
Stochastic analysis, autumn 2011, Exercises-2, 23.09.11

1. Let

f(x) = f(0) +

∫ x

0

ḟ(y)dy, h(x) = h(0) +

∫ x

0

ḣ(y)dy,

absolutely continous function with ḟ , ḣ ∈ L2(R, γ) where γ(dx) = φ(x)dx
denotes the standard gaussian measure.

• For a standard gaussian random variableG(ω) with E(G) = 0, E(G) =
1 prove the gaussian integration by parts formula:

EP

(
f ′(G)h(G)

)
= EP

(
f(G)(Gh(G)− h′(G))

)
Hint: rewrite the expectation as integral, and use integration by parts
with respect to Lebesgue measure.
We show first that E(f ′(G)2) <∞ implies E(f(G)2) <∞.

E

(
(f(G)− f(0))21(G ≥ 0)

)∫ ∞
0

(∫ x

0

f ′(y)dy

)2

φ(x)dx

≤
∫ ∞

0

∫ x

0

f ′(y)2φ(x)dydx

=

∫ ∞
0

(∫ ∞
y

φ(x)dx

)
f ′(y)2dy ≤

∫ ∞
0

f ′(y)2 min(1,
1

y
)φ(y)dy

≤ E(f ′(G)21(G ≥ 0))

where we have used Cauchy-Schwartz, Fubini, and a gaussian tail
bound. Similarly

E((f(G)− f(0))21(G ≤ 0)

)
≤ E(f ′(G)21(G ≥ 0))

which implies by the triangle ineguality

E(f(G)2)1/2 ≤ E(f ′(G)2)1/2 + |f(0)| <∞

Therefore it is enough to assume f ′(G), h′(G) ∈ L2(R, γ).
Integrating by parts,

f(b)h(b)φ(b)− f(a)h(a)φ(a) =∫ b

a

f ′(x)h(x)φ(x)ds+

∫ b

a

f(x)h(x)′φ(x)ds+

∫ b

a

f(x)h(x)φ(x)′ds

=

∫ b

a

f ′(x)h(x)φ(x)ds+

∫ b

a

f(x)h(x)′φ(x)ds−
∫ b

a

xf(x)h(x)φ(x)ds

since for the standard gaussian density φ′(x) = −xφ(x). We show
that f(x)h(x)φ(x)→ 0 as x→ ±∞. Since∫ ∞

0

|f(x)h(x)|φ(x)dx ≤
√
E(f(G)2)E(h(G2)) <∞
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we have

lim
b→∞

∫ ∞
b

|f(x)h(x)|φ(x)dx = 0

and since f(b)h(b) is an absolutely continuous function with inte-
grable derivative

E(|f ′(G)h(G)) + f(G)h′(G)|) ≤ E(|f ′(G)h(G)|) + E(|h′(G)h(G)|) <∞

necessarily

lim
b→∞

f(b)h(b)φ(b) = 0

otherwise there is xn → ∞ such that |f(xn)h(xn)φ(xn)| > ε. But
∀η > 0 and ∀n large enough, r > 0

φ(xn + r)

∫ xn+r

xn

| d
dy

(fh)(y)|dy ≤
∫ xn+r

xn

| d
dy

(fh)(y)|φ(y)dy ≤
∫ ∞
xn

| d
dy

(fh)(y)|φ(y)dy < η

which gives

|f(xn + r)h(xn + r)| > ε

φ(xn)
− η

φ(xn + r)
.

This gives∫ xn+∆

xn

|f(x)h(x)|φ(x)dx >

∫ ∆

0

(
ε
φ(y)

φ(xn)
− η
)
dy

= ε

∫ ∆

0

exp(−r
2

2
+ 2rxn)dr − η∆→∞ as xn →∞

for fixed η > 0 and ∆ > 0 This is in contradiction with E(|f(G)h(G)|) <
∞.
By taking limits as a→ −∞, b→ +∞ we obtain

0 =

∫
R
f ′(x)h(x)φ(x)ds+

∫
R
f(x)h(x)′φ(x)ds−

∫
R
xf(x)h(x)φ(x)ds =

E(f ′(G)h(G)) + E(f(G)(h′(G)−Gh(G)))

• Write the corresponding gaussian integration by parts for BT (ω) ∼
N (0, T ) with T > 0

Solution Take BT (ω) =
√
TG(ω) with G(ω) ∼ N (0, 1)

Then

EP (f ′(BT )h(BT )) = EP (f ′(
√
TG)h(

√
TG)) = EP

(
1√
T

d

dx
f(
√
Tx)

∣∣∣∣
x=G

h(
√
TG)

)
=

1√
T
EP

(
f(
√
TG)

(
h(
√
TG)G− d

dx
h(
√
Tx)

∣∣∣∣
x=G

))
= EP

(
f(
√
TG)

(h(
√
TG)
√
TG

T
− h′(

√
TG)

))
= EP

(
f(BT )

(h(BT )BT
T

− h′(BT )
))
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2. Show that a process Xt with independent increments is Markov, which
means for 0 ≤ s ≤ t andFXs = σ(Xu : 0 ≤ u ≤ s) and a bounded
measurable test function f(x)

E(f(Xt)|FXs ) = E(f(Xt)|σ(Xs))

Hint. use first the decomposition Xt = Xs + (Xt−Xs) and the definition
of conditional expectation to show first that for a bounded measurable
test-function

E(f(Xt)|σ(Xs))(ω) = E

(
f(y + (Xt −Xs))

)∣∣∣∣
y=Xs(ω)

Solutions We will use the following lemma: if X and Y are random
variables on (Ω,F , P ), G ⊆ F is a sub-σ-algebra and Y is G-measurable,
and X is P -indepenent from the σ-algebra G,then for every non-negative
Borel-measurable function f(x, y), and X

EP (f(X,Y )|G)(ω) = EP (f(X, y))

∣∣∣∣
y=Y (ω)

Proof: it is true for f(x, y) = f1(x)f2(y), by using independence and the
definition of conditional expectation. every non-negative Borel-measurable
function f(x, y) can be approximated from below by finite linear combi-
nations of such product functions and the results follows by monotone
convergence of conditional expectation.

Now for 0 ≤ s ≤ t

E(f(Xt)|FXs ) = EP (f(Xs + (Xt −Xs))|FXs )

= EP (f(y +Xt −Xs))

∣∣∣∣
y=Xs

= EP (f(Xs + (Xt −Xs))|σ(Xs)) = EP (f(Xt)|σ(Xs))

where we used the previous lemma twice.

3. (Nt(ω) : t ≥ 0) is a λ-Poisson process (λ > 0) if N0 = 0 and it has
independent increments with (Nt −Ns) ∼ Poisson(λ(t− s))

• Show that the Poisson process is non-decreasing with piecewise con-
stant trajectories, it is P -almost surely finite on and increases only
by jumps of size 1.
Hint: Show that

P

(
∃t ≤ T : ∆Nt ≥ 2

)
= 0

Write it as limits of probabilities of events depending on a finite
number of increments.
Solution: It is clear that since the increments take value in ÂăN,
that the Poisson process is piecewise constant, takes values in N, it
is non-decreasing and piecewise constant increasing only by jumps.
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We show that jumps have size 1.

Consider the dyadics, Dn = {k2−n, k ∈ N}, D =
⋃
n∈NDn.

Let

Ank = {ω : (Nk2−n −N(k−1)2−n) ≤ 1}

P (Ank ) = exp(−λ2−n)

(
1 + λ2−n

)
Let also

An =

2n⋂
k=1

Ank

By the independence of the increments

P (An) =

2n∏
k=1

P (Ank ) = exp(−λ2−n)2n

(
1 + λ2−n

)2n

= exp(−λ)

(
1 + λ2−n

)2n

↑ exp(−λ) exp(λ) = 1

as n→∞.
Moreover there is a subsequence nm such that

0 ≤ (1− P (Anm
) ≤ 2−m

which implies
∞∑
m=0

P
(
(Anm)c

)
<∞

by Borel Cantelli lemma

P (lim inf
m

Anm) = 1− P (lim sup
m

(Anm)c) = 1

which means that P a.s., for allm large enough, for all k = 1, . . . , 2nm

(Nk2−nm −N(k−1)2−nm ) ≤ 1

But since increments are non-negative this means P -almost surely
and ∀d ∈ Dn ∩ [0, 1] with n large enough

(Nd+2−n −Nd) ≤ 1

But this implies that P -almost surely, for all t ∈ [0, 1]

0 ≤ Nd+(ω)−Nd−(ω) ≤ 1

where

Nt+(ω) = lim
d↓t,t∈D

Nd(ω), Nt−(ω) = lim
d↑t,t∈D

Nd(ω)
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• Compute the probability density of the first jump time τ(ω). P (τ >
t) = P (Nt = 0) = exp(−λt)

pτ (t) = − d

dt
P (τ > t) = exp(−λt)λ

4. For a fixed t ∈ [0, 1] consider the function s 7→ ht(s) := (s ∧ t) = min(s, t)

• Show that ht(·) = (t ∧ ·) belongs to the Cameron-Martin space H.
Solution

t ∧ s =

∫ s

0

1(u ≤ t)du

where u 7→ 1(u ≤ t) is square integrable because it is bounded.

• Show that Bt(ω) := B(ht) is a Brownian motion.

• Show that K(t, s) := Cov(Bt, Bs) = E(BtBs) = s ∧ t.
The covariance of

E(BtBs) = (ht, hs)H =

∫ 1

0

1[0,t](u)1[0,s](u)ds = t ∧ s

and

E((Bt −Bs)(Bv −Bu)) = t ∧ v + u ∧ s− t ∧ u− s ∧ v

in case 0 ≤ s ≤ t ≤ u ≤ v we get (t + s − t − s) = 0, so disjoint
increments are uncorrelated. In case t = v s = v we get (t− s).
By definition of isonormal gaussian process the variables (Bt1 , . . . , Btd) =
(B(ht1), . . . , B(htd)) are jointly gaussian with zero mean and so are
the increments, (∆Bi = (Bti − Bti−1

), i = 1, . . . , d), since they are
obtained by a linear tranformation.
Therefore uncorrelated jointly gaussian increments are independent.
By isometry we obtain the series expansion with respect to the Haar
basis

Bt =
∑
n∈N

∑
d∈Dn\Dn−1

B(ηd)(ηd, (· ∧ t))H =

∑
n∈N

∑
d∈Dn\Dn−1

B(ηd)(η̇d,1[0,t])H =

∑
n∈N

∑
d∈Dn\Dn−1

B(ηd)

∫ t

0

η̇d(s)ds

=
∑
n∈N

∑
d∈Dn\Dn−1

B(ηd)ηd(t)

where the series converges in L2(Ω). In the Lévy construction we have
shown also that the expansion converges P almost surely uniformly
in [0, 1], which implies P -a.s.continuity.
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• Show the reproducing kernel Hilbert space property in the Cameron
Martin space H: for h ∈ H(

K(t, ·), h(·)
)
H

= h(t)

Sol. We have seen that K(t, s) = E(BtBs) = (t ∧ s)

(K(t, ·), h(·)
)
H

= ((t ∧ ·), h)H =

(1[0,t], ḣ)L2([0,1]) =

∫ t

0

ḣ(s)ds = h(t)
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