1. Show:

- For $X, Y \in L^{2}(P)$,

$$
\|X+Y\|_{2}^{2}+\|X-Y\|_{2}^{2}=2\|X\|_{2}^{2}+2\|Y\|_{2}^{2}
$$

(parallelogram identity, suunnikkaan identiteetti)

$$
(X, Y)_{L^{2}(P)}=E_{P}(X Y)=\frac{1}{4}\left(\|X+Y\|_{2}^{2}-\|X-Y\|_{2}^{2}\right)
$$

(Polarization identitity, polarisaation identiteetti)

- A norm $\|x\|$ satisifies the parallelogram identity if and only if the polarization identity defined a scalar product (x, y) (bilinear, symmetric and positive) such that $\|x\|^{2}=(x, x)$.

Solution (from Yosida, Functional analysis, pp. 39) Assume that the norm $\|\cdot\|$ satisfies the parallelogram identity and define the scalar product by polarization:

$$
(X, Y):=\frac{1}{4}\left(\|X+Y\|_{2}^{2}-\|X-Y\|_{2}^{2}\right)
$$

Then

$$
\begin{aligned}
& (X, Z)+(Y, Z) \\
& =\frac{1}{4}\left(\|Z+X\|_{2}^{2}-\|Z-X\|_{2}^{2}+\|Z+Y\|_{2}^{2}-\|Z-Y\|_{2}^{2}\right) \\
& =\frac{1}{4}\left(\left\{\|Z+(X+Y) / 2+(X-Y) / 2\|_{2}^{2}+\|Z+(X+Y) / 2-(X-Y) / 2\|_{2}^{2}\right\}\right. \\
& \left.-\left\{\|Z-(X+Y) / 2-(X-Y) / 2\|_{2}^{2}+\|Z-(X+Y) / 2+(X-Y) / 2\|_{2}^{2}\right\}\right)
\end{aligned}
$$

and by the parallelogram identity

$$
\begin{aligned}
& =\frac{1}{4}\left(2\left\{\|Z+(X+Y) / 2\|_{2}^{2}+\|(X-Y) / 2\|_{2}^{2}\right\}\right. \\
& \left.-2\left\{\|Z-(X+Y) / 2\|_{2}^{2}+\|(X-Y) / 2\|_{2}^{2}\right\}\right) \\
& =\frac{1}{2}\left(\|Z+(X+Y) / 2\|_{2}^{2}-\|Z-(X+Y) / 2\|_{2}^{2}\right) \\
& =2\left(\frac{(X+Y)}{2}, Z\right)
\end{aligned}
$$

When $Y=0,(0, Z)=\left(\|Z+0\|^{2}-\|Z-0\|^{2}\right) / 4=0$, which implies

$$
(X, Z)=2\left(\frac{X}{2}, Z\right)=2^{n}\left(2^{-n} X, Z\right) \quad \text { kun } n \in \mathbb{Z}
$$

and

$$
(X, Z)+(Y, Z)=(X+Y, Z)
$$

It follows that

$$
(X, Z)=k 2^{-n}\left(k 2^{n} X, Z\right), \quad \forall k \in \mathbb{N}, n \in \mathbb{Z}
$$

which means

$$
(X, Z)=q\left(q^{-1} X, Z\right) \forall q \in Q
$$

Since in the normed space the maps $q \rightarrow\|q X+Z\|$ ja $q \rightarrow\|q X-Z\|$ are continuous, it follows

$$
(X, Z) r=(r X, Z), \quad \forall r \in \mathbb{R}
$$

2. Consider random variable $X(\omega)$ on (Ω, \mathcal{F}, P), assume either

- a) $P(X \in d x)=\mathbf{1}(x \geq 0) \exp (-x) d x, X$ has 1-exponential distribution.
or
- b) $P(X \in d x)=\pi^{-1}\left(1+x^{2}\right)^{-1} d x, X$ has Cauchy distribution.

Show that under a) $E_{P}(|X|)<\infty$ while under b) $E_{P}(|X|)=\infty$
Solution. a) by parts
$E_{P}(|X|)=E_{P}(X)=\int_{0}^{\infty} x \exp (-x) d x=[-x \exp (-x)]_{0}^{\infty}+\int_{0}^{\infty} \exp (-x) d x=0+1<\infty$
Solution. b)
$E_{P}(|X|)=\frac{2}{\pi} \int_{0}^{\infty} \frac{x}{1+x^{2}} d x \geq \frac{2}{\pi} \int_{1}^{\infty} \frac{x}{1+x^{2}} d x \geq \frac{2}{\pi} \int_{1}^{\infty} \frac{1}{x} d x=+\infty$
Let $Y(\omega)=\lfloor X(\omega)\rfloor=\max \{n \in \mathbb{Z}: n \leq X(\omega)\} \in \mathbb{Z}$.
Show under a) and under b) the conditional expectation

$$
E_{P}(X \mid \sigma(Y))(\omega) \in \mathbb{R}
$$

Hint Note that the σ-algebra $\sigma(Y)$ is countably generated, by a countable \mathcal{F}-measurable partition of Ω. In this case the values taken by the conditional expectation (which is a random variable) are elementary conditional expectations obtained by conditioning on events of positive probability.

Solution.

$E_{P}(X \mid \sigma(Y))(\omega)=\sum_{z \in \mathbb{Z}} \frac{E_{P}(X \mathbf{1}(z \leq X<z+1))}{P(z \leq X \leq z+1)} \mathbf{1}(z \leq X(\omega)<z+1)$
where the series contains only one nonzero term.
We see also that $P(z \leq X \leq z+1)>0 \forall z \in \mathbb{Z}$ and

$$
z \leq \frac{E_{P}(X \mathbf{1}(z \leq X<z+1))}{P(z \leq X \leq z+1)}<(z+1)
$$

3. Let $X(\omega)$ and $Y(\omega) P$-independent and identically distributed on $[0,1]$:

$$
P(X \in d x, Y \in d y)=\mathbf{1}_{[0,1]}(x) \mathbf{1}_{[0,1]}(y) d x d y
$$

Let $Z(\omega)=\min (X(\omega), Y(\omega))$.
Compute the conditional expectation $E_{P}(X \mid \sigma(Z))(\omega)$.
Vihje It may be easier take first conditional expectation with respect to a larger σ-algebra:

$$
E_{P}(Z \mid \sigma(Z))=E_{P}\left(E_{P}(X \mid \sigma(Z, I)) \mid \sigma(Z)\right)
$$

with $I(\omega):=\mathbf{1}(X(\omega) \leq Y(\omega))$ and $\sigma(Z, I) \supseteq \sigma(Z)$.
Solution. Let's compute first

$$
E_{P}(X \mid \sigma(Z, I))(\omega)
$$

Since

$$
X(\omega)=X(\omega) I(\omega)+X(\omega)(1-I(\omega))=Z(\omega) I(\omega)+X(\omega)(1-I(\omega))
$$

we have

$$
\begin{aligned}
& E_{P}(X \mid \sigma(Z, I))=E_{P}(Z I \mid \sigma(Z, I))+E_{P}(X(1-I) \mid \sigma(Z, I)) \\
& =Z I+E_{P}(X(1-I) \mid \sigma(Z, I))
\end{aligned}
$$

Since

$$
Z(\omega)(1-I(\omega))=Z(\omega) \mathbf{1}(Y(\omega)<X(\omega))=Y(\omega)(1-I(\omega))
$$

it follows $\forall B \in \mathcal{B}(\mathbb{R})$,

$$
E_{P}(X(1-I) \mathbf{1}(Z \in B))=E_{P}(X(1-I) \mathbf{1}(Y \in B))
$$

and by the definition of conditional expectation

$$
\begin{aligned}
& E_{P}\left(E_{P}(X \mid \sigma(Z, I))(1-I) \mathbf{1}(Z \in B)\right)=E_{P}\left(E_{P}(X \mid \sigma(Z, I))(1-I) \mathbf{1}(Y \in B)\right) \\
& =E_{P}\left(E_{P}(X \mid \sigma(Y, I))(1-I) \mathbf{1}(Y \in B)\right)
\end{aligned}
$$

This gives

$$
E_{P}(X \mid \sigma(Z, I))(\omega)(1-I(\omega))=E_{P}(X \mid \sigma(Y, I))(\omega)(1-I(\omega))
$$

Since $I(\omega) \in\{0,1\}$

$$
E_{P}(X \mid \sigma(Y, I))(\omega)(1-I(\omega))=(1-I(\omega)) \frac{E_{P}(X \mathbf{1}(X>Y) \mid \sigma(Y))(\omega)}{E_{P}(\mathbf{1}(X>Y) \mid \sigma(Y))(\omega)}
$$

and X, Y are P-independent,

$$
\begin{aligned}
& =\left.\frac{E_{P}(X \mathbf{1}(X>y))}{P(X>y)}\right|_{y=Y(\omega)}(1-I(\omega))=\frac{\int_{Y(\omega)}^{1} u d u}{1-Y(\omega)}(1-I(\omega))= \\
& =\frac{1}{2} \frac{\left(1-Y(\omega)^{2}\right)}{(1-Y(\omega))}(1-I(\omega)) \\
& =\frac{1}{2}(1+Y(\omega)) \mathbf{1}(Z(\omega)=Y(\omega))=\frac{1}{2}(1+Z(\omega))(1-I(\omega))
\end{aligned}
$$

Therefore

$$
E_{P}(X \mid \sigma(Z, I))(\omega)=Z(\omega) I(\omega)+\frac{1}{2}(1+Z(\omega))(1-I(\omega))
$$

Taking conditional expectation,

$$
\begin{aligned}
& E_{P}(X \mid \sigma(Z))(\omega)=E_{P}(Z I \mid \sigma(Z))(\omega)+\frac{1}{2} E_{P}((1+Z)(1-I) \mid \sigma(Z))(\omega)= \\
& Z(\omega) P(X \leq Y \mid \sigma(Z))(\omega)+\frac{1}{2}(1+Z(\omega)) P(X>Y \mid \sigma(Z))(\omega)= \\
& =\frac{1}{2} Z(\omega)+\frac{1}{4}(1+Z(\omega))=\frac{1}{4}+\frac{3}{4} Z(\omega)
\end{aligned}
$$

and by symmetry we see that $P(X>Y \mid \sigma(Z))(\omega) \equiv \frac{1}{2}$.
4. Using the definition of conditional expectation together with Fatou's lemma for expectations, prove Fatou's lemma for conditional expectations: if $0 \leq X_{n}(\omega), \forall n \in \mathbb{N}$

$$
0 \leq E_{P}\left(\liminf X_{n} \mid \mathcal{G}\right)(\omega) \leq \lim \inf _{n} E_{P}\left(X_{n} \mid \mathcal{G}\right)(\omega)
$$

Solution.

$$
\lim \inf X_{n}(\omega)=\sup _{n \geq 0} \inf _{k \geq n} X_{k}(\omega)
$$

where $\inf _{k \geq n} X_{k}(\omega) \uparrow \lim \inf X_{n}(\omega)$ as $n \uparrow \infty$ Now by monotone convergence of conditional expectation

$$
\inf _{k \geq n} E\left(X_{k} \mid \mathcal{G}\right) \leq E\left(\inf _{k \geq n} X_{k} \mid \mathcal{G}\right) \uparrow E\left(\liminf _{n} X_{n} \mid \mathcal{G}\right)
$$

and Fatou lemma follows since the left hand side converges monotonically to $\liminf _{n} E\left(X_{n} \mid \mathcal{G}\right)$ as $n \uparrow \infty$
5. Let $X, Y \in L^{2}(\Omega, \mathcal{F}, P)$ and $\mathcal{G} \subseteq \mathcal{F}$ a sub- σ-algebra Check the identity

$$
\operatorname{Cov}_{P}(X, Y)=E_{P}(\operatorname{Cov}(X, Y \mid \mathcal{G}))+\operatorname{Cov}_{P}\left(E_{P}(X \mid \mathcal{G}), E_{P}(Y \mid \mathcal{G})\right)
$$

when $\mathcal{G}=\sigma(X)$ or $\mathcal{G}=\sigma(Y)$.
Solution Since adding constant term does not change the covariance, we assume $E(X)=E(Y)=0$. By the polarization identity it is enough to check the formula when $X=Y$.

$$
E\left(X^{2}\right) \stackrel{?}{=} E\left(\left(X-E(X \mid \mathcal{G})^{2} \mid \mathcal{G}\right)\right)+E\left(E(X \mid \mathcal{G})^{2}\right)
$$

which follows by adding and subtracting:

$$
\begin{aligned}
& E\left((E(X \mid \mathcal{G})+(X-E(X \mid \mathcal{G})))^{2}\right)= \\
& E\left(E(X \mid \mathcal{G})^{2}+E\left((X-E(X \mid \mathcal{G}))^{2}\right)=+2 E(E(X \mid \mathcal{G})(X-E(X \mid \mathcal{G})))\right.
\end{aligned}
$$

where the cross term has 0 expectation by the property of the conditional expectation.

