Stochastic analysis, autumn 2011, Exercises-7, 01.11.2011

1. Suppose we have an urn which contains at time t=0 two balls, one black and one white. At each time $t \in N$ we draw uniformly at random from the urn one ball, and we put it back together with a new ball of the same colour.

We introduce the random variables

 $X_t(\omega) = \mathbf{1}$ the ball drawn at time t is black }

and denote $S_t = (1 + X_1 + \dots + X_t),$

 $M_t = S_t/(t+2)$, the proportion of black balls in the urn.

We use the filtration $\{\mathcal{F}_n\}$ with $\mathcal{F}_n = \sigma\{X_s : s \in \mathbb{N}, s \leq t\}$.

i) Compute the Doob decomposition of (S_t) , $S_t = S_0 + N_t + A_t$, where (N_t) is a martingale and (A_t) is predictable.

Solution

$$E(S_t|\mathcal{F}_{t-1}) = S_{t-1} + E(X_t|\mathcal{F}_{t-1}) = S_{t-1} + M_{t-1} = S_{t-1} \left(1 + \frac{1}{t+1}\right)$$

The Doob decomposition is

$$S_t = 1 + \sum_{r=1}^{t} S_{r-1} \frac{1}{t+1} + \sum_{r=1}^{t} (X_r - M_{r-1})$$

The predictable part is non-decreasing, we see that S_t is a submartingale.

ii) Show that (M_t) is a martingale and find the representation of (M_t) as a martingale transform $M_t = (C \cdot N)_t$, where (N_t) is the martingale part of (S_t) and (C_t) is predictable.

Solution

$$E(M_t|\mathcal{F}_{t-1}) = \frac{1}{t+2}E(S_t|\mathcal{F}_{t-1}) = \frac{1}{t+2}\left(1 + \frac{1}{t+1}\right)S_{t-1} = \frac{S_{t-1}}{t+1} = M_{t-1}$$

and

$$\begin{split} M_t - M_{t-1} &= \frac{S_t}{t+2} - \frac{S_{t-1}}{t+1} = \frac{S_{t-1} + X_t}{t+2} - \frac{S_{t-1}}{t+1} = \frac{1}{t+2} \bigg(X_t + S_{t-1} \bigg(1 - \frac{t+2}{t+1} \bigg) \bigg) \\ &= \frac{1}{t+2} \bigg(X_t - \frac{S_{t-1}}{t+1} \bigg) = \frac{1}{t+2} (X_t - M_{t-1}) \end{split}$$

Therefore

$$M_t = \frac{1}{2} + \sum_{r=1}^{t} \frac{1}{r+2} (X_r - M_{r-1}) = \frac{1}{2} + (C \cdot N)_t$$

with $C_t = \frac{1}{t+2}$ (deterministic).

iv) Note that the martingale $(M_t)_{t\geq 0}$ is uniformly integrable, why? since takes values in [0,1].

Show that P a.s. and in L^1 exists $M_{\infty} = \lim_{t \to \infty} M_t$. Compute $E(M_{\infty})$.

Solution By Doobs' martingale convergence theorem $M_t(\omega) \to M_{\infty}(\omega)$ P-almost surely, and by uniform integrability also in $L^1(P)$

Since M_t is uniformly integrable, $M_t = E(M_{\infty}|\mathcal{F}_t)$ and $E(M_{\infty}) = E(M_t) = E(M_0) = 1/2$.

v) Show that $P(0 < M_{\infty} < 1) > 0$.

Since $M_{\infty}(\omega) \in [0,1]$, it is enough to show that $0 < E(M_{\infty}^2) < E(M_{\infty})$ with strict inequalities.

Hint: compute the Doob decomposition of the submartingale (M_t^2) , and than take expectations before going to the limit to find the value of $E(M_\infty^2)$.

Solution Note that if $P(M_{\infty} \in \{0,1\}) = 1$, then $M_{\infty}^2 = M_{\infty}$ and we have $E(M_{\infty}^2) = E(M_{\infty})$.

Otherwise $P(M_{\infty} \in (0,1)) > 0$, which means $P(M_{\infty}^2 < M_{\infty}) > 0$ which implies the inequality $0 < E(M_{\infty}^2) < E(M_{\infty})$.

By the discrete integration by parts

$$M_t^2 - M_{t-1}^2 = 2M_{t-1}(M_t - M_{t-1}) + (M_t - M_{t-1})^2$$

and since by the martingale propery

$$E\left(2M_{t-1}(M_t - M_{t-1})\right) = E\left(2M_{t-1}E(M_t - M_{t-1}|\mathcal{F}_{t-1})\right) = 0$$

it follows

$$E(M_t^2) = \frac{1}{4} + E\left(\sum_{r=1}^t E\left((M_r - M_{r-1})^2\right) = E(M_t^2) = \frac{1}{4} + \sum_{r=1}^t E\left(E\left((M_r - M_{r-1})^2\middle|\mathcal{F}_{r-1}\right)\right)\right)$$

$$= \frac{1}{4} + \sum_{r=1}^t E\left(C_r^2 E\left((X_r - M_{r-1})^2\middle|\mathcal{F}_{r-1}\right)\right) = \frac{1}{4} + \sum_{r=1}^t E\left(C_r^2 M_{r-1}(1 - M_{r-1})\right)$$

$$= \frac{1}{4} + \sum_{r=1}^t \frac{1}{(r+2)^2} \left(E(M_{r-1}) - E(M_{r-1}^2)\right) = \frac{1}{4} + \sum_{r=1}^t \frac{1}{(r+2)^2} \left(\frac{1}{2} - E(M_{r-1}^2)\right)$$

$$\leq \frac{1}{4} + \frac{1}{2} \sum_{r=1}^t \frac{1}{(r+2)^2}$$

since conditionally on \mathcal{F}_{r-1} , X_r is a Bernoulli variable with success probability M_{r-1} .

Actually the last inequality is strict, $E(M_t^2) > 0$ because $M_t \ge 0$ and $E(M_t) = 1/2 > 0$.

By Fatou's lemma

$$E(M_{\infty}^2) \leq \liminf_{t \to \infty} E(M_t^2) \leq \frac{1}{4} + \frac{1}{2} \sum_{r=1}^{\infty} \frac{1}{(r+2)^2} \leq \frac{1}{4} + \frac{1}{2} \sum_{r=3}^{\infty} \frac{1}{r^2} < \frac{1}{4} + \frac{1}{4} = E(M_{\infty})$$

where $\sum_{r=3}^{\infty} r^{-2} < \int_{2}^{\infty} x^{-2} dx = 1/2$ with strict inequality.

2. A branching process $(Z_t)_{t\in\mathbb{N}}$ with integer values, represents the size of a population evolving randomly in discrete time.

We start with $Z_0(\omega) = 1$ individual at time t = 0.

Inductively each of the $Z_{t-1}(\omega)$ individuals in the (t-1) generation has a random number of offspring $X_{i,t}$. These offspring numbers are independent and identically distributed with law $\pi = (\pi(n) : n = 0, 1, ...)$,

$$\pi(n) = P(X_{i,t} = n).$$

The size of the new generation at time t is then

$$Z_{t}(\omega) = \sum_{i=1}^{Z_{t-1}(\omega)} X_{i,t}(\omega) = \sum_{i=1}^{\infty} \mathbf{1}(Z_{t-1} \ge i) X_{i,t}(\omega)$$

We assume that the mean offspring number is finite

$$\mu = E_{\pi}(X) = \sum_{n=0}^{\infty} n\pi(n) < \infty$$

• Show that $Z_t(\omega)$ is a martingale, (respectively supermartingale, submartingale) when $\mu = 1$ (respectively $0 \le \mu < 1, 1 < \mu < \infty$, in the filtration generated by the process Z itself.

Solution Note that

$$E(Z_{t}|\mathcal{F}_{t-1}) = E\left(\sum_{i=1}^{Z_{t-1}} X_{i,t} \middle| \mathcal{F}_{t-1}\right) = \sum_{i=1}^{\infty} E\left(\mathbf{1}(Z_{t-1} \le i) X_{i,t} \middle| \mathcal{F}_{t-1}\right) = \sum_{i=1}^{\infty} \mathbf{1}(Z_{t-1} \le i) E\left(X_{i,t} \middle| \mathcal{F}_{t-1}\right) = \sum_{i=1}^{\infty} \mathbf{1}(Z_{t-1} \le i) E(X_{i,t}) = \mu Z_{t-1}$$

where we used independence of $X_{i,t}$ from \mathcal{F}_{t-1} , and by monotone convergence we can interchange sum and expectation.

• For $\mu \neq 1$, write the Doob decomposition of Z_t and compute the mean $E(Z_t)$ for $t \in \mathbb{N}$.

Solution

$$Z_{t} = 1 + \sum_{s=1}^{t} \sum_{i=1}^{Z_{s-1}} (X_{i,s} - 1) = 1 - (1 - \mu) \sum_{s=1}^{t} Z_{s-1} + \sum_{s=1}^{t} \sum_{i=1}^{Z_{s-1}} (X_{i,s} - \mu)$$

and since the martingale part has zero mean

$$E(Z_t) = 1 + (\mu - 1) \sum_{s=1}^{t} E(Z_{s-1})$$

this linear difference equation has solution $E(Z_t) = \mu^t$.

• Assume that $\mu \leq 1$, and that the offspring distribution is non-trivial, meaning that $0 \leq \pi(X=1) < 1$. The case P(X=1) = 1 is trivial, nothing happens.

Note that since $X(\omega) \in \mathbb{N}$, if P(X = 1) < 1 and $E(X) \le 1$, it follows that $\pi(0) = P(X = 0) > 0$.

Show that

$$\lim_{t \to \infty} Z_t(\omega) = 0 \quad P \text{ a.s.}$$

Hint: first show that a finite limit $Z_{\infty}(\omega)$ exists P a.s.

. Solution Z_t is a non-negative martingale, by Doob's martingale convergence theorem it has P a.s. a finite limit Z_{∞} .

Consider

$$P(Z_{\infty} = 0|Z_1 = n) = P(Z_{\infty} = 0)^n$$

since $P(Z_{\infty} = 0)$ is the probability that descendance of a single individual becomes extinct, is the probability that independently for each of its children the respective descendances become extinct.

By computing first the conditional probability $P(Z_{\infty}=0|\sigma(Z_1))(\omega)$ and taking expectation, show that the unknown $q=P(Z_{\infty}=0)$ satisfies the equation

$$q = E_P(q^X), \quad q \in [\pi(0), 1]$$

where $P(X = n) = \pi(n)$ is the offspring distribution.

Note that since $\mu = E(X) \le 1$ and $\pi(1) = P(X = 1) < 1$, necessarily $\pi(0) = P(X = 0) > 0$, and $P(Z_{\infty} = 0) \ge P(X = 0) > 0$. Therefore the q = 0 is not a solution.

q=1 is a solution. We show that there are no other solutions. Note that by Jensen inequality for the concave function $x\mapsto q^x$ with $q\in[0,1]$

$$E(q^X) \ge q^{E(X)} \ge q$$

Show that the inequality is strict in the non-trivial case with P(X = 1) < 1

If 0 < q < 1 cannot be a solution since the derivative

$$\frac{d}{dq}E_P(q^X) = E\left(\frac{d}{dq}q^X\right) = E(Xq^{X-1}) < E(X) \le 1$$

with strict inequality in the non-trivial case in the P(X=1) < 1. It is allowed to take a derivative inside the expectation, since $0 \le Xq^{X-1} \le X \in L^1(P) \ \forall q \in (0,1)$.

This implies that

$$E_P(q^X) > q, \forall q \in (0,1)$$

• Assume that $\mu = 1$. Show that the martingale $(Z_t : t \in \mathbb{N})$ is not uniformly integrable.

Solution: Since $0 = E(Z_{\infty}) < E(Z_t) = E(Z_0) = 1$, $Z_t(\omega) \to Z_{\infty}(\omega)$ P almost surely but not in $L^1(P)$, therefore uniform integrability does not hold.

3. We now make a change of measure and define a new measure P' such that under Q the offspring numbers are independent and identically distributed with

$$P'(X_{i,t} = n) = \pi'(n)$$

with $\pi'(n) = 0$ when $\pi(n) = 0$. Compute the likelihood ratio process $\frac{dP'_t}{dP_t}(\omega)$ on the filtration $\mathbb{F} = (\mathcal{F}_t)$ with $\mathcal{F}_t = \sigma(X_{i,s} : i \in \mathbb{N}, 1 \le s \le t)$.

. Solution

$$\frac{dP'_t}{dP_t}(\omega) = \prod_{s=1}^t \prod_{i=1}^{Z_{s-1}(\omega)} \frac{\pi'(X_{i,s}(\omega))}{\pi(X_{i,s}(\omega))}$$

4. Consider an i.i.d. random sequence $(U_t: t \in \mathbb{N})$ with uniform distribution on [0,1], $P(U_1 \in dx) = \mathbf{1}_{[0,1]}(x)dx$. Note that $E_P(U_t) = 1/2$.

Consider also the random variable $-\log(U_1(\omega))$ which is 1-exponential w.r.t. P.

$$P(-\log(U_1) > x) = \begin{cases} \exp(-x) & \text{kun } x \ge 0\\ 1 & \text{kun } x < 0 \end{cases}$$

 $-\log(U_1) \in L^1(P)$ with $E_P(-\log(U_1)) = 1$.

• Let $Z_0 = 1$, and

$$Z_t(\omega) = 2^t \prod_{s=1}^t U_s(\omega)$$

Show that (Z_t) is a martingale in the filtration $\mathbb{F} = (\mathcal{F}_t : t \in \mathbb{N})$, with $\mathcal{F}_t = \sigma(Z_1, Z_2, \dots, Z_t) = \sigma(U_1, U_2, \dots, U_t)$.

Solution $E_P(Z_t|\mathcal{F}_{t-1}) = Z_{t-1}2E(U_t|\mathcal{F}_{t-1}) = Z_{t-1}2E(U_t) = Z_{t-1}$ $E_P(Z_t) = E_P(Z_0) = Z_0 = 1.$

- Show that the limit $Z_{\infty}(\omega) = \lim_{t \to \infty} Z_t(\omega)$ exists P almost surely. **Solution.** $(Z_t : t \in \mathbb{N})$ is a non-negative martingale, by Doob's martingale convergence theorem $\lim_{t \to \infty} Z_t(\omega)$ exists a.s.
- Show that

$$Z_{\infty}(\omega) = 0$$
 P-a.s.

Hint Compute first the P-a.s. limit

$$\lim_{t\to\infty}\frac{1}{t}\log(Z_t(\omega))$$

(remember Kolmogorov's strong law of large numbers!). Solution.

$$\frac{1}{t}\log(Z_t) = \frac{1}{t}\left(t\log(2) + \sum_{s=1}^t \log(U_s)\right)$$

$$= \log(2) + \frac{1}{t}\sum_{s=1}^t \log(U_s) \to \log(2) + E(\log(U_1)) = \log(2) - 1 < 0.$$

with convergence P a.s. and in $L^1(P)$.

This means P a.s. as $t \to \infty$ $Z_t(\omega) = \mathcal{O}(\exp(t(\log(2) - 1)) \to 0$, that is $Z_{\infty}(\omega) = 0$.

- Show that the martingale $(Z_t(\omega): t \in \mathbb{N})$ is not uniformly integrable. **Solution.** Beacuse $E(Z_1) = 1 > E(Z_\infty) = 0$, so the martingale property does not hold as infinity.
- Show that $\log(Z_t(\omega))$ is a supermartingale, does it satisfy the assumptions of Doob's martingale convergence theorem? Solution $\log(Z_t) = \sum_{s=1}^t \left(\log(2) + \log(U_s)\right)$ where $\log(U_s)$ are i.i.d. with $E(\log(2) + \log(U_s)) = \log(2) - 1 < 0$. The assumption $\sup_t E(\log(Z_t)^-) < \infty$ of Doob convergence theorem is not satisfied, it behaves like a biased random walk, since

$$\frac{1}{t}\log(Z_t(\omega)) = \log(2) - 1 < 0$$

we see that P a.s. $\lim_{t\to\infty} Z_t(\omega) = -\infty$.

• At every time $t \in \mathbb{N}$, define the probability measure

$$Q_t(A) := E_P(Z_t \mathbf{1}_A) \qquad \forall A \in \mathcal{F}_t$$

on the probability space (Ω, \mathcal{F}) .

Show that the random variables (U_1, \ldots, U_t) are i.i.d. also under Q_t , compute their probability density under Q_t .

Solution For any bounded measurable functions $f_s(x)$ s = 1, ..., t

$$E_Q(f_1(U_1)\dots f_t(U_t)) = E_P(Z_t f_1(U_1)\dots f_t(U_t))$$

$$= E_P\left(\prod_{s=1}^t 2f_s(U_s)U_s\right) = \prod_{s=1}^t 2E_P(f_s(U_s)U_s) = \prod_{s=1}^t 2\int_0^1 f_s(u)udu$$

which means that under Q the r.v. U_s are i.i.d. with

$$Q(U_1 \in du) = \mathbf{1}_{[0,1]}(u)2udu$$