Stochastic analysis, autumn 2011, Exercises-3, Solutions 27.09.11

1. - Show that the linear space generated by the Haar system, which coincides with the set of functions which are piecewise constant on the dyadic partition D_{n} for some $n \in \mathbb{N}$, is dense in the space of continuous functions $C([0,1], \mathbb{R})$ under the supremum norm

$$
\|f\|_{\infty}:=\sup _{t \in[0,1]}|f(t)|
$$

A continuous function f is uniformly continuous on a compact, therefore for every $\varepsilon>0 \exists n(\varepsilon)$ such that

$$
\left|f(t)-f\left(k 2^{-n}\right)\right|<\varepsilon \quad \text { when } t \in\left[k 2^{-n},(k+1) 2^{-n}\right)
$$

and

$$
\int_{0}^{1}\left(f(t)-f_{n(\varepsilon)}(t)\right)^{2} d t \leq \varepsilon^{2}
$$

We recall Luzin's theorem from real analysis: if $x:[0,1] \rightarrow \mathbb{R}$ is a measurable function, for all $\varepsilon>0$ there exists a continuous function f such that

$$
\lambda(\{t: x(t) \neq f(t)\})<\varepsilon
$$

where $\lambda(d t)$ is Lebesgue measure.

- Show that $C([0,1], \mathbb{R})$ is dense in $L^{2}([0,1], d t)$.

Let $X(\omega) \in L^{2}(\Omega, \mathcal{F}, P)$. Let

$$
X_{n}(\omega)=X(\omega) \mathbf{1}(|X(\omega)| \leq n)
$$

Then

$$
\lim _{n \uparrow \infty} X_{n}(\omega)^{2} \uparrow X(\omega)^{2} \quad \forall \omega
$$

as $n \uparrow \infty$ by the dominated convergence theorem

$$
\lim _{n \uparrow \infty} \int_{0}^{1}\left(X(\omega)-X_{n}(\omega)\right)^{2} P(d \omega)=0
$$

Bounded random variables are in dense in $L^{2}(\Omega, \mathcal{F}, P)$. In particular bounded measurable functions are dense in $L^{2}([0,1], d t)$. It is enough to show that a bounded measurable function can be approximated by a continuous function in $L^{2}([0,1], d t)$.
Let

$$
\sup _{t \in[0,1]}|x(t)|=\|x\|_{\infty}<\infty
$$

By Luzin theorem for each n there is a bounded continuous function $y_{n}(t)$ such that $\left|y_{n}(t)\right| \leq\|x\|_{\infty}$ and

$$
\lambda\left(\left\{t: x(t) \neq y_{n}(t)\right\}\right)<1 / n
$$

Then

$$
\int\left(x(t)-y_{n}(t)\right)^{2} d t \leq 2\|x\|_{\infty} \lambda\left(\left\{t: x(t) \neq y_{n}(t)\right\}\right) \rightarrow 0
$$

- Show that the Haar system is a complete orthonormal basis of $L^{2}([0,1], d t)$. Consider $\dot{\eta}_{d}(t) \dot{\eta}_{d^{\prime}}(t)$ the Haar functions defined in the lectures with $d \in D_{n} \backslash D_{n-1}, d^{\prime} \in D_{n^{\prime}} \backslash D_{n^{\prime}-1}$. There are three possibilities: $d^{\prime}=d$ and we see that $\int \dot{\eta}_{d}(t)^{2} d t=2^{n} 2^{-n}=1$.
Otherwise either the $n=n^{\prime}$ and $d \neq d^{\prime}$, in such case $\dot{\eta}_{d}$ and $\dot{\eta}_{d}^{\prime}$ have disjoint support,
or $n \neq n^{\prime}$, for example $n<n^{\prime}$, and also in such case either $\dot{\eta}_{d}^{\prime}$ have disjoint support, or the $\dot{\eta}_{d}$ is constant on the support of $\dot{\eta}_{d^{\prime}}$, and

$$
\int \dot{\eta}_{d^{\prime}}(t) d t=0
$$

since $\dot{\eta}_{d^{\prime}}$ is antisymmetric around d^{\prime}.
Now every function $f \in C([0,1])$ is uniformly continuous on the compact $[0,1]$. Therefore we can always approximate in supremum norm f by a sequence of functions f_{n} which are piecewise constant on intervals with extremes in D_{n}, and such function is expressed as linear comnbinations of $\dot{\eta}_{d}$ functions with $d \in D_{n}$
To conclude the argument, just note that the supremum norm is stronger than the norm $L^{2}([0,1], d t)$, so that the sequence f_{n} appoximates f also in L^{2}-sense.
2. Let $X(\omega) \in \mathbb{R}$ and $Y(\omega)=\left(Y_{1}(\omega), \ldots, Y_{d}(\omega)\right) \in \mathbb{R}^{d}$ with $X, Y_{i} \in L^{2}(\Omega, \mathcal{F}, P)$.

Consider the linear subspace generated by $Y(\omega)$

$$
\operatorname{Lin}(Y)=\left\{a+b \cdot Y(\omega): a \in \mathbb{R}, b \in \mathbb{R}^{d}\right\}
$$

Note that this is a $(d+1)$-dimensional space.
We define the best linear estimator of X given Y as the L^{2}-orthogonal projection $\hat{E}(X \mid Y)$ of X on the linear subspace $\operatorname{Lin}(Y)$ generated by Y.
Equivalently

$$
\hat{E}(X \mid Y)(\omega)=\hat{a}+\hat{b} \cdot Y(\omega)
$$

for some deterministic $\hat{a} \in \mathbb{R} \hat{b} \in \mathbb{R}^{d}$ where

$$
(\hat{a}, \hat{b} Y(\omega))=\arg \min _{a, b} E\left(\{X-(a+b \cdot Y)\}^{2}\right)
$$

Note that the conditional expectation $E(X \mid Y)=E(X \mid \sigma(Y))$ is the L^{2} orthogonal projection of X on the infinite dimensional subspace $L^{2}(\Omega, \sigma(Y), P) \supset$ $\operatorname{Lin}(Y)$, and in general $E(X \mid Y) \neq \hat{E}(X \mid Y)$.

- Show that

$$
\begin{aligned}
& \hat{E}(X \mid Y)=E(X)+(Y-E(Y)) \Sigma_{Y Y}^{-1} \Sigma_{X Y}^{\prime} \\
& E\left((X-\hat{E}(X \mid Y))^{2}\right)=\Sigma_{X X} \Sigma_{Y Y}^{-1} \Sigma_{X Y}^{\prime}
\end{aligned}
$$

where the covariance matrix of $(X, Y)=\left(X, Y_{1}, \ldots, Y_{d}\right)$ is denoted as

$$
\Sigma=\left(\begin{array}{ll}
\Sigma_{X X} & \Sigma_{X Y} \\
\Sigma_{X Y}^{\prime} & \Sigma_{Y Y}
\end{array}\right)
$$

Hint: assume $E(X)=E\left(Y_{i}\right)=0$, and maximize the mean square error with respect to the parameters a, b.

- Show that when the vector (X, Y) is jointly gaussian, all conditional distributions are gaussian and the best linear estimator $\hat{E}(X \mid Y)$ coincides with the conditional expectation $E(X \mid Y)$. (Use Bayes formula!).
Hint: recall that the joint distribution of a gaussian vector is specified by the mean vector and covariance matrix.
R. Assume that $E(Y)=0$ since Y and $Y-E(Y)$ generate the same linear subspace, and $E(X)=0$, otherwise project first $(X-E(X))$ where $E(X) \in \operatorname{Lin}(Y)$. In dimension 1

$$
\begin{aligned}
& E\left(\{X-(a+b \cdot Y)\}^{2}\right)=E\left(X^{2}\right)+a^{2}+b E\left(Y^{\top} Y\right) b^{\top}+2 a b \cdot E(Y)-2 a E(X)-2 b \cdot E(X Y)= \\
& E\left(X^{2}\right)+a^{2}+b E\left(Y^{\top} Y\right) b^{\top}-2 b \cdot E(X Y)
\end{aligned}
$$

We obtain

$$
\begin{aligned}
& 0=\frac{\partial}{\partial a} E\left(\{X-(a+b \cdot Y)\}^{2}\right)=2 a \\
& 0 \frac{\partial}{\partial b_{i}} E\left(\{X-(a+b \cdot Y)\}^{2}\right)=2\left(b E\left(Y^{\top} Y\right)-E(X Y)\right) \Longleftrightarrow a=0, \quad b=E(X Y) E\left(Y^{\top} Y\right)^{-1}
\end{aligned}
$$

We obtain the best linear estimator

$$
\hat{E}(X \mid Y)=E(X)+E(X Y) E\left(Y^{\top} Y\right)^{-1}(Y-E(Y))
$$

Still assuming $E(X)=0 E(Y)=0$, by orthogonality

$$
E(\hat{E}(X \mid Y)(X-\hat{E}(X \mid Y)))=0
$$

and

$$
\begin{aligned}
& \operatorname{Var}(X)=E\left(X^{2}\right)=E\left(\{\hat{E}(X \mid Y)+(X-\hat{E}(X \mid Y))\}^{2}\right)= \\
& E\left(\hat{E}(X \mid Y)^{2}\right)+E\left((X-\hat{E}(X \mid Y))^{2}\right)
\end{aligned}
$$

that is

$$
\begin{aligned}
& E\left(\hat{E}(X \mid Y)^{2}\right)=E\left(X^{2}\right)-E\left(\hat{E}(X \mid Y)^{2}\right)=E\left(\left\{X-\hat{E}(X \mid Y)^{2}\right\}^{2}\right)= \\
& E\left(X^{2}\right)-E(X Y) E\left(Y^{\top} Y\right)^{-1} E\left(Y Y^{\top}\right) E\left(Y Y^{\top}\right)^{-1} E\left(X Y^{\top}\right)=E\left(X^{2}\right)-E(X Y) E\left(Y^{\top} Y\right)^{-1} E\left(X Y^{\top}\right)
\end{aligned}
$$

Next we compute the conditional distributions of a multivariate gaussian.
Let $(X, Y) \sim \mathcal{N}(0, \Sigma)$. We assume that $E(X)=0$ and $E(Y)=0$ Ăăotherwise we shift the gaussian distribution considering the pairs $X^{\prime}=(X-E(X))$ and $Y^{\prime}=(Y-E(Y))$.
Denote the precision matrix $D=\Sigma^{-1}, X(\omega) \in \mathbb{R}^{n_{x}}, Y(\omega) \in \mathbb{R}^{n_{y}}, n=$ $n_{x}+n_{y}$ where Σ is the covariance matrix of (X, Y).

By Bayes' formula
$p_{X Y}(x, y)=(2 \pi)^{-n / 2} \sqrt{|D|} \exp \left(-\frac{1}{2}\left\{(x, y) D(x, y)^{\top}\right\}\right)=p_{X}(x) p_{Y \mid X}(y \mid x)$
where

$$
\begin{aligned}
& \quad p_{X}(x)=(2 \pi)^{-n_{x} / 2}\left|\Sigma_{x x}\right|^{-1 / 2} \exp \left(-\frac{1}{2}\left\{x \Sigma_{x x}^{-1} x^{\top}\right\}\right) \\
& p_{Y \mid X}(y \mid x)=\frac{p_{X Y}(x, y)}{p_{X}(x)}=(2 \pi)^{-n_{y} / 2} \sqrt{|D| \times\left|\Sigma_{x x}\right|} \exp \left(-\frac{1}{2}\left\{(x, y) D(x, y)^{\top}-x \Sigma_{x x}^{-1} x^{\top}\right\}\right)= \\
& (2 \pi)^{-n_{y} / 2} \sqrt{|D| \times\left|\Sigma_{x x}\right|} \exp \left(-\frac{1}{2}\left\{x\left(D_{x x}-\Sigma_{x x}^{-1}\right) x^{\top}\right) \exp \left(-\frac{1}{2}\left\{y D_{y y} y^{\top}+2 y D_{y x}^{\top} x^{\top}\right\}\right)=\right. \\
& (2 \pi)^{-n_{y} / 2} \sqrt{|D| \times\left|\Sigma_{x x}\right|} \exp \left(-\frac{1}{2}\left\{x\left(D_{x x}-D_{x y} D_{y y}^{-1} D_{x y}^{\top}-\Sigma_{x x}^{-1}\right) x^{\top}\right\}\right) \\
& \times \exp \left(-\frac{1}{2}\left\{\left(y+x D_{x y} D_{y y}^{-1}\right) D_{y y}\left(y+x D_{x y} D_{y y}^{-1}\right)^{\top}\right\}\right)
\end{aligned}
$$

Now conditionally on X we treat x as a constant it follows that the conditional distribution $p_{Y \mid X}(y \mid x)$ is gaussian with conditional covariance matrix

$$
\begin{equation*}
\Sigma_{y \mid x}=D_{y y}^{-1} \tag{1}
\end{equation*}
$$

and conditional mean

$$
\begin{equation*}
E(y \mid x)=-x D_{x y} D_{y y}^{-1} \tag{2}
\end{equation*}
$$

Also since this conditional variance does not depend on x we must have

$$
\begin{equation*}
\Sigma_{x x}^{-1}=D_{x x}-D_{x y} D_{y y}^{-1} D_{x y}^{\top} \tag{3}
\end{equation*}
$$

and also

$$
\begin{equation*}
\left|D_{y y}\right|=|D| \times\left|\Sigma_{x x}\right|=\left|\Sigma_{x x}\right| /|\Sigma| \tag{4}
\end{equation*}
$$

Note also that by inverting the roles of Σ and $D\left(D=\Sigma^{-1}\right.$ is also a symmetric non-negative matrix, which corresponds to a covariance matrix), we obtain

$$
\begin{align*}
& D_{x x}^{-1}=\Sigma_{x x}-\Sigma_{x y} \Sigma_{y y}^{-1} \Sigma_{x y}^{\top} \tag{5}\\
& \left|\Sigma_{y y}\right|=|\Sigma| \times\left|D_{x x}\right|=\left|D_{x x}\right| /|D| \tag{6}
\end{align*}
$$

By changing the roles of x and y we obtain also

$$
\begin{align*}
& \Sigma_{x \mid y}=D_{x x}^{-1} \tag{7}\\
& \Sigma_{y y}^{-1}=D_{y y}-D_{x y}^{\top} D_{x x}^{-1} D_{x y} \tag{8}\\
& D_{y y}^{-1}=\Sigma_{y y}-\Sigma_{x y}^{\top} \Sigma_{x x}^{-1} \Sigma_{x y}=\Sigma_{y \mid x} \tag{9}
\end{align*}
$$

Now we use the property of the inverse matrix: since $\Sigma D=D \Sigma=I d$

$$
\left(\begin{array}{cc}
\Sigma_{x x} & \Sigma_{x y} \tag{10}\\
\Sigma_{x y}^{\top} & \Sigma_{y y}
\end{array}\right)\left(\begin{array}{cc}
D_{x x} & D_{x y} \\
D_{x y}^{\top} & D_{y y}
\end{array}\right)=\left(\begin{array}{cc}
I d & 0 \\
0 & I d
\end{array}\right)=\left(\begin{array}{cc}
D_{x x} & D_{x y} \\
D_{x y}^{\top} & D_{y y}
\end{array}\right)\left(\begin{array}{cc}
\Sigma_{x x} & \Sigma_{x y} \\
\Sigma_{x y}^{\top} & \Sigma_{y y}
\end{array}\right)
$$

we have

$$
\begin{align*}
& \Sigma_{x x} D_{x x}+\Sigma_{x y} D_{x y}^{\top}=I d=D_{x x} \Sigma_{x x}+D_{x y} \Sigma_{x y}^{\top} \tag{11}\\
& \Sigma_{x x} D_{x y}+\Sigma_{x y} D_{y y}=0=D_{x x} \Sigma_{x y}+D_{x y} \Sigma_{y y} \tag{12}\\
& \Sigma_{x y}^{\top} D_{x x}+\Sigma_{y y} D_{x y}^{\top} 0=D_{x y}^{\top} \Sigma_{x x}+D_{y y} \Sigma_{x y}^{\top} \tag{13}\\
& \Sigma_{x y}^{\top} D_{x y}+\Sigma_{y y} D_{y y}^{\top}=I d=D_{x y}^{\top} \Sigma_{x y}+D_{y y} \Sigma_{y y}^{\top} \tag{14}
\end{align*}
$$

we can use it to obtain a new expression for the conditional expectation (2) : by using (9),(11),(12)

$$
\begin{aligned}
& E(y \mid x)=-x D_{x y} D_{y y}^{-1}=-x D_{x y}\left(\Sigma_{y y}-\Sigma_{x y}^{\top} \Sigma_{x x}^{-1} \Sigma_{x y}\right) \\
& =x\left(-D_{x y} \Sigma_{y y}+D_{x y} \Sigma_{x y}^{\top} \Sigma_{x x}^{-1} \Sigma_{x y}\right) \\
& =x\left(D_{x x} \Sigma_{x y}+\left\{I d-D_{x x} \Sigma_{x x}\right\} \Sigma_{x x}^{-1} \Sigma_{x y}\right) \\
& =x\left(D_{x x} \Sigma_{x y}+\Sigma_{x x}^{-1} \Sigma_{x y}-D_{x x} \Sigma_{x y}\right)=x \Sigma_{x x}^{-1} \Sigma_{x y}
\end{aligned}
$$

By changing the roles of x and y we get also

$$
\begin{equation*}
E(x \mid y)=-y D_{x y}^{\top} D_{x x}^{-1}=y \Sigma_{y y}^{-1} \Sigma_{x y}^{\top} \tag{15}
\end{equation*}
$$

When X and Y a priori have non zero mean, by using $X^{\prime}=(X-E(X))$ and $Y^{\prime}=(Y-E(Y))$ we obtain

$$
\begin{align*}
& E(X \mid Y)=E(X)+\{Y-E(Y)\} \Sigma_{y y}^{-1} \Sigma_{x y}^{\top} \tag{16}\\
& E(Y \mid X)=E(Y)+\{X-E(X)\} \Sigma_{x x}^{-1} \Sigma_{x y} \tag{17}
\end{align*}
$$

It follows also that

$$
\begin{equation*}
D_{x y}=-\Sigma_{x x}^{-1} \Sigma_{x y} D_{y y}=-\Sigma_{x x}^{-1} \Sigma_{x y} \Sigma_{y \mid x}^{-1}=-\Sigma_{x \mid y}^{-1} \Sigma_{x y} \Sigma_{y y}^{-1} \tag{18}
\end{equation*}
$$

and

$$
D=\left(\begin{array}{cc}
D_{x x} & D_{x y} \tag{19}\\
D_{x y}^{\top} & D_{y y}
\end{array}\right)=\Sigma^{-1}=\left(\begin{array}{cc}
\Sigma_{x \mid y}^{-1} & -\Sigma_{x \mid y}^{-1} \Sigma_{x y} \Sigma_{y y}^{-1} \\
-\Sigma_{x x}^{-1} \Sigma_{x y} \Sigma_{y \mid x}^{-1} & \Sigma_{y \mid x}^{-1}
\end{array}\right)
$$

3. Let $\left(B_{t}(\omega): t \in[0,1]\right)$ a Brownian motion, and $D_{n}=\left(k 2^{-n}: k=\right.$ $\left.0,1, \ldots, 2^{n}\right)$.
Show that for fixed n and dyadic indexes

$$
d=(2 k+1) 2^{-n} \in D_{n} \backslash D_{n-1}, d_{-}=2 k 2^{-n}, d_{+}=(2 k+2) 2^{-n} \in D_{n-1}
$$

with $k=0, \ldots 2^{n-1}$,

$$
G_{d}(\omega):=\left(B_{d}(\omega)-\frac{B_{d-}(\omega)+B_{d+}(\omega)}{2}\right) 2^{(n+1) / 2}, \quad d \in D
$$

are i.i.d. standard gaussian variable $\left(E\left(G_{d}\right)=0, E\left(G_{d}^{2}\right)=0\right)$.
R.

$$
G_{d}(\omega)=2^{(n-1) / 2}\left(B_{d}(\omega)-B_{d-}(\omega)\right)-2^{(n-1) / 2}\left(B_{d+}(\omega)-B_{d}(\omega)\right)
$$

where the intervals $\left(d_{-}, d\right) \cap\left(d, d_{+}\right)=\emptyset$ and also the intervals $\left(d_{-}, d_{+}\right) \cap$ $\left(d_{-}^{\prime}, d_{+}^{\prime}\right)=\emptyset$ when $d^{\prime} \neq d \in D_{n} \backslash D_{n-1}$. Therefore the increments on the right hand side are independent, and also are independent from G_{d}^{\prime} where $d^{\prime} \neq d \in D_{n} \backslash D_{n-1}$
Since $d-d_{-}=d_{+}-d=2^{-n}$, it follows that G_{d} is gaussian with $E\left(G_{d}\right)=0$ and variance $E\left(G_{d}^{2}\right)=2\left(2^{(n-1) / 2}\right)^{2} 2^{-n}=1$.
4. Let $G(\omega) \sim \mathcal{N}(0,1)$, and $f \in L^{2}(\mathbb{R}, d \gamma)$ where $\gamma(d x)=\phi(x) d x$.

Here

$$
\phi(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

denotes the standard gaussian density.
Consider the function

$$
u(t, x)=E_{P}(f(x+G \sqrt{t}))
$$

- Show that $u(t, x)$ is smooth in the open set $(0, \infty) \times \mathbb{R}$. This does not require any smoothness on f.
Hint: write

$$
\frac{u(t+\varepsilon, x)-u(t, x)}{\varepsilon}, \quad \frac{u(t, x+\varepsilon)-u(t, x)}{\varepsilon}
$$

as integrals, and do an opportune change of variable in order to use the smoothness of the gaussian density ϕ when you take the limit as $\varepsilon \rightarrow 0$.

$$
\begin{aligned}
& \frac{u(t, x+\varepsilon)-u(t, x)}{\varepsilon}=\frac{1}{\varepsilon} E(f(x+\varepsilon+G \sqrt{t})-f(x+G \sqrt{t}))= \\
& =\frac{1}{\varepsilon} \int_{\mathbb{R}}(f(x+\varepsilon+y \sqrt{t})-f(x+y)) \phi(y) d y \\
& =\frac{1}{\varepsilon} \int_{\mathbb{R}} f(x+y \sqrt{t})\left(\phi\left(y-\frac{\varepsilon}{\sqrt{t}}\right)-\phi(y)\right) d y \\
& \longrightarrow \int_{\mathbb{R}} f(x+y \sqrt{t}) \frac{(-1)}{\sqrt{t}} \phi^{\prime}(y) d y=\int_{\mathbb{R}} f(x+y \sqrt{t}) \frac{1}{\sqrt{t}} \phi(y) d y \\
& =\frac{1}{\sqrt{t}} E(f(x+G \sqrt{t}) G)=\frac{1}{t} E(f(x+G \sqrt{t}) G \sqrt{t})
\end{aligned}
$$

For the time-derivative,

$$
\begin{aligned}
& \frac{u(t+\varepsilon, x)-u(t, x)}{\varepsilon}=\frac{1}{\varepsilon} E(f(x+G \sqrt{t+\varepsilon})-f(x+G \sqrt{t}))= \\
& =\frac{1}{\varepsilon} \int_{\mathbb{R}} f(x+y)\left(\frac{1}{\sqrt{t}+\varepsilon} \phi\left(\frac{y}{\sqrt{t+\varepsilon}}\right)-\frac{1}{\sqrt{t}} \phi\left(\frac{y}{\sqrt{t}}\right)\right) d y \\
& \longrightarrow \int_{\mathbb{R}} f(x+y) \frac{\partial}{\partial t}\left(\frac{1}{\sqrt{t}} \phi\left(\frac{y}{\sqrt{t}}\right)\right) d y=\int_{\mathbb{R}} f(x+y) \frac{1}{2 t} \frac{1}{\sqrt{t}} \phi\left(\frac{y}{\sqrt{t}}\right)\left(\frac{y^{2}}{t}-1\right) d y \\
& =\frac{1}{2 t} E\left(f(x+G \sqrt{t})\left(G^{2}-1\right)\right)=\frac{1}{2 t^{2}} E\left(f(x+G \sqrt{t})\left(G^{2} t-t\right)\right)
\end{aligned}
$$

where we have computed the partial derivative

$$
\begin{aligned}
& \left.\frac{\partial}{\partial t}\left(\frac{1}{\sqrt{t}} \phi\left(\frac{y}{\sqrt{t}}\right)\right)=-\frac{1}{2} t^{-3 / 2} \phi\left(\frac{y}{\sqrt{t}}\right)+t^{-1 / 2} \phi^{\prime}\left(\frac{y}{\sqrt{t}}\right)\left(-\frac{y}{2} t^{-3 / 2}\right)\right)= \\
& \frac{(-1)}{2} t^{-3 / 2}\left(\phi\left(\frac{y}{\sqrt{t}}\right)+y t^{-1 / 2} \phi^{\prime}\left(\frac{y}{\sqrt{t}}\right)\right)= \\
& \frac{-1}{2} t^{-3 / 2}\left(\phi\left(\frac{y}{\sqrt{t}}\right)-y t^{-1 / 2} \phi\left(\frac{y}{\sqrt{t}}\right) \frac{y}{\sqrt{t}}\right)=\frac{1}{2} t^{-3 / 2} \phi\left(\frac{y}{\sqrt{t}}\right)\left(\frac{y^{2}}{t}-1\right)
\end{aligned}
$$

Taking the limit as $\varepsilon \rightarrow 0$ inside the expectation needs to be justified. It follows by an uniformly integrability condition which will be discussed this later in the course. It holds when $x \mapsto f(x)$ has polynomial growth, since the gaussian distribution has all exponential moments $E(\exp (\theta G))<\infty$ for $\theta \in \mathbb{R}$.

- Use the gaussian integration by parts formula to express the partial derivatives for $t>0$

$$
\frac{\partial}{\partial t} u(t, x), \quad \frac{\partial}{\partial x} u(t, x), \quad \frac{\partial^{2}}{\partial x^{2}} u(t, x)
$$

\mathbf{R} We have since $B_{t} \sim G \sqrt{t}$ where \sim means identity in law and G is a standard gaussian,

$$
\begin{aligned}
\frac{\partial}{\partial t} u(t, x) & =\frac{1}{2 t^{2}} E\left(f\left(x+B_{t}\right)\left(B_{t}^{2}-t\right)\right) \\
\frac{\partial}{\partial x} u(t, x) & =\frac{1}{t} E\left(f\left(x+B_{t}\right) B_{t}\right)
\end{aligned}
$$

For the second derivative w.r.t. x we apply the integration by parts formula to the first derivative

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial x^{2}} E\left(f\left(x+B_{t}\right)\right)=\frac{1}{t} \frac{\partial}{\partial x} E\left(f\left(x+B_{t}\right) B_{t}\right) \\
& =\frac{1}{t}\left\{\frac{\partial}{\partial x} E\left(f\left(x+B_{t}\right)\left(x+B_{t}\right)\right)-\frac{\partial}{\partial x}\left(x E\left(f\left(x+B_{t}\right)\right)\right)\right\}
\end{aligned}
$$

for the first term we apply the gaussian integration by parts to $x \mapsto g(x):=$
$f(x) x$,

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial x^{2}} E\left(f\left(x+B_{t}\right)\right)=\frac{1}{t}\left\{\frac{1}{t} E_{P}\left(g\left(x+B_{t}\right) B_{t}\right)-E\left(f\left(x+B_{t}\right)\right)-\frac{x}{t} E\left(f\left(x+B_{t}\right) B_{t}\right)\right\}= \\
& \frac{1}{t}\left\{\frac{1}{t} E_{P}\left(f\left(x+B_{t}\right)\left(x+B_{t}\right) B_{t}\right)-E\left(f\left(x+B_{t}\right)\right)-\frac{x}{t} E\left(f\left(x+B_{t}\right) B_{t}\right)\right\} \\
& =\frac{1}{t^{2}} E\left(f\left(x+B_{t}\right)\left(B_{t}^{2}-t\right)\right)=2 \frac{\partial}{\partial t} E\left(f\left(x+B_{t}\right)\right)
\end{aligned}
$$

We see that $u(x, t)=E\left(f\left(x+B_{t}\right)\right)$ satisfies the partial differential equation

$$
\frac{\partial}{\partial t} u(t, x)=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} u(t, x)
$$

5. Let

$$
p(x, t)=\frac{1}{\sqrt{t}} \phi\left(\frac{x}{\sqrt{t}}\right)
$$

- By using the Markov property of Brownian motion (which follows from the independence of increments), show that for $0 \leq t \leq T$

$$
p(y-x, T-t) d y=P\left(B_{T} \in d y \mid B_{t}=x\right)=P\left(B_{T-t}+x \in d y\right)
$$

R. For a non-negative measurable test function $f(x, y)$

$$
\begin{aligned}
& E\left(f\left(B_{T}, B_{t}\right)\right)=E\left(f\left(B_{t}+\left(B_{T}-B_{T}\right), B_{t}\right)\right)=E\left(f\left(B_{t}+G \sqrt{T-t}, B_{t}\right)\right) \\
& =\int_{\mathbb{R}}\left(\int_{\mathbb{R}} f(x+y, x) \frac{1}{\sqrt{T-t}} \phi\left(\frac{y}{\sqrt{T-t}}\right) d y\right) \frac{1}{\sqrt{t}} \phi\left(\frac{x}{\sqrt{t}}\right) d x
\end{aligned}
$$

Denote for $t \in[0, T]$

$$
v(t, x)=\int_{\mathbb{R}} f(y) p(y-x, T-t) d y=E_{P}\left(f\left(B_{T}\right) \mid B_{t}=x\right)
$$

for some $f \in L^{2}(\mathbb{R}, d \gamma)$, where $\gamma(d y)=p(y, T) d y$ is the $\mathcal{N}(0, T)$ gaussian measure.

- Show that $v(t, x)$ is smooth in $[0, T) \times \mathbb{R}$ with respect to the variables (t, x), the partial derivatives

$$
\frac{\partial}{\partial t} v(t, x), \quad \frac{\partial}{\partial x} v(t, x), \quad \frac{\partial^{2}}{\partial x^{2}} v(t, x)
$$

R. We have

$$
\begin{aligned}
& v(t, x)=E_{P}\left(f\left(B_{T}\right) \mid B_{t}=x\right)=E_{P}\left(f\left(x+B_{T}-B_{t}\right) \mid B_{t}=x\right)=E_{P}\left(f\left(x+B_{T}-B_{t}\right)\right)= \\
& E_{P}(f(x+G \sqrt{T-t}))=u(T-t, x)
\end{aligned}
$$

Therefore

$$
\left.\begin{array}{rl}
\frac{\partial}{\partial t} v(t, x) & =\frac{\partial}{\partial t} u(T-t, x)
\end{array}=-\frac{\partial u}{\partial t}(T-t, t)\right)
$$

$$
v(t, x) \text { satifies the partial differential equation (heath equation) }
$$

$$
\frac{\partial}{\partial t} v(t, x)=-\frac{\partial u}{\partial t}(T-t, t)=-\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}(T-t, t)=-\frac{\partial^{2}}{\partial x^{2}} u(T-t, t) \quad, 0 \leq t<T
$$

