Stochastic analysis, autumn 2011, Exercises-3, Solutions 27.09.11

1.

e Show that the linear space generated by the Haar system, which

coincides with the set of functions which are piecewise constant on
the dyadic partition D, for some n € N, is dense in the space of
continuous functions C([0, 1], R) under the supremum norm

Il fllooi= sup] |£(®)]

te[0,1

A continuous function f is uniformly continuous on a compact, there-
fore for every € > 0 3n(e) such that

If(t) — f(k27™) <& when ¢ € [k27™, (k + 1)2~™)

and
/O () = Fuge) (8))2dt < 2

We recall Luzin’s theorem from real analysis: if z : [0,1] — R is a
measurable function, for all € > 0 there exists a continuous function
f such that

A{t:2(t) # f(1)}) <e
where A(dt) is Lebesgue measure.
Show that C([0,1],R) is dense in L*([0, 1], dt).
Let X (w) € L*(Q,F, P). Let
Xn(w) = X()1(|X(w)] < n)
Then

lim X, (w)? 1+ X (w)? Vw

ntoo

as n 1 oo by the dominated convergence theorem

lim [ (X(w)— X, (w))?P(dw) =0

ntoo Jo

Bounded random variables are in dense in L*(2, F, P). In particular
bounded measurable functions are dense in L%([0, 1], dt). It is enough
to show that a bounded measurable function can be approximated
by a continuous function in L2([0, 1], dt).
Let
sup [z (t)] =[] flo< 00
te[0,1]

By Luzin theorem for each n there is a bounded continuous function
yn(t) such that |y, ()] <|| = || and

A({t:z(t) #ya(D)}) < 1/n
Then

/(x(t) —yn(t)?dt <2 @ oo A({t: 2(t) # ya(t)}) = 0



e Show that the Haar system is a complete orthonormal basis of L([0, 1], dt).
Consider 14(t) na(t) the Haar functions defined in the lectures with
d € D\ Dy_1,d € Dy \ Dyp—q. There are three possibilities:
d’ = d and we see that [ 1g(¢)%dt =2"2" = 1.
Otherwise either the n = n’ and d # d’, in such case 74 and 7/, have
disjoint support,
or n # n', for example n < n/, and also in such case either 77, have
disjoint support, or the 7,4 is constant on the support of 74/, and

[ty =o

since 7y is antisymmetric around d’.

Now every function f € C([0,1]) is uniformly continuous on the com-
pact [0,1]. Therefore we can always approximate in supremum norm
f by a sequence of functions f,, which are piecewise constant on in-
tervals with extremes in D,,, and such function is expressed as linear
comnbinations of 74 functions with d € D,,

To conclude the argument, just note that the supremum norm is
stronger than the norm L2([0, 1], dt), so that the sequence f,, appox-
imates f also in L2-sense.

2. Let X(w) € Rand Y (w) = (V1(w),...,Ys(w)) € R?with X, Y; € L*(Q, F, P).
Consider the linear subspace generated by Y (w)

Lin(Y)={a+b-Y(w):a€R,becR}.

Note that this is a (d + 1)-dimensional space.

We define the best linear estimator of X given Y as the L?-orthogonal
projection E(X|Y) of X on the linear subspace Lin(Y") generated by Y.

Equivalently
EX|Y)(w)=a+b-Y(w)
for some deterministic @ € R b € RY where

(4,bY (w)) = arglzl,iglE({X —(a+b-Y)}H)

Note that the conditional expectation E(X|Y) = E(X|o(Y)) is the L2-
orthogonal projection of X on the infinite dimensional subspace L?(Q,0(Y),P) D
Lin(Y), and in general E(X|Y) # E(X|Y).

e Show that
E(X[Y) = BE(X)+ (Y — E(Y)S3y Sy
B((X = BX)P?) = SxaSy ey
where the covariance matrix of (X,Y) = (X,Yy,...,Yy) is denoted

as
5 (EXX EXY>
Yy Zyy



Hint: assume E(X) = E(Y;) = 0, and maximize the mean square
error with respect to the parameters a, b.

e Show that when the vector (X,Y) is jointly gaussian, all conditional

distributions are gaussian and the best linear estimator F(X|Y) coin-
cides with the conditional expectation E(X|Y"). (Use Bayes formulal
)-

Hint: recall that the joint distribution of a gaussian vector is specified
by the mean vector and covariance matrix.

R. Assume that E(Y) = 0 since ¥ and Y — E(Y) generate the same

linear subspace, and E(X) = 0, otherwise project first (X — F(X)) where

E(X) € Lin(Y). In dimension 1
E({X —(a+b-Y)}) = BE(X?) +a® + bE(YTY)b +2ab- E(Y) — 2aE(X) — 2b- E(XY) =
E(X}) +ad®>+bEY YY) —2b- E(XY)

We obtain
0= L B({X ~(at+b-V)}) = 20,
oai‘E({X —(a+b-Y)}) =20EYTY) - E(XY)) < a=0, b= E(XY)E(YY)"!

We obtain the best linear estimator
E(X|Y)=E(X)+ EXY)EYTY)"\(Y — E(Y))
Still assuming E(X) =0 E(Y) = 0, by orthogonality
E<E‘(X|Y)(X - E(X|Y))> =0
and
Var(X) = B(X?) = E({E(XY) + (X — E(X|Y))} ) =
E(E(X[Y)?) + E(X — E(X[Y))?)
that is
E(E(X|Y)?) = E(X?) - E(E(X|Y)?) = E({X - E(X|Y)2}2) =
EX)H-EXY)EY'Y)'EYYHEYY ") 'E(XY ") =E(X?) - EXY)EY'Y) 'E(XYT)

Next we compute the conditional distributions of a multivariate gaussian.
Let (X,Y) ~ N(0,%). We assume that E(X) = 0 and E(Y) = 0Adotherwise
we shift the gaussian distribution considering the pairs X' = (X — E(X))
and Y = (Y — E(Y)).

Denote the precision matrix D =%"! X(w) € R" Y (w) € R™, n =
ng + Ny where ¥ is the covariance matrix of (X,Y).



By Bayes’ formula
1
v (o) = 202 DTexp (- 3{ (2D | ) = (ool

where

1
px () = (2m) 7"/ 12 ew(‘z{xz;;wT})

prixlole) = LI oy BT S exp (< g { (2. Do)~ axzda” })

px ()

1 1
(27) "™ /2\/|D] X [Sye| exp (—2{$(Dm — Eml)x—r> exp <—2{yDyny + 2yD;—IxT}) =

1
(2m)~™/2/|D| x |Em|exp<2{x(Dm — DryngleIy _ Eml)xT}>
1 _ _
xeXp<_2{(y+xDIZ/Dyyl)Dyy(y+xDIyDyy1)T}>

Now conditionally on X we treat = as a constant it follows that the condi-
tional distribution py|x (y|z) is gaussian with conditional covariance ma-
trix
_ -1
Yyle = D vy (1)
and conditional mean

E(ylz) = —xnyD;yl (2)

Also since this conditional variance does not depend on x we must have

Y2 = Drw = DayDyy D], (3)
and also
|Dyy| = D[ X [E32] = |Zz|/|X] (4)

Note also that by inverting the roles of ¥ and D (D = £~ ! is also a
symmetric non-negative matrix, which corresponds to a covariance matrix
), we obtain

D7} =Sep — Say 2y Sh (5)
|Eyy| = |Z‘ X |D:m| = |Dz$|/|D| (6)

By changing the roles of x and y we obtain also

Dy_yl = Ty — E;—yzga}zwy = 2yle 9)



Now we use the property of the inverse matrix: since XD = DY = Id

(5 )3 50)-C2 2)-(3 B oo

we have

S20Dog + Say D}, = 1d = Dyy ¥y + Doy S ), (11)
SueDay + SayDyy = 0 = Dy Sy + Dy By (12)
Z;—me + Zny:;ryO = D;—yzm + Dny;ry (13)
2gTyDa:y + ZnyyTy =1ld= DwTway - Dyyzl@/ (19)

we can use it to obtain a new expression for the conditional expectation
(2) : by using (9) ,(11),(12)

E(ylz) = =Dy D,,} = —xDay(Syy — 5, S0s Say)

= 2(—DayZyy + Dzyzl—yzajzzy)

= 2(DyoXay + {Id — DyuSoa } S0, Say)
2(DyaSay + Spp Sy — DaaXay) = 25, Say

By changing the roles of x and y we get also

E(zly) = —yD,,D;} =y, 5, (15)

When X and Y a priori have non zero mean, by using X’ = (X — E(X))
and Y/ = (Y — E(Y)) we obtain

E(X|Y)=EX)+{Y - EY)}S, %, (16)

E(Y|X) = E(Y) +{X - B(X)}2;; B4y (17)

It follows also that

Dyy = —S5; 0y Dyy = —E;jEmyE;li, - _E;I;ZIyE;; (18)
and
zy vy zx HTY Sy ylz

. Let (By(w) : t € [0,1]) a Brownian motion, and D, = (k27" : k =
0,1,...,2").

Show that for fixed n and dyadic indexes
d=2k+1)27"€ Dy\Dyp_1,d_ =2k27",d, = (2k+2)27" € D,

with k =0,...27"1,

Calw) = (Bd(w) _ Bd(w);Bd+(w))2(n+l)/2, deD



are i.i.d. standard gaussian variable (E(Gq) = 0, E(G?) = 0).
R.
Ga(w) = 2(n=H/2 (Bd(w) — Bg_ (w)> —2(n=1)/2 (Bd+(w) - Bd(w))

where the intervals (d_,d) N (d,d4+) = 0 and also the intervals (d—,dy) N
(d_,d ) =0 when d' # d € D, \ D,_1. Therefore the increments on the
right hand side are independent, and also are independent from G, where
dl#dEDn\Dn,1

Since d—d_ = dy—d = 27", it follows that G4 is gaussian with E(G4) = 0
and variance E(G?) = 2(2("_1)/2)22_" =1.

. Let G(w) ~N(0,1), and f € L?(R, dvy) where v(dz) = ¢(x)dx.
Here

2

ola) = <= exp(~)

denotes the standard gaussian density.

Consider the function
u(t,z) = Ep (f(x + G\/IE))

e Show that wu(t,z) is smooth in the open set (0,00) x R. This does
not require any smoothness on f.

Hint: write
u(t+e,2) —ult,z) ult,r+e)—u(t,x)

)

S S

as integrals, and do an opportune change of variable in order to use
the smoothness of the gaussian density ¢ when you take the limit as
e— 0.

u(t,z +¢) —u(t,z)

=1 (s et B - s+ )ty

= iAf(x+yﬁ)<¢< y— 2) —¢(y))dy
— [t o= [ 1w

1 1
- %E(f(x +GVIG) = S E(f(x + GVHGVI)

For the time-derivative,

= iE(f(a:—&—a—&-G\/i) —f(x+G\/i)> =

1

\/Eqﬁ(y) dy



“(”E’xi_“(t’x) = iE(f(HG\/th) —f(:c+G\/%)> =
- freen( o ) ()
a (1

—>/Rf(x+y)7 \/ﬁ(ji))dy:/Rf(Hy);t\}i <\%) ('y:—l)dy

_ QItE(f(x N 1)> - 21t2E<f(x LGV (G- t))

where we have computed the partial derivative

B(5(5) -3l () () -
el () ()

2353 ) ()

Taking the limit as ¢ — 0 inside the expectation needs to be justi-
fied. It follows by an uniformly integrability condition which will be
discussed this later in the course. It holds when x — f(x) has poly-
nomial growth, since the gaussian distribution has all exponential
moments F(exp(0G)) < oo for § € R.

e Use the gaussian integration by parts formula to express the partial
derivatives for ¢ > 0

R We have since B; ~ G+/t where ~ means identity in law and G is a
standard gaussian,

grut0) = 5z B(fla+ BO(BE )

For the second derivative w.r.t. x we apply the integration by parts for-
mula to the first derivative

92 190
5 B @+ By) = =B (f(x + Bi) By)
- 1{8‘1E<f<x F B+ B)) - o (mE(ﬂw + Bt>>>}

for the first term we apply the gaussian integration by parts to x — g(x) :=



f(x)z,
2
dx?
1

t{§%0u+Bou+Ba&»—Mﬂx+&»—fEuu+B»&@

B(f(o + B) = {3 Bptalo + BB = B+ BO) - TE(f (o + B)Br) | =

= tlgE(f(w +B)(B} —t)) = 29E(f(x + B)))

ot
We see that u(z,t) = E(f(x+ By)) satisfies the partial differential equation
0 1 0?

5. Let

e By using the Markov property of Brownian motion (which follows
from the independence of increments), show that for 0 <¢ < T

p(y —z, T —t)dy = P(Br € dy|By = x) = P(Br_ +z € dy)
R. For a non-negative measurable test function f(z,y)

E(f(Br,Bt)) = E(f(Bt + (Br — Br),Bt)) = E(f(B: + GVT — t, By))

= [t el ) ) e ()

Denote for ¢ € [0,T]

v(t,x) /f (y —xz, T —t)dy = Ep(f(Br)|B: = x)

for some f € L2(R,dvy), where v(dy) = p(y,T)dy is the N'(0,T)
gaussian measure.

e Show that v(¢, ) is smooth in [0,7) x R with respect to the variables
(t, ), the partial derivatives

0 o?

R. We have

v(t,z) = Ep(f(Br)|B; = x) = Ep(f(x + Br — B;)|By = ) = Ep(f(x + Br — By)) =
Ep(f(z +GVT=1)) = u(T — t,)

Therefore
%v(t,x) = %’U(T —t,x) = %(T —t,x)
aa—;v(t,x) = 88;11(15793) = %(t’x)



v(t, z) satifies the partial differential equation (heath equation)

Ju 10%u 02



