
Stochastic analysis, autumn 2011, Exercises-3, Solutions 27.09.11

1. • Show that the linear space generated by the Haar system, which
coincides with the set of functions which are piecewise constant on
the dyadic partition Dn for some n ∈ N, is dense in the space of
continuous functions C([0, 1],R) under the supremum norm

‖ f ‖∞:= sup
t∈[0,1]

|f(t)|

A continuous function f is uniformly continuous on a compact, there-
fore for every ε > 0 ∃n(ε) such that

|f(t)− f(k2−n)| < ε when t ∈ [k2−n, (k + 1)2−n)

and ∫ 1

0

(f(t)− fn(ε)(t))2dt ≤ ε2

We recall Luzin’s theorem from real analysis: if x : [0, 1] → R is a
measurable function, for all ε > 0 there exists a continuous function
f such that

λ({t : x(t) 6= f(t)}) < ε

where λ(dt) is Lebesgue measure.
• Show that C([0, 1],R) is dense in L2([0, 1], dt).

Let X(ω) ∈ L2(Ω,F , P ). Let

Xn(ω) = X(ω)1(|X(ω)| ≤ n)

Then

lim
n↑∞

Xn(ω)2 ↑ X(ω)2 ∀ω

as n ↑ ∞ by the dominated convergence theorem

lim
n↑∞

∫ 1

0

(X(ω)−Xn(ω))2P (dω) = 0

Bounded random variables are in dense in L2(Ω,F , P ). In particular
bounded measurable functions are dense in L2([0, 1], dt). It is enough
to show that a bounded measurable function can be approximated
by a continuous function in L2([0, 1], dt).
Let

sup
t∈[0,1]

|x(t)| =‖ x ‖∞<∞

By Luzin theorem for each n there is a bounded continuous function
yn(t) such that |yn(t)| ≤‖ x ‖∞ and

λ({t : x(t) 6= yn(t)}) < 1/n

Then∫
(x(t)− yn(t))2dt ≤ 2 ‖ x ‖∞ λ({t : x(t) 6= yn(t)})→ 0
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• Show that the Haar system is a complete orthonormal basis of L2([0, 1], dt).
Consider η̇d(t) η̇d′(t) the Haar functions defined in the lectures with
d ∈ Dn \Dn−1, d′ ∈ Dn′ \Dn′−1. There are three possibilities:
d′ = d and we see that

∫
η̇d(t)2dt = 2n2−n = 1.

Otherwise either the n = n′ and d 6= d′, in such case η̇d and η̇′d have
disjoint support,
or n 6= n′, for example n < n′, and also in such case either η̇′d have
disjoint support, or the η̇d is constant on the support of η̇d′ , and∫

η̇d′(t)dt = 0

since η̇d′ is antisymmetric around d′.
Now every function f ∈ C([0, 1]) is uniformly continuous on the com-
pact [0, 1]. Therefore we can always approximate in supremum norm
f by a sequence of functions fn which are piecewise constant on in-
tervals with extremes in Dn, and such function is expressed as linear
comnbinations of η̇d functions with d ∈ Dn

To conclude the argument, just note that the supremum norm is
stronger than the norm L2([0, 1], dt), so that the sequence fn appox-
imates f also in L2-sense.

2. LetX(ω) ∈ R and Y (ω) = (Y1(ω), . . . , Yd(ω)) ∈ Rd withX,Yi ∈ L2(Ω,F , P ).
Consider the linear subspace generated by Y (ω)

Lin(Y ) = {a+ b · Y (ω) : a ∈ R, b ∈ Rd}.

Note that this is a (d+ 1)-dimensional space.
We define the best linear estimator of X given Y as the L2-orthogonal
projection Ê(X|Y ) of X on the linear subspace Lin(Y ) generated by Y .
Equivalently

Ê(X|Y )(ω) = â+ b̂ · Y (ω)

for some deterministic â ∈ R b̂ ∈ Rd where

(â, b̂Y (ω)) = arg min
a,b

E
({
X − (a+ b · Y )

}2)
Note that the conditional expectation E(X|Y ) = E(X|σ(Y )) is the L2-
orthogonal projection ofX on the infinite dimensional subspace L2(Ω, σ(Y ), P ) ⊃
Lin(Y ), and in general E(X|Y ) 6= Ê(X|Y ).

• Show that

Ê(X|Y ) = E(X) + (Y − E(Y ))Σ−1Y Y Σ′XY

E

(
(X − Ê(X|Y ))2

)
= ΣXXΣ−1Y Y Σ′XY

where the covariance matrix of (X,Y ) = (X,Y1, . . . , Yd) is denoted
as

Σ =

(
ΣXX ΣXY

Σ′XY ΣY Y

)
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Hint: assume E(X) = E(Yi) = 0, and maximize the mean square
error with respect to the parameters a, b.

• Show that when the vector (X,Y ) is jointly gaussian, all conditional
distributions are gaussian and the best linear estimator Ê(X|Y ) coin-
cides with the conditional expectation E(X|Y ). (Use Bayes formula!
).
Hint: recall that the joint distribution of a gaussian vector is specified
by the mean vector and covariance matrix.

R. Assume that E(Y ) = 0 since Y and Y − E(Y ) generate the same
linear subspace, and E(X) = 0, otherwise project first (X −E(X)) where
E(X) ∈ Lin(Y ). In dimension 1

E
({
X − (a+ b · Y )

}2)
= E(X2) + a2 + bE(Y >Y )b> + 2ab · E(Y )− 2aE(X)− 2b · E(XY ) =

E(X2) + a2 + bE(Y >Y )b> − 2b · E(XY )

We obtain

0 =
∂

∂a
E
({
X − (a+ b · Y )

}2)
= 2a,

0
∂

∂bi
E
({
X − (a+ b · Y )

}2)
= 2(bE(Y >Y )− E(XY ))⇐⇒ a = 0, b = E(XY )E(Y >Y )−1

We obtain the best linear estimator

Ê(X|Y ) = E(X) + E(XY )E(Y >Y )−1(Y − E(Y ))

Still assuming E(X) = 0 E(Y ) = 0, by orthogonality

E

(
Ê(X|Y )(X − Ê(X|Y ))

)
= 0

and

Var(X) = E(X2) = E

({
Ê(X|Y ) + (X − Ê(X|Y ))

}2)
=

E(Ê(X|Y )2) + E((X − Ê(X|Y ))2)

that is

E(Ê(X|Y )2) = E(X2)− E(Ê(X|Y )2) = E

({
X − Ê(X|Y )2

}2)
=

E(X2)− E(XY )E(Y >Y )−1E(Y Y >)E(Y Y >)−1E(XY >) = E(X2)− E(XY )E(Y >Y )−1E(XY >)

Next we compute the conditional distributions of a multivariate gaussian.

Let (X,Y ) ∼ N (0,Σ). We assume that E(X) = 0 and E(Y ) = 0Âăotherwise
we shift the gaussian distribution considering the pairs X ′ = (X −E(X))
and Y ′ = (Y − E(Y )).

Denote the precision matrix D = Σ−1, X(ω) ∈ Rnx , Y (ω) ∈ Rny , n =
nx + ny where Σ is the covariance matrix of (X,Y ).
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By Bayes’ formula

pXY (x, y) = (2π)−n/2
√
|D| exp

(
−1

2

{
(x, y)D(x, y)>

})
= pX(x)pY |X(y|x)

where

pX(x) = (2π)−nx/2|Σxx|−1/2 exp

(
−1

2

{
xΣ−1xxx

>
})

pY |X(y|x) =
pXY (x, y)

pX(x)
= (2π)−ny/2

√
|D| × |Σxx| exp

(
−1

2

{
(x, y)D(x, y)> − xΣ−1xxx

>
})

=

(2π)−ny/2
√
|D| × |Σxx| exp

(
−1

2

{
x(Dxx − Σ−1xx )x>

)
exp

(
−1

2

{
yDyyy

> + 2yD>yxx
>
})

=

(2π)−ny/2
√
|D| × |Σxx| exp

(
−1

2

{
x(Dxx −DxyD

−1
yy D

>
xy − Σ−1xx )x>

})
× exp

(
−1

2

{
(y + xDxyD

−1
yy )Dyy(y + xDxyD

−1
yy )>

})
Now conditionally on X we treat x as a constant it follows that the condi-
tional distribution pY |X(y|x) is gaussian with conditional covariance ma-
trix

Σy|x = D−1yy (1)

and conditional mean

E(y|x) = −xDxyD
−1
yy (2)

Also since this conditional variance does not depend on x we must have

Σ−1xx = Dxx −DxyD
−1
yy D

>
xy (3)

and also

|Dyy| = |D| × |Σxx| = |Σxx|/|Σ| (4)

Note also that by inverting the roles of Σ and D (D = Σ−1 is also a
symmetric non-negative matrix, which corresponds to a covariance matrix
), we obtain

D−1xx = Σxx − ΣxyΣ−1yy Σ>xy, (5)
|Σyy| = |Σ| × |Dxx| = |Dxx|/|D| (6)

By changing the roles of x and y we obtain also

Σx|y = D−1xx , (7)

Σ−1yy = Dyy −D>xyD−1xxDxy, (8)

D−1yy = Σyy − Σ>xyΣ−1xx Σxy = Σy|x (9)
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Now we use the property of the inverse matrix: since ΣD = DΣ = Id(
Σxx Σxy

Σ>xy Σyy

)(
Dxx Dxy

D>xy Dyy

)
=

(
Id 0
0 Id

)
=

(
Dxx Dxy

D>xy Dyy

)(
Σxx Σxy

Σ>xy Σyy

)
(10)

we have

ΣxxDxx + ΣxyD
>
xy = Id = DxxΣxx +DxyΣ>xy (11)

ΣxxDxy + ΣxyDyy = 0 = DxxΣxy +DxyΣyy (12)
Σ>xyDxx + ΣyyD

>
xy0 = D>xyΣxx +DyyΣ>xy (13)

Σ>xyDxy + ΣyyD
>
yy = Id = D>xyΣxy +DyyΣ>yy (14)

we can use it to obtain a new expression for the conditional expectation
(2) : by using (9) ,(11),(12)

E(y|x) = −xDxyD
−1
yy = −xDxy

(
Σyy − Σ>xyΣ−1xx Σxy

)
= x

(
−DxyΣyy +DxyΣ>xyΣ−1xx Σxy

)
= x

(
DxxΣxy + {Id−DxxΣxx}Σ−1xx Σxy

)
= x

(
DxxΣxy + Σ−1xx Σxy −DxxΣxy

)
= xΣ−1xx Σxy

By changing the roles of x and y we get also

E(x|y) = −yD>xyD−1xx = yΣ−1yy Σ>xy (15)

When X and Y a priori have non zero mean, by using X ′ = (X −E(X))
and Y ′ = (Y − E(Y )) we obtain

E(X|Y ) = E(X) + {Y − E(Y )}Σ−1yy Σ>xy (16)

E(Y |X) = E(Y ) + {X − E(X)}Σ−1xx Σxy (17)

It follows also that

Dxy = −Σ−1xx ΣxyDyy = −Σ−1xx ΣxyΣ−1y|x = −Σ−1x|yΣxyΣ−1yy (18)

and

D =

(
Dxx Dxy

D>xy Dyy

)
= Σ−1 =

(
Σ−1x|y −Σ−1x|yΣxyΣ−1yy

−Σ−1xx ΣxyΣ−1y|x Σ−1y|x

)
(19)

3. Let (Bt(ω) : t ∈ [0, 1]) a Brownian motion, and Dn = (k2−n : k =
0, 1, . . . , 2n).

Show that for fixed n and dyadic indexes

d = (2k + 1)2−n ∈ Dn \Dn−1, d− = 2k2−n, d+ = (2k + 2)2−n ∈ Dn−1

with k = 0, . . . 2n−1,

Gd(ω) :=

(
Bd(ω)− Bd−(ω) +Bd+(ω)

2

)
2(n+1)/2, d ∈ D
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are i.i.d. standard gaussian variable (E(Gd) = 0, E(G2
d) = 0).

R.

Gd(ω) = 2(n−1)/2
(
Bd(ω)−Bd−(ω)

)
− 2(n−1)/2

(
Bd+(ω)−Bd(ω)

)
where the intervals (d−, d) ∩ (d, d+) = ∅ and also the intervals (d−, d+) ∩
(d′−, d

′
+) = ∅ when d′ 6= d ∈ Dn \Dn−1. Therefore the increments on the

right hand side are independent, and also are independent from G′d where
d′ 6= d ∈ Dn \Dn−1

Since d−d− = d+−d = 2−n, it follows that Gd is gaussian with E(Gd) = 0

and variance E(G2
d) = 2

(
2(n−1)/2

)2
2−n = 1.

4. Let G(ω) ∼ N (0, 1), and f ∈ L2(R, dγ) where γ(dx) = φ(x)dx.

Here

φ(x) =
1√
2π

exp
(
−x

2

2

)
denotes the standard gaussian density.

Consider the function

u(t, x) = EP

(
f(x+G

√
t)

)
• Show that u(t, x) is smooth in the open set (0,∞) × R. This does

not require any smoothness on f .
Hint: write

u(t+ ε, x)− u(t, x)

ε
,

u(t, x+ ε)− u(t, x)

ε

as integrals, and do an opportune change of variable in order to use
the smoothness of the gaussian density φ when you take the limit as
ε→ 0.

u(t, x+ ε)− u(t, x)

ε
=

1

ε
E

(
f(x+ ε+G

√
t)− f(x+G

√
t)

)
=

=
1

ε

∫
R

(
f(x+ ε+ y

√
t)− f(x+ y)

)
φ(y)dy

=
1

ε

∫
R
f(x+ y

√
t)

(
φ

(
y − ε√

t

)
− φ

(
y
))
dy

−→
∫
R
f(x+ y

√
t)

(−1)√
t
φ′
(
y
)
dy =

∫
R
f(x+ y

√
t)

1√
t
φ
(
y
)
dy

=
1√
t
E
(
f(x+G

√
t)G
)

=
1

t
E
(
f(x+G

√
t)G
√
t
)

For the time-derivative,

6



u(t+ ε, x)− u(t, x)

ε
=

1

ε
E

(
f(x+G

√
t+ ε)− f(x+G

√
t)

)
=

=
1

ε

∫
R
f(x+ y)

(
1√
t+ ε

φ

(
y√
t+ ε

)
− 1√

t
φ

(
y√
t

))
dy

−→
∫
R
f(x+ y)

∂

∂t

(
1√
t
φ

(
y√
t

))
dy =

∫
R
f(x+ y)

1

2t

1√
t
φ

(
y√
t

)(
y2

t
− 1

)
dy

=
1

2t
E

(
f(x+G

√
t)(G2 − 1)

)
=

1

2t2
E

(
f(x+G

√
t)(G2t− t)

)
where we have computed the partial derivative

∂

∂t

(
1√
t
φ

(
y√
t

))
= −1

2
t−3/2φ

(
y√
t

)
+ t−1/2φ′

(
y√
t

)(
−y

2
t−3/2

))
=

(−1)

2
t−3/2

(
φ

(
y√
t

)
+ yt−1/2φ′

(
y√
t

))
=

−1

2
t−3/2

(
φ

(
y√
t

)
− yt−1/2φ

(
y√
t

)
y√
t

)
=

1

2
t−3/2φ

(
y√
t

)(
y2

t
− 1

)
Taking the limit as ε → 0 inside the expectation needs to be justi-
fied. It follows by an uniformly integrability condition which will be
discussed this later in the course. It holds when x 7→ f(x) has poly-
nomial growth, since the gaussian distribution has all exponential
moments E(exp(θG)) <∞ for θ ∈ R.
• Use the gaussian integration by parts formula to express the partial

derivatives for t > 0

∂

∂t
u(t, x),

∂

∂x
u(t, x),

∂2

∂x2
u(t, x)

R We have since Bt ∼ G
√
t where ∼ means identity in law and G is a

standard gaussian,

∂

∂t
u(t, x) =

1

2t2
E

(
f(x+Bt)(B

2
t − t)

)
,

∂

∂x
u(t, x) =

1

t
E
(
f(x+Bt)Bt

)
For the second derivative w.r.t. x we apply the integration by parts for-
mula to the first derivative

∂2

∂x2
E(f(x+Bt)) =

1

t

∂

∂x
E(f(x+Bt)Bt)

=
1

t

{
∂

∂x
E(f(x+Bt)(x+Bt))−

∂

∂x

(
xE
(
f(x+Bt)

))}
for the first term we apply the gaussian integration by parts to x 7→ g(x) :=
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f(x)x,

∂2

∂x2
E(f(x+Bt)) =

1

t

{
1

t
EP (g(x+Bt)Bt)− E(f(x+Bt))−

x

t
E(f(x+Bt)Bt)

}
=

1

t

{
1

t
EP (f(x+Bt)(x+Bt)Bt)− E(f(x+Bt))−

x

t
E(f(x+Bt)Bt)

}
=

1

t2
E
(
f(x+Bt)(B

2
t − t)

)
= 2

∂

∂t
E(f(x+Bt))

We see that u(x, t) = E(f(x+Bt)) satisfies the partial differential equation

∂

∂t
u(t, x) =

1

2

∂2

∂x2
u(t, x)

5. Let

p(x, t) =
1√
t
φ
( x√

t

)
• By using the Markov property of Brownian motion (which follows

from the independence of increments), show that for 0 ≤ t ≤ T

p(y − x, T − t)dy = P (BT ∈ dy|Bt = x) = P (BT−t + x ∈ dy)

R. For a non-negative measurable test function f(x, y)

E(f(BT , Bt)) = E(f(Bt + (BT −BT ), Bt)) = E(f(Bt +G
√
T − t, Bt))

=

∫
R

(∫
R
f(x+ y, x)

1√
T − t

φ

(
y√
T − t

)
dy

)
1√
t
φ

(
x√
t

)
dx

Denote for t ∈ [0, T ]

v(t, x) =

∫
R
f(y)p(y − x, T − t)dy = EP (f(BT )|Bt = x)

for some f ∈ L2(R, dγ), where γ(dy) = p(y, T )dy is the N (0, T )
gaussian measure.
• Show that v(t, x) is smooth in [0, T )×R with respect to the variables

(t, x), the partial derivatives

∂

∂t
v(t, x),

∂

∂x
v(t, x),

∂2

∂x2
v(t, x)

R. We have

v(t, x) = EP (f(BT )|Bt = x) = EP (f(x+BT −Bt)|Bt = x) = EP (f(x+BT −Bt)) =

EP (f(x+G
√
T − t)) = u(T − t, x)

Therefore
∂

∂t
v(t, x) =

∂

∂t
u(T − t, x) = −∂u

∂t
(T − t, t)

∂

∂x
v(t, x) =

∂

∂x
v(T − t, x) =

∂v

∂x
(T − t, x)

∂2

∂x2
v(t, x) =

∂2

∂x2
v(t, x) =

∂2v

∂x2
(t, x)
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v(t, x) satifies the partial differential equation (heath equation)

∂

∂t
v(t, x) = −∂u

∂t
(T − t, t) = −1

2

∂2u

∂x2
(T − t, t) = − ∂2

∂x2
u(T − t, t) , 0 ≤ t < T
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