t}$, where $\left(N_{t}\right)$ is a martingale and $\left(A_{t}\right)$ is predictable

## Solution

$$
\begin{aligned}
& E\left(S_{t} \mid \mathcal{F}_{t-1}\right)=S_{t-1}+E\left(X_{t} \mid \mathcal{F}_{t-1}\right)=S_{t-1}+M_{t-1}= \\
& S_{t-1}\left(1+\frac{1}{t+1}\right)
\end{aligned}
$$

The Doob decomposition is

$$
S_{t}=1+\sum_{r=1}^{t} S_{r-1} \frac{1}{t+1}+\sum_{r=1}^{t}\left(X_{r}-M_{r-1}\right)
$$

The predictable part is non-decreasing, we see that $S_{t}$ is a submartingale.
ii) Show that $\left(M_{t}\right)$ is a martingale and find the representation of $\left(M_{t}\right)$ as a martingale transform $M_{t}=(C \cdot N)_{t}$, where $\left(N_{t}\right)$ is the martingale part of $\left(S_{t}\right)$ and $\left(C_{t}\right)$ is predictable.

## Solution

$$
E\left(M_{t} \mid \mathcal{F}_{t-1}\right)=\frac{1}{t+2} E\left(S_{t} \mid \mathcal{F}_{t-1}\right)=\frac{1}{t+2}\left(1+\frac{1}{t+1}\right) S_{t-1}=\frac{S_{t-1}}{t+1}=M_{t-1}
$$

and

$$
\begin{aligned}
& M_{t}-M_{t-1}=\frac{S_{t}}{t+2}-\frac{S_{t-1}}{t+1}=\frac{S_{t-1}+X_{t}}{t+2}-\frac{S_{t-1}}{t+1}=\frac{1}{t+2}\left(X_{t}+S_{t-1}\left(1-\frac{t+2}{t+1}\right)\right) \\
& =\frac{1}{t+2}\left(X_{t}-\frac{S_{t-1}}{t+1}\right)=\frac{1}{t+2}\left(X_{t}-M_{t-1}\right)
\end{aligned}
$$

Therefore

$$
M_{t}=\frac{1}{2}+\sum_{r=1}^{t} \frac{1}{r+2}\left(X_{r}-M_{r-1}\right)=\frac{1}{2}+(C \cdot N)_{t}
$$

with $C_{t}=\frac{1}{t+2}$ (deterministic).
iv) Note that the martingale $\left(M_{t}\right)_{t \geq 0}$ is uniformly integrable, why? since takes values in $[0,1]$.
Show that $P$ a.s. and in $L^{1}$ exists $M_{\infty}=\lim _{t \rightarrow \infty} M_{t}$. Compute $E\left(M_{\infty}\right)$.
Solution By Doobs' martingale convergence theorem $M_{t}(\omega) \rightarrow M_{\infty}(\omega)$ $P$-almost surely, and by uniform integrability also in $L^{1}(P)$
Since $M_{t}$ is uniformly integrable, $M_{t}=E\left(M_{\infty} \mid \mathcal{F}_{t}\right)$ and $E\left(M_{\infty}\right)=E\left(M_{t}\right)=$ $E\left(M_{0}\right)=1 / 2$.
v) Show that $P\left(0<M_{\infty}<1\right)>0$.

Since $M_{\infty}(\omega) \in[0,1]$, it is enough to show that $0<E\left(M_{\infty}^{2}\right)<E\left(M_{\infty}\right)$ with strict inequalities.

Hint: compute the Doob decomposition of the submartingale $\left(M_{t}^{2}\right)$, and than take expectations before going to the limit to find the value of $E\left(M_{\infty}^{2}\right)$.

Solution Note that if $P\left(M_{\infty} \in\{0,1\}\right)=1$, then $M_{\infty}^{2}=M_{\infty}$ and we have $E\left(M_{\infty}^{2}\right)=E\left(M_{\infty}\right)$.
Otherwise $P\left(M_{\infty} \in(0,1)\right)>0$, which means $P\left(M_{\infty}^{2}<M_{\infty}\right)>0$ which implies the inequality $0<E\left(M_{\infty}^{2}\right)<E\left(M_{\infty}\right)$.

By the discrete integration by parts

$$
M_{t}^{2}-M_{t-1}^{2}=2 M_{t-1}\left(M_{t}-M_{t-1}\right)+\left(M_{t}-M_{t-1}\right)^{2}
$$

and since by the martingale propery

$$
E\left(2 M_{t-1}\left(M_{t}-M_{t-1}\right)\right)=E\left(2 M_{t-1} E\left(M_{t}-M_{t-1} \mid \mathcal{F}_{t-1}\right)\right)=0
$$

it follows

$$
\begin{aligned}
& E\left(M_{t}^{2}\right)=\frac{1}{4}+E\left(\sum_{r=1}^{t} E\left(\left(M_{r}-M_{r-1}\right)^{2}\right)=E\left(M_{t}^{2}\right)=\frac{1}{4}+\sum_{r=1}^{t} E\left(E\left(\left(M_{r}-M_{r-1}\right)^{2} \mid \mathcal{F}_{r-1}\right)\right)\right. \\
& =\frac{1}{4}+\sum_{r=1}^{t} E\left(C_{r}^{2} E\left(\left(X_{r}-M_{r-1}\right)^{2} \mid \mathcal{F}_{r-1}\right)\right)=\frac{1}{4}+\sum_{r=1}^{t} E\left(C_{r}^{2} M_{r-1}\left(1-M_{r-1}\right)\right) \\
& =\frac{1}{4}+\sum_{r=1}^{t} \frac{1}{(r+2)^{2}}\left(E\left(M_{r-1}\right)-E\left(M_{r-1}^{2}\right)\right)=\frac{1}{4}+\sum_{r=1}^{t} \frac{1}{(r+2)^{2}}\left(\frac{1}{2}-E\left(M_{r-1}^{2}\right)\right) \\
& \leq \frac{1}{4}+\frac{1}{2} \sum_{r=1}^{t} \frac{1}{(r+2)^{2}}
\end{aligned}
$$

since conditionally on $\mathcal{F}_{r-1}, X_{r}$ is a Bernoulli variable with success probability $M_{r-1}$.
Actually the last inequality is strict, $E\left(M_{t}^{2}\right)>0$ because $M_{t} \geq 0$ and $E\left(M_{t}\right)=1 / 2>0$.

By Fatou's lemma

$$
E\left(M_{\infty}^{2}\right) \leq \liminf _{t \rightarrow \infty} E\left(M_{t}^{2}\right) \leq \frac{1}{4}+\frac{1}{2} \sum_{r=1}^{\infty} \frac{1}{(r+2)^{2}} \leq \frac{1}{4}+\frac{1}{2} \sum_{r=3}^{\infty} \frac{1}{r^{2}}<\frac{1}{4}+\frac{1}{4}=E\left(M_{\infty}\right)
$$

where $\sum_{r=3}^{\infty} r^{-2}<\int_{2}^{\infty} x^{-2} d x=1 / 2$ with strict inequality.
2. A branching process $\left(Z_{t}\right)_{t \in \mathbb{N}}$ with integer values, represents the size of a population evolving randomly in discrete time.
We start with $Z_{0}(\omega)=1$ individual at time $t=0$.
Inductively each of the $Z_{t-1}(\omega)$ individuals in the $(t-1)$ generation has a random number of offspring $X_{i, t}$. These offspring numbers are independent and identically distributed with law $\pi=(\pi(n): n=0,1, \ldots)$,
$\pi(n)=P\left(X_{i, t}=n\right)$.
The size of the new generation at time $t$ is then

$$
Z_{t}(\omega)=\sum_{i=1}^{Z_{t-1}(\omega)} X_{i, t}(\omega)=\sum_{i=1}^{\infty} \mathbf{1}\left(Z_{t-1} \geq i\right) X_{i, t}(\omega)
$$

We assume that the mean offspring number is finite

$$
\mu=E_{\pi}(X)=\sum_{n=0}^{\infty} n \pi(n)<\infty
$$

- Show that $Z_{t}(\omega)$ is a martingale, (respectively supermartingale, submartingale ) when $\mu=1$ (respectively $0 \leq \mu<1,1<\mu<\infty$, in the filtration generated by the process $Z$ itself.

Solution Note that

$$
\begin{aligned}
& E\left(Z_{t} \mid \mathcal{F}_{t-1}\right)=E\left(\sum_{i=1}^{Z_{t-1}} X_{i, t} \mid \mathcal{F}_{t-1}\right)=\sum_{i=1}^{\infty} E\left(\mathbf{1}\left(Z_{t-1} \leq i\right) X_{i, t} \mid \mathcal{F}_{t-1}\right)= \\
& =\sum_{i=1}^{\infty} \mathbf{1}\left(Z_{t-1} \leq i\right) E\left(X_{i, t} \mid \mathcal{F}_{t-1}\right)=\sum_{i=1}^{\infty} \mathbf{1}\left(Z_{t-1} \leq i\right) E\left(X_{i, t}\right)=\mu Z_{t-1}
\end{aligned}
$$

where we used independence of $X_{i, t}$ from $\mathcal{F}_{t-1}$, and by monotone convergence we can interchange sum and expectation.

- For $\mu \neq 1$, write the Doob decomposition of $Z_{t}$ and compute the mean $E\left(Z_{t}\right)$ for $t \in \mathbb{N}$.


## Solution

$$
\begin{aligned}
& Z_{t}=1+\sum_{s=1}^{t} \sum_{i=1}^{Z_{s-1}}\left(X_{i, s}-1\right)= \\
& 1-(1-\mu) \sum_{s=1}^{t} Z_{s-1}+\sum_{s=1}^{t} \sum_{i=1}^{Z_{s-1}}\left(X_{i, s}-\mu\right)
\end{aligned}
$$

and since the martingale part has zero mean

$$
E\left(Z_{t}\right)=1+(\mu-1) \sum_{s=1}^{t} E\left(Z_{s-1}\right)
$$

this linear difference equation has solution $E\left(Z_{t}\right)=\mu^{t}$.

- Assume that $\mu \leq 1$, and that the offspring distribution is non-trivial, meaning that $0 \leq \pi(X=1)<1$. The case $P(X=1)=1$ is trivial, nothing happens.
Note that since $X(\omega) \in \mathbb{N}$, if $P(X=1)<1$ and $E(X) \leq 1$, it follows that $\pi(0)=P(X=0)>0$.
Show that

$$
\lim _{t \rightarrow \infty} Z_{t}(\omega)=0 \quad P \text { a.s. }
$$

Hint: first show that a finite limit $Z_{\infty}(\omega)$ exists $P$ a.s.
. Solution $Z_{t}$ is a non-negative martingale, by Doob's martingale convergence theorem it has $P$ a.s. a finite limit $Z_{\infty}$.

Consider

$$
P\left(Z_{\infty}=0 \mid Z_{1}=n\right)=P\left(Z_{\infty}=0\right)^{n}
$$

since $P\left(Z_{\infty}=0\right)$ is the probability that descendance of a single individual becomes extinct, is the probability that independently for each of its children the respective descendances become extinct.

By computing first the conditional probability $P\left(Z_{\infty}=0 \mid \sigma\left(Z_{1}\right)\right)(\omega)$ and taking expectation, show that the unknown $q=P\left(Z_{\infty}=0\right)$ satisfies the equation

$$
q=E_{P}\left(q^{X}\right), \quad q \in[\pi(0), 1]
$$

where $P(X=n)=\pi(n)$ is the offspring distribution.
Note that since $\mu=E(X) \leq 1$ and $\pi(1)=P(X=1)<1$, necessarily $\pi(0)=P(X=0)>0$, and $P\left(Z_{\infty}=0\right) \geq P(X=0)>0$. Therefore the $q=0$ is not a solution.
$q=1$ is a solution. We show that there are no other solutions. Note that by Jensen inequality for the concave function $x \mapsto q^{x}$ with $q \in[0,1]$

$$
E\left(q^{X}\right) \geq q^{E(X)} \geq q
$$

Show that the inequality is strict in the non-trivial case with $P(X=$ 1) $<1$

If $0<q<1$ cannot be a solution since the derivative

$$
\frac{d}{d q} E_{P}\left(q^{X}\right)=E\left(\frac{d}{d q} q^{X}\right)=E\left(X q^{X-1}\right)<E(X) \leq 1
$$

with strict inequality in the non-trivial case in the $P(X=1)<1$. It is allowed to take a derivative inside the expectation, since $0 \leq$ $X q^{X-1} \leq X \in L^{1}(P) \forall q \in(0,1)$.
This implies that

$$
E_{P}\left(q^{X}\right)>q, \forall \quad q \in(0,1)
$$

- Assume that $\mu=1$. Show that the martingale $\left(Z_{t}: t \in \mathbb{N}\right)$ is not uniformly integrable.
Solution: $\quad$ Since $0=E\left(Z_{\infty}\right)<E\left(Z_{t}\right)=E\left(Z_{0}\right)=1, Z_{t}(\omega) \rightarrow$ $Z_{\infty}(\omega) P$ almost surely but not in $L^{1}(P)$, therefore uniform integrability does not hold.

3. We now make a change of measure and define a new measure $P^{\prime}$ such that under $Q$ the offspring numbers are independent and identically distributed with

$$
P^{\prime}\left(X_{i, t}=n\right)=\pi^{\prime}(n)
$$

with $\pi^{\prime}(n)=0$ when $\pi(n)=0$. Compute the likelihood ratio process $\frac{d P_{t}^{\prime}}{d P_{t}}(\omega)$ on the filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)$ with $\mathcal{F}_{t}=\sigma\left(X_{i, s}: i \in \mathbb{N}, 1 \leq s \leq t\right)$.

## . Solution

$$
\frac{d P_{t}^{\prime}}{d P_{t}}(\omega)=\prod_{s=1}^{t} \prod_{i=1}^{Z_{s-1}(\omega)} \frac{\pi^{\prime}\left(X_{i, s}(\omega)\right.}{\pi\left(X_{i, s}(\omega)\right.}
$$

4. Consider an i.i.d. random sequence $\left(U_{t}: t \in \mathbb{N}\right)$ with uniform distribution on $[0,1], P\left(U_{1} \in d x\right)=\mathbf{1}_{[0,1]}(x) d x$. Note that $E_{P}\left(U_{t}\right)=1 / 2$.
Consider also the random variable $-\log \left(U_{1}(\omega)\right)$ which is 1-exponential w.r.t. $P$.

$$
P\left(-\log \left(U_{1}\right)>x\right)= \begin{cases}\exp (-x) & \text { kun } x \geq 0 \\ 1 & \text { kun } x<0\end{cases}
$$

$-\log \left(U_{1}\right) \in L^{1}(P)$ with $E_{P}\left(-\log \left(U_{1}\right)\right)=1$.

- Let $Z_{0}=1$, and

$$
Z_{t}(\omega)=2^{t} \prod_{s=1}^{t} U_{s}(\omega)
$$

Show that $\left(Z_{t}\right)$ is a martingale in the filtration $\mathbb{F}=\left(\mathcal{F}_{t}: t \in \mathbb{N}\right)$, with $\mathcal{F}_{t}=\sigma\left(Z_{1}, Z_{2}, \ldots, Z_{t}\right)=\sigma\left(U_{1}, U_{2}, \ldots, U_{t}\right)$.
Solution $E_{P}\left(Z_{t} \mid \mathcal{F}_{t-1}\right)=Z_{t-1} 2 E\left(U_{t} \mid \mathcal{F}_{t-1}\right)=Z_{t-1} 2 E\left(U_{t}\right)=Z_{t-1}$ $E_{P}\left(Z_{t}\right)=E_{P}\left(Z_{0}\right)=Z_{0}=1$.

- Show that the limit $Z_{\infty}(\omega)=\lim _{t \rightarrow \infty} Z_{t}(\omega)$ exists $P$ almost surely. Solution. ( $Z_{t}: t \in \mathbb{N}$ ) is a non-negative martingale, by Doob's martingale convergence theorem $\lim _{t \rightarrow \infty} Z_{t}(\omega)$ exists a.s.
- Show that

$$
Z_{\infty}(\omega)=0 \quad P \text {-a.s. }
$$

Hint Compute first the $P$-a.s. limit

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \log \left(Z_{t}(\omega)\right)
$$

(remember Kolmogorov's strong law of large numbers!). Solution.

$$
\begin{aligned}
& \frac{1}{t} \log \left(Z_{t}\right)=\frac{1}{t}\left(t \log (2)+\sum_{s=1}^{t} \log \left(U_{s}\right)\right) \\
& =\log (2)+\frac{1}{t} \sum_{s=1}^{t} \log \left(U_{s}\right) \rightarrow \log (2)+E\left(\log \left(U_{1}\right)\right)=\log (2)-1<0
\end{aligned}
$$

with convergence $P$ a.s. and in $L^{1}(P)$.
This means $P$ a.s. as $t \rightarrow \infty Z_{t}(\omega)=\mathcal{O}(\exp (t(\log (2)-1)) \rightarrow 0$, that is $Z_{\infty}(\omega)=0$.

- Show that the martingale $\left(Z_{t}(\omega): t \in \mathbb{N}\right)$ is not uniformly integrable. Solution. Beacuse $E\left(Z_{1}\right)=1>E\left(Z_{\infty}\right)=0$, so the martingale property does not hold as infinity.
- Show that $\log \left(Z_{t}(\omega)\right)$ is a supermartingale, does it satisfy the assumptions of Doob's martingale convergence theorem?
Solution $\log \left(Z_{t}\right)=\sum_{s=1}^{t}\left(\log (2)+\log \left(U_{s}\right)\right)$ where $\log \left(U_{s}\right)$ are i.i.d. with $E\left(\log (2)+\log \left(U_{s}\right)\right)=\log (2)-1<0$. The assumption sup ${ }_{t} E\left(\log \left(Z_{t}\right)^{-}\right)<$ $\infty$ of Doob convergence theorem is not satisfied, it behaves like a biased random walk, since

$$
\frac{1}{t} \log \left(Z_{t}(\omega)\right)=\log (2)-1<0
$$

we see that $P$ a.s. $\lim _{t \rightarrow \infty} Z_{t}(\omega)=-\infty$.

- At every time $t \in \mathbb{N}$, define the probability measure

$$
Q_{t}(A):=E_{P}\left(Z_{t} \mathbf{1}_{A}\right) \quad \forall A \in \mathcal{F}_{t}
$$

on the probability space $(\Omega, \mathcal{F})$.
Show that the random variables $\left(U_{1}, \ldots, U_{t}\right)$ are i.i.d. also under $Q_{t}$, compute their probability density under $Q_{t}$.
Solution For any bounded measurable functions $f_{s}(x) s=1, \ldots, t$

$$
\begin{aligned}
& E_{Q}\left(f_{1}\left(U_{1}\right) \ldots f_{t}\left(U_{t}\right)\right)=E_{P}\left(Z_{t} f_{1}\left(U_{1}\right) \ldots f_{t}\left(U_{t}\right)\right) \\
& =E_{P}\left(\prod_{s=1}^{t} 2 f_{s}\left(U_{s}\right) U_{s}\right)=\prod_{s=1}^{t} 2 E_{P}\left(f_{s}\left(U_{s}\right) U_{s}\right)=\prod_{s=1}^{t} 2 \int_{0}^{1} f_{s}(u) u d u
\end{aligned}
$$

which means that under $Q$ the r.v. $U_{s}$ are i.i.d. with

$$
Q\left(U_{1} \in d u\right)=\mathbf{1}_{[0,1]}(u) 2 u d u
$$

