Stochastic analysis, autumn 2011, Exercises-2, 23.09.11

1. Let

$$
f(x)=f(0)+\int_{0}^{x} \dot{f}(y) d y, \quad h(x)=h(0)+\int_{0}^{x} \dot{h}(y) d y
$$

absolutely continous function with $\dot{f}, \dot{h} \in L^{2}(\mathbb{R}, \gamma)$ where $\gamma(d x)=\phi(x) d x$ denotes the standard gaussian measure.

- For a standard gaussian random variable $G(\omega)$ with $E(G)=0, E(G)=$ 1 prove the gaussian integration by parts formula:

$$
E_{P}\left(f^{\prime}(G) h(G)\right)=E_{P}\left(f(G)\left(G h(G)-h^{\prime}(G)\right)\right)
$$

Hint: rewrite the expectation as integral, and use integration by parts with respect to Lebesgue measure.
We show first that $E\left(f^{\prime}(G)^{2}\right)<\infty$ implies $E\left(f(G)^{2}\right)<\infty$.

$$
\begin{aligned}
& E\left((f(G)-f(0))^{2} \mathbf{1}(G \geq 0)\right) \int_{0}^{\infty}\left(\int_{0}^{x} f^{\prime}(y) d y\right)^{2} \phi(x) d x \\
& \leq \int_{0}^{\infty} \int_{0}^{x} f^{\prime}(y)^{2} \phi(x) d y d x \\
& =\int_{0}^{\infty}\left(\int_{y}^{\infty} \phi(x) d x\right) f^{\prime}(y)^{2} d y \leq \int_{0}^{\infty} f^{\prime}(y)^{2} \min \left(1, \frac{1}{y}\right) \phi(y) d y \\
& \leq E\left(f^{\prime}(G)^{2} \mathbf{1}(G \geq 0)\right)
\end{aligned}
$$

where we have used Cauchy-Schwartz, Fubini, and a gaussian tail bound. Similarly

$$
E\left((f(G)-f(0))^{2} \mathbf{1}(G \leq 0)\right) \leq E\left(f^{\prime}(G)^{2} \mathbf{1}(G \geq 0)\right)
$$

which implies by the triangle ineguality

$$
E\left(f(G)^{2}\right)^{1 / 2} \leq E\left(f^{\prime}(G)^{2}\right)^{1 / 2}+|f(0)|<\infty
$$

Therefore it is enough to assume $f^{\prime}(G), h^{\prime}(G) \in L^{2}(\mathbb{R}, \gamma)$.
Integrating by parts,

$$
\begin{aligned}
& f(b) h(b) \phi(b)-f(a) h(a) \phi(a)= \\
& \int_{a}^{b} f^{\prime}(x) h(x) \phi(x) d s+\int_{a}^{b} f(x) h(x)^{\prime} \phi(x) d s+\int_{a}^{b} f(x) h(x) \phi(x)^{\prime} d s \\
& =\int_{a}^{b} f^{\prime}(x) h(x) \phi(x) d s+\int_{a}^{b} f(x) h(x)^{\prime} \phi(x) d s-\int_{a}^{b} x f(x) h(x) \phi(x) d s
\end{aligned}
$$

since for the standard gaussian density $\phi^{\prime}(x)=-x \phi(x)$. We show that $f(x) h(x) \phi(x) \rightarrow 0$ as $x \rightarrow \pm \infty$. Since

$$
\int_{0}^{\infty}|f(x) h(x)| \phi(x) d x \leq \sqrt{E\left(f(G)^{2}\right) E\left(h\left(G^{2}\right)\right)}<\infty
$$

we have

$$
\lim _{b \rightarrow \infty} \int_{b}^{\infty}|f(x) h(x)| \phi(x) d x=0
$$

and since $f(b) h(b)$ is an absolutely continuous function with integrable derivative
$\left.E\left(\mid f^{\prime}(G) h(G)\right)+f(G) h^{\prime}(G) \mid\right) \leq E\left(\left|f^{\prime}(G) h(G)\right|\right)+E\left(\left|h^{\prime}(G) h(G)\right|\right)<\infty$ necessarily

$$
\lim _{b \rightarrow \infty} f(b) h(b) \phi(b)=0
$$

otherwise there is $x_{n} \rightarrow \infty$ such that $\left|f\left(x_{n}\right) h\left(x_{n}\right) \phi\left(x_{n}\right)\right|>\varepsilon$. But $\forall \eta>0$ and $\forall n$ large enough, $r>0$
$\phi\left(x_{n}+r\right) \int_{x_{n}}^{x_{n}+r}\left|\frac{d}{d y}(f h)(y)\right| d y \leq \int_{x_{n}}^{x_{n}+r}\left|\frac{d}{d y}(f h)(y)\right| \phi(y) d y \leq \int_{x_{n}}^{\infty}\left|\frac{d}{d y}(f h)(y)\right| \phi(y) d y<\eta$ which gives

$$
\left|f\left(x_{n}+r\right) h\left(x_{n}+r\right)\right|>\frac{\varepsilon}{\phi\left(x_{n}\right)}-\frac{\eta}{\phi\left(x_{n}+r\right)} .
$$

This gives

$$
\begin{aligned}
& \int_{x_{n}}^{x_{n}+\Delta}|f(x) h(x)| \phi(x) d x>\int_{0}^{\Delta}\left(\varepsilon \frac{\phi(y)}{\phi\left(x_{n}\right)}-\eta\right) d y \\
& =\varepsilon \int_{0}^{\Delta} \exp \left(-\frac{r^{2}}{2}+2 r x_{n}\right) d r-\eta \Delta \rightarrow \infty \text { as } x_{n} \rightarrow \infty
\end{aligned}
$$

for fixed $\eta>0$ and $\Delta>0$ This is in contradiction with $E(|f(G) h(G)|)<$ ∞.
By taking limits as $a \rightarrow-\infty, b \rightarrow+\infty$ we obtain

$$
\begin{aligned}
& 0=\int_{\mathbb{R}} f^{\prime}(x) h(x) \phi(x) d s+\int_{\mathbb{R}} f(x) h(x)^{\prime} \phi(x) d s-\int_{\mathbb{R}} x f(x) h(x) \phi(x) d s= \\
& E\left(f^{\prime}(G) h(G)\right)+E\left(f(G)\left(h^{\prime}(G)-G h(G)\right)\right)
\end{aligned}
$$

- Write the corresponding gaussian integration by parts for $B_{T}(\omega) \sim$ $\mathcal{N}(0, T)$ with $T>0$
Solution Take $B_{T}(\omega)=\sqrt{T} G(\omega)$ with $G(\omega) \sim \mathcal{N}(0,1)$
Then

$$
\begin{aligned}
& E_{P}\left(f^{\prime}\left(B_{T}\right) h\left(B_{T}\right)\right)=E_{P}\left(f^{\prime}(\sqrt{T} G) h(\sqrt{T} G)\right)=E_{P}\left(\left.\frac{1}{\sqrt{T}} \frac{d}{d x} f(\sqrt{T} x)\right|_{x=G} h(\sqrt{T} G)\right) \\
& =\frac{1}{\sqrt{T}} E_{P}\left(f(\sqrt{T} G)\left(h(\sqrt{T} G) G-\left.\frac{d}{d x} h(\sqrt{T} x)\right|_{x=G}\right)\right) \\
& =E_{P}\left(f(\sqrt{T} G)\left(\frac{h(\sqrt{T} G) \sqrt{T} G}{T}-h^{\prime}(\sqrt{T} G)\right)\right) \\
& =E_{P}\left(f\left(B_{T}\right)\left(\frac{h\left(B_{T}\right) B_{T}}{T}-h^{\prime}\left(B_{T}\right)\right)\right)
\end{aligned}
$$

2. Show that a process X_{t} with independent increments is Markov, which means for $0 \leq s \leq t \operatorname{and} \mathcal{F}_{s}^{X}=\sigma\left(X_{u}: 0 \leq u \leq s\right)$ and a bounded measurable test function $f(x)$

$$
E\left(f\left(X_{t}\right) \mid \mathcal{F}_{s}^{X}\right)=E\left(f\left(X_{t}\right) \mid \sigma\left(X_{s}\right)\right)
$$

Hint. use first the decomposition $X_{t}=X_{s}+\left(X_{t}-X_{s}\right)$ and the definition of conditional expectation to show first that for a bounded measurable test-function

$$
E\left(f\left(X_{t}\right) \mid \sigma\left(X_{s}\right)\right)(\omega)=\left.E\left(f\left(y+\left(X_{t}-X_{s}\right)\right)\right)\right|_{y=X_{s}(\omega)}
$$

Solutions We will use the following lemma: if X and Y are random variables on $(\Omega, \mathcal{F}, P), \mathcal{G} \subseteq \mathcal{F}$ is a sub- σ-algebra and Y is \mathcal{G}-measurable, and X is P-indepenent from the σ-algebra \mathcal{G}, then for every non-negative Borel-measurable function $f(x, y)$, and X

$$
E_{P}(f(X, Y) \mid \mathcal{G})(\omega)=\left.E_{P}(f(X, y))\right|_{y=Y(\omega)}
$$

Proof: it is true for $f(x, y)=f_{1}(x) f_{2}(y)$, by using independence and the definition of conditional expectation. every non-negative Borel-measurable function $f(x, y)$ can be approximated from below by finite linear combinations of such product functions and the results follows by monotone convergence of conditional expectation.

Now for $0 \leq s \leq t$

$$
\begin{aligned}
& E\left(f\left(X_{t}\right) \mid \mathcal{F}_{s}^{X}\right)=E_{P}\left(f\left(X_{s}+\left(X_{t}-X_{s}\right)\right) \mid \mathcal{F}_{s}^{X}\right) \\
& =\left.E_{P}\left(f\left(y+X_{t}-X_{s}\right)\right)\right|_{y=X_{s}}=E_{P}\left(f\left(X_{s}+\left(X_{t}-X_{s}\right)\right) \mid \sigma\left(X_{s}\right)\right)=E_{P}\left(f\left(X_{t}\right) \mid \sigma\left(X_{s}\right)\right)
\end{aligned}
$$

where we used the previous lemma twice.
3. $\left(N_{t}(\omega): t \geq 0\right)$ is a λ-Poisson process $(\lambda>0)$ if $N_{0}=0$ and it has independent increments with $\left(N_{t}-N_{s}\right) \sim \operatorname{Poisson}(\lambda(t-s))$

- Show that the Poisson process is non-decreasing with piecewise constant trajectories, it is P-almost surely finite on and increases only by jumps of size 1 .
Hint: Show that

$$
P\left(\exists t \leq T: \Delta N_{t} \geq 2\right)=0
$$

Write it as limits of probabilities of events depending on a finite number of increments.
Solution: It is clear that since the increments take value in $\hat{A} \breve{a} \mathbb{N}$, that the Poisson process is piecewise constant, takes values in \mathbb{N}, it is non-decreasing and piecewise constant increasing only by jumps.

We show that jumps have size 1 .

Consider the dyadics, $D_{n}=\left\{k 2^{-n}, k \in \mathbb{N}\right\}, D=\bigcup_{n \in \mathbb{N}} D_{n}$.
Let

$$
\begin{gathered}
A_{k}^{n}=\left\{\omega:\left(N_{k 2^{-n}}-N_{(k-1) 2^{-n}}\right) \leq 1\right\} \\
P\left(A_{k}^{n}\right)=\exp \left(-\lambda 2^{-n}\right)\left(1+\lambda 2^{-n}\right)
\end{gathered}
$$

Let also

$$
A^{n}=\bigcap_{k=1}^{2^{n}} A_{k}^{n}
$$

By the independence of the increments

$$
\begin{aligned}
& P\left(A^{n}\right)=\prod_{k=1}^{2^{n}} P\left(A_{k}^{n}\right)=\exp \left(-\lambda 2^{-n}\right)^{2^{n}}\left(1+\lambda 2^{-n}\right)^{2^{n}} \\
& =\exp (-\lambda)\left(1+\lambda 2^{-n}\right)^{2^{n}} \uparrow \quad \exp (-\lambda) \exp (\lambda)=1
\end{aligned}
$$

as $n \rightarrow \infty$.
Moreover there is a subsequence n_{m} such that

$$
0 \leq\left(1-P\left(A_{n_{m}}\right) \leq 2^{-m}\right.
$$

which implies

$$
\sum_{m=0}^{\infty} P\left(\left(A_{n_{m}}\right)^{c}\right)<\infty
$$

by Borel Cantelli lemma

$$
P\left(\liminf _{m} A^{n_{m}}\right)=1-P\left(\limsup _{m}\left(A^{n_{m}}\right)^{c}\right)=1
$$

which means that P a.s., for all m large enough, for all $k=1, \ldots, 2^{n_{m}}$

$$
\left(N_{k 2^{-n_{m}}}-N_{(k-1) 2^{-n_{m}}}\right) \leq 1
$$

But since increments are non-negative this means P-almost surely and $\forall d \in D_{n} \cap[0,1]$ with n large enough

$$
\left(N_{d+2^{-n}}-N_{d}\right) \leq 1
$$

But this implies that P-almost surely, for all $t \in[0,1]$

$$
0 \leq N_{d+}(\omega)-N_{d-}(\omega) \leq 1
$$

where

$$
N_{t+}(\omega)=\lim _{d \downarrow t, t \in D} N_{d}(\omega), \quad N_{t-}(\omega)=\lim _{d \uparrow t, t \in D} N_{d}(\omega)
$$

- Compute the probability density of the first jump time $\tau(\omega) . P(\tau>$ $t)=P\left(N_{t}=0\right)=\exp (-\lambda t)$

$$
p_{\tau}(t)=-\frac{d}{d t} P(\tau>t)=\exp (-\lambda t) \lambda
$$

4. For a fixed $t \in[0,1]$ consider the function $s \mapsto h_{t}(s):=(s \wedge t)=\min (s, t)$

- Show that $h_{t}(\cdot)=(t \wedge \cdot)$ belongs to the Cameron-Martin space H.

Solution

$$
t \wedge s=\int_{0}^{s} \mathbf{1}(u \leq t) d u
$$

where $u \mapsto \mathbf{1}(u \leq t)$ is square integrable because it is bounded.

- Show that $B_{t}(\omega):=B\left(h_{t}\right)$ is a Brownian motion.
- Show that $K(t, s):=\operatorname{Cov}\left(B_{t}, B_{s}\right)=E\left(B_{t} B_{s}\right)=s \wedge t$.

The covariance of

$$
E\left(B_{t} B_{s}\right)=\left(h_{t}, h_{s}\right)_{H}=\int_{0}^{1} \mathbf{1}_{[0, t]}(u) \mathbf{1}_{[0, s]}(u) d s=t \wedge s
$$

and

$$
E\left(\left(B_{t}-B_{s}\right)\left(B_{v}-B_{u}\right)\right)=t \wedge v+u \wedge s-t \wedge u-s \wedge v
$$

in case $0 \leq s \leq t \leq u \leq v$ we get $(t+s-t-s)=0$, so disjoint increments are uncorrelated. In case $t=v s=v$ we get $(t-s)$.
By definition of isonormal gaussian process the variables $\left(B_{t_{1}}, \ldots, B_{t_{d}}\right)=$ $\left(B\left(h_{t_{1}}\right), \ldots, B\left(h_{t_{d}}\right)\right)$ are jointly gaussian with zero mean and so are the increments, $\left(\Delta B_{i}=\left(B_{t_{i}}-B_{t_{i-1}}\right), i=1, \ldots, d\right)$, since they are obtained by a linear tranformation.
Therefore uncorrelated jointly gaussian increments are independent. By isometry we obtain the series expansion with respect to the Haar basis

$$
\begin{aligned}
& B_{t}=\sum_{n \in \mathbb{N}} \sum_{d \in D_{n} \backslash D_{n-1}} B\left(\eta_{d}\right)\left(\eta_{d},(\cdot \wedge t)\right)_{H}= \\
& \sum_{n \in \mathbb{N}} \sum_{d \in D_{n} \backslash D_{n-1}} B\left(\eta_{d}\right)\left(\dot{\eta}_{d}, \mathbf{1}_{[0, t]}\right)_{H}= \\
& \sum_{n \in \mathbb{N}} \sum_{d \in D_{n} \backslash D_{n-1}} B\left(\eta_{d}\right) \int_{0}^{t} \dot{\eta}_{d}(s) d s \\
& =\sum_{n \in \mathbb{N}} \sum_{d \in D_{n} \backslash D_{n-1}} B\left(\eta_{d}\right) \eta_{d}(t)
\end{aligned}
$$

where the series converges in $L^{2}(\Omega)$. In the Lévy construction we have shown also that the expansion converges P almost surely uniformly in $[0,1]$, which implies P-a.s.continuity.

- Show the reproducing kernel Hilbert space property in the Cameron Martin space H : for $h \in H$

$$
(K(t, \cdot), h(\cdot))_{H}=h(t)
$$

Sol. We have seen that $K(t, s)=E\left(B_{t} B_{s}\right)=(t \wedge s)$

$$
\begin{aligned}
& (K(t, \cdot), h(\cdot))_{H}=((t \wedge \cdot), h)_{H}= \\
& \left(\mathbf{1}_{[0, t]}, \dot{h}\right)_{L^{2}([0,1])}=\int_{0}^{t} \dot{h}(s) d s=h(t)
\end{aligned}
$$

