Stochastic analysis, autumn 2011, Exercises-10, 22.11.2011

1. Let τ be a \mathbb{F}-stopping time in the filtration generated by a Brownian motion B_{t}, such that $E(\tau)<\infty$.

- Use Doob maximal inequality to show that $\left(B_{\tau \wedge t}: t \in \mathbb{R}^{+}\right)$is a martingale bounded in $L^{2}(P)$.

Solution

$\sup _{t \geq 0} E\left(B_{\tau \wedge t}^{2}\right)=\sup _{t \geq 0} E\left(\langle B\rangle_{t \wedge \tau}\right)=\sup t>0 E(t \wedge \tau)=E(\tau)<\infty$
by monotone convergence.

- Prove Wald's identities

$$
E\left(B_{\tau}\right)=0 \quad, \quad E\left(B_{\tau}^{2}\right)=E(\tau)
$$

Hint: Doob optional sampling theorem cannot be applied directly since $\left(B_{t}: t \in \mathbb{R}^{+}\right)$is not uniformly integrable, neither $\tau(\omega)$ is assumed to be bounded. Note also that

$$
B_{\tau}(\omega)=\sum_{n=1}^{\infty}\left(B_{\tau \wedge n}(\omega)-B_{\tau \wedge(n-1)}(\omega)\right)
$$

Solution Note that

$$
\begin{aligned}
& E\left(B_{\tau \wedge n}(\omega)^{2}\right)=E\left(\left\{\sum_{k=1}^{n}\left(B_{\tau \wedge n}(\omega)-B_{\tau \wedge(n-1)}(\omega)\right)\right\}^{2}\right)= \\
& \sum_{k=1}^{n} E\left(\left(B_{\tau \wedge k}(\omega)-B_{\tau \wedge(k-1)}\right)^{2}\right) \\
& +2 \sum_{k=1}^{n} \sum_{0 \leq h<k} E\left(\left(B_{\tau \wedge k}(\omega)-B_{\tau \wedge(k-1)}\right) E\left(B_{\tau \wedge k}(\omega)-B_{\tau \wedge(k-1)} \mid \mathcal{F}_{k-1}\right)\right) \\
& \sum_{k=1}^{n} E\left(\langle B\rangle_{\tau \wedge k}-\langle B\rangle_{\tau \wedge(k-1)}\right)=\sum_{k=1}^{n} E(\tau \wedge k-\tau \wedge(k-1))= \\
& E(\tau \wedge n) \uparrow E(\tau) \text { as } n \uparrow \infty
\end{aligned}
$$

by the martingale property of $\left(B_{\tau \wedge n}\right)$ in the filtration $\left(\mathcal{F}_{\tau \wedge n}: n \in\right.$ \mathbb{N}) which follows by Doob's optional sampling theorem for bounded stopping times. Moreover $\lim _{n \rightarrow \infty} B_{\tau \wedge n}=B_{\tau}$ almost surely and in $L^{2}(P)$ sense, which implies $E\left(B_{\tau}^{2}\right)=E(\tau)$
This means $\sup _{n} E\left(B_{\tau \wedge n}^{2}\right) \leq E(\tau)<\infty$, the collection of r.v. $\left\{B_{\tau \wedge n}\right.$: $n \in \mathbb{N}\}$ is bounded in L^{2} and therefore it is uniformly integrable. Therefore

$$
0=E\left(B_{0}\right)=E\left(B_{\tau \wedge n}\right) \rightarrow E\left(B_{\tau}\right) \text { as } n \rightarrow \infty
$$

2. Let M_{t} a continuous \mathbb{F}-martingale with $E\left(M_{t}^{2}\right)<\infty \forall t$, and let A_{t} be a continuous and bounded \mathbb{F}-adapted process with finite variation on finite intervals.
Show that for $0 \leq s \leq t$

$$
M_{t} A_{t}-M_{s} A_{s}=\int_{0}^{t} A_{s} d M_{s}+\int_{0}^{t} M_{s} d A_{s}
$$

where on the right side we have an Ito integral and a Riemann Stieltjes integral.
Note that the Ito integral $\left((A \cdot M)_{t}: t \in \mathbb{R}^{+}\right)$is a square integrable martingale (why ?).
Hint Note that

$$
M_{t} A_{t}-M_{s} A_{s}=M_{t}\left(A_{t}-A_{s}\right)+A_{s}\left(M_{t}-M_{s}\right)
$$

and use telescopic sums for some $s=r_{0}<r_{1}<\cdots<r_{n}=t$, letting the step-size of the partition going to zero.
Solution By using telescopic sums, for $0<t_{1}<t_{2}<\ldots$
$M_{t} A_{t}-M_{0} A_{0}=\sum_{t_{i}} M_{t_{i}}\left(A_{t \wedge t_{i}}-A_{t \wedge t_{i-1}}\right)+\sum_{t_{i}} A_{t_{i}}\left(M_{t \wedge t_{i}}-M_{t \wedge t_{i-1}}\right)$
as $\Delta=\sup _{i}\left(t_{i}-t_{i-1}\right) \rightarrow 0, P$ a.s. the first sum converges to the Riemann Stieltjes integral $\int_{0}^{t} M_{s} d A_{s}$ since P a.s. $A_{t}(\omega)$ has finite variation on compacts and $M_{t}(\omega)$ is continuous. Since A_{t} is bounded and M_{t} is square integrable by the bounded convergence theorem we have also convergence in $L^{2}(P)$.
The second sum converges is the limit of Ito integrals $\int_{0}^{t} A_{s}^{\Pi} d M_{s}$ with simple predictable integrands, since

$$
A_{s}^{\Pi}:=A_{t_{i}}(\omega) \mathbf{1}_{\left(t_{i-1}, t_{i}\right]}(s) \rightarrow A_{s} \hat{\mathrm{~A}} \breve{\mathrm{a}} \text { in } L^{2}(\Omega \times[0, t], \mathcal{P}, d P \otimes d\langle M\rangle)
$$

$\int_{0}^{t} A_{s}^{\Pi} d M_{s} \longrightarrow \int A_{s} d M_{s}$ in $L^{2}(\Omega)$.
3. Let B_{t} a Brownian motion and denote by \mathbb{F} its filtration.

Consider the pathwise Ito-Föllmer formula.
$f\left(B_{t}, t\right)=f\left(B_{0}, 0\right)+\int_{0}^{t} f_{x}\left(B_{s}, s\right) d B_{s}+\int_{0}^{t}\left(f_{s}\left(B_{s}, s\right)+\frac{1}{2} f_{x x}\left(B_{s}, s\right)\right) d s$
where the pathwise Föllmer integral coincides with the Ito integral. We assume that $f(x, s)$ is such that the the integrals above exist. Since the gaussian distribution has exponential moments, it is more than enough to assume that the derivatives have polynomial growth.
Show that if $f\left(B_{t}, t\right)$ is a local martingale, necessarily

$$
f\left(B_{t}, t\right)=f\left(B_{0}, 0\right)+\int_{0}^{t} f_{x}\left(B_{s}, s\right) d B_{s}
$$

Hint: a local martingale with finite variation is constant.
Solution By Ito formula the difference
$f\left(B_{t}, t\right)-f\left(B_{0}, 0\right)-\int_{0}^{t} f_{x}\left(B_{s}, s\right) d B_{s}=\int_{0}^{t}\left(f_{s}\left(B_{s}, s\right)+\frac{1}{2} f_{x x}\left(B_{s}, s\right)\right) d s$
is a continuous local martingale with finite variation, which is necessarily constant $\equiv 0$.
4. By using independence of increment, and the formula for the characteristic function of a standard gaussian $E\left(\exp \left(i \theta B_{1}\right)\right)=\exp \left(-\theta^{2} / 2\right), i=\sqrt{-1}$, we have seen that

$$
\begin{aligned}
& Z_{t}(\theta)=\exp \left(i \theta B_{t}+\frac{1}{2} \theta^{2} t\right)=\cos \left(\theta B_{t}\right) \exp \left(\theta^{2} t / 2\right)+i \sin \left(\theta B_{t}\right) \exp \left(\theta^{2} t / 2\right) \\
& =M_{t}(\theta)+i N_{t}(\theta)
\end{aligned}
$$

is a complex valued \mathbb{F}-martingale, where

$$
M_{t}(\theta)=\cos \left(\theta B_{t}\right) \exp \left(\theta^{2} t / 2\right), \quad N_{t}(\theta)=\sin \left(\theta B_{t}\right) \exp \left(\theta^{2} t / 2\right)
$$

Equivalently M_{t} and N_{t} are real valued martingales.

- Check that M_{t} and N_{t} are in $L^{2}(P)$.

Solution Since $|\cos (\theta)| \leq 1, E\left(M_{t}^{2}\right) \leq \exp \left(\theta^{2}\right)<\infty$

- Use Exercise 1 and 2 together with Ito formula to compute $\langle M(\theta)\rangle_{t}$, $\langle N(\theta)\rangle_{t}$, and $\langle N(\theta), M(\theta)\rangle_{t}$.
Hint: express $M(\theta)_{t}=M(\theta)_{0}+\int_{0}^{t} f_{x}\left(s, B_{s}\right) d B_{s}$ as an Ito integral, use the formula $\langle Y \cdot M\rangle_{t}=\int_{0}^{t} Y_{s}^{2} d\langle M\rangle_{s}$.

Solution

$$
\begin{aligned}
& d M_{t}=-N_{t} \theta d B_{t}, \quad d N_{t}=M_{t} \theta d B_{t} \\
& M_{t}=1-\theta \int_{0}^{t} N_{s} d B_{s}, \quad N_{t}=\theta \int_{0}^{t} M_{s} d B_{s} \\
& \langle M\rangle_{t}=\theta^{2} \int_{0}^{t} N_{s}^{2} d s, \quad\langle N\rangle_{t}=\theta^{2} \int_{0}^{t} M_{s}^{2} d s \\
& \langle M, B\rangle_{t}=-\theta \int_{0}^{t} N_{s} d s, \quad\langle N, B\rangle_{t}=\theta \int_{0}^{t} M_{s} d s, \quad\langle M, N\rangle_{t}=-\theta^{2} \int_{0}^{t} M_{s} N_{s} d s
\end{aligned}
$$

5. Compute $E\left(M_{t}^{2}(\theta)\right)$ and $E\left(N_{t}^{2}(\theta)\right)$

Hint: As an alternative to the direct calculation, use the isometry

$$
E\left(M_{t}^{2}(\theta)\right)=E\left(M_{0}(\theta)^{2}\right)+E\left(\langle M(\theta)\rangle_{t}\right), \quad E\left(N_{t}^{2}(\theta)\right)=E\left(N_{0}(\theta)^{2}\right)+E\left(\langle N(\theta)\rangle_{t}\right)
$$

and the previous exercise to show that

$$
E\left(M_{t}^{2}(\theta)\right)=1+\int_{0}^{t} E\left(N_{s}^{2}(\theta)\right) d s, \quad E\left(N_{t}^{2}(\theta)\right)=\int_{0}^{t} E\left(M_{s}^{2}(\theta)\right) d s
$$

which gives a deterministic 2-dimensional linear differential system with unknown functions $\xi_{t}=E\left(M_{t}^{2}(\theta)\right), \eta_{t}=E\left(N_{t}^{2}(\theta)\right)$. To solve it use hyperbolic functions:

$$
\sinh (x)=\left(e^{x}-e^{-x}\right) / 2, \quad \cosh (x)=\left(e^{x}+e^{-x}\right) / 2,
$$

Solution By Fubini

$$
\begin{aligned}
& E\left(M_{2}^{t}\right)=E\left(M_{0}^{2}\right)+E\left(\left\langle M_{t}\right\rangle\right)=1+\theta^{2} \int_{0}^{t} E\left(N_{s}^{2}\right) d s \\
& E\left(N_{2}^{t}\right)=E\left(M_{0}^{2}\right)+E\left(\left\langle N_{t}\right\rangle\right)=0+\theta^{2} \int_{0}^{t} E\left(M_{s}^{2}\right) d s
\end{aligned}
$$

i.e. $E\left(M_{t}^{2}\right)=\xi_{t}$ and $E\left(N_{t}^{2}\right)=\eta_{t}$ solving the linear differential system

$$
\begin{aligned}
\xi_{t} & =1+\theta^{2} \int_{0}^{t} \eta_{s} d s \\
\eta_{t} & =0+\theta^{2} \int_{0}^{t} \xi_{s} d s
\end{aligned}
$$

In matrix form

$$
d\binom{\xi_{t}}{\eta_{t}}=\theta^{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\xi_{t}}{\eta_{t}} d t=\theta^{2} A\binom{\xi_{t}}{\eta_{t}} d t
$$

with solution

$$
\binom{\xi_{t}}{\eta_{t}}=\exp \left(\theta^{2} A t\right)\binom{\xi_{0}}{\eta_{0}}
$$

where $\left(\xi_{0}, \eta_{0}\right)=(1,0)$, and we use the matrix exponential

$$
\exp \left(\theta^{2} A t\right)=\sum_{n=0}^{\infty} \frac{\left(\theta^{2} t\right)^{n}}{n!} A^{n}(1,0)^{\top}
$$

where $A^{2 n}=\mathrm{Id}, \quad A^{2 n+1}=A$.

$$
\begin{aligned}
& \xi_{t}=\sum_{n=0}^{\infty} \frac{\left(\theta^{2} t\right)^{2 n}}{(2 n)!}=\cosh \left(\theta^{2} t\right)=\frac{1}{2}\left\{\exp \left(\theta^{2} t\right)+\exp \left(-\theta^{2} t\right)\right\} \\
& \eta_{t}=\sum_{n=0}^{\infty} \frac{\left(\theta^{2} t\right)^{2 n+1}}{(2 n+1)!}=\sinh \left(\theta^{2} t\right)=\frac{1}{2}\left\{\exp \left(\theta^{2} t\right)-\exp \left(-\theta^{2} t\right)\right\}
\end{aligned}
$$

