
Stochastic analysis, autumn 2011, Exercises-10, 22.11.2011

1. Let τ be a F-stopping time in the filtration generated by a Brownian
motion Bt, such that E(τ) <∞.

• Use Doob maximal inequality to show that (Bτ∧t : t ∈ R+) is a
martingale bounded in L2(P ).
Solution

sup
t≥0

E
(
B2
τ∧t
)

= sup
t≥0

E
(
〈B〉t∧τ

)
= sup t > 0E(t ∧ τ) = E(τ) <∞

by monotone convergence.

• Prove Wald’s identities

E(Bτ ) = 0 , E(B2
τ ) = E(τ)

Hint: Doob optional sampling theorem cannot be applied directly
since (Bt : t ∈ R+) is not uniformly integrable, neither τ(ω) is as-
sumed to be bounded. Note also that

Bτ (ω) =

∞∑
n=1

(
Bτ∧n(ω)−Bτ∧(n−1)(ω)

)
Solution Note that

E

(
Bτ∧n(ω)2) = E

({ n∑
k=1

(
Bτ∧n(ω)−Bτ∧(n−1)(ω)

)}2)
=

n∑
k=1

E

(
(Bτ∧k(ω)−Bτ∧(k−1))

2

)

+2

n∑
k=1

∑
0≤h<k

E

(
(Bτ∧k(ω)−Bτ∧(k−1))E

(
Bτ∧k(ω)−Bτ∧(k−1)

∣∣Fk−1

))
n∑
k=1

E(〈B〉τ∧k − 〈B〉τ∧(k−1)

)
=

n∑
k=1

E
(
τ ∧ k − τ ∧ (k − 1)

)
=

E(τ ∧ n) ↑ E(τ) as n ↑ ∞

by the martingale property of (Bτ∧n) in the filtration (Fτ∧n : n ∈
N) which follows by Doob’s optional sampling theorem for bounded
stopping times. Moreover lim

n→∞
Bτ∧n = Bτ almost surely and in

L2(P ) sense, which implies E(B2
τ ) = E(τ)

This means supnE(B2
τ∧n) ≤ E(τ) <∞, the collection of r.v. {Bτ∧n :

n ∈ N} is bounded in L2 and therefore it is uniformly integrable.
Therefore

0 = E(B0) = E(Bτ∧n)→ E(Bτ ) as n→∞
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2. Let Mt a continuous F-martingale with E(M2
t ) < ∞ ∀t, and let At be a

continuous and bounded F-adapted process with finite variation on finite
intervals.
Show that for 0 ≤ s ≤ t

MtAt −MsAs =

∫ t

0

AsdMs +

∫ t

0

MsdAs

where on the right side we have an Ito integral and a Riemann Stieltjes
integral.
Note that the Ito integral ((A · M)t : t ∈ R+) is a square integrable
martingale (why ?).
Hint Note that

MtAt −MsAs = Mt(At −As) +As(Mt −Ms)

and use telescopic sums for some s = r0 < r1 < · · · < rn = t, letting the
step-size of the partition going to zero.
Solution By using telescopic sums, for 0 < t1 < t2 < . . .

MtAt −M0A0 =
∑
ti

Mti(At∧ti −At∧ti−1
) +

∑
ti

Ati(Mt∧ti −Mt∧ti−1
)

as ∆ = supi(ti − ti−1) → 0, P a.s. the first sum converges to the Rie-

mann Stieltjes integral
t∫

0

MsdAs since P a.s. At(ω) has finite variation on

compacts and Mt(ω) is continuous.Since At is bounded and Mt is square
integrable by the bounded convergence theorem we have also convergence
in L2(P ).

The second sum converges is the limit of Ito integrals
t∫

0

AΠ
s dMs with simple

predictable integrands, since

AΠ
s := Ati(ω)1(ti−1,ti](s)→ AsÂă in L2(Ω× [0, t],P, dP ⊗ d〈M〉),

t∫
0

AΠ
s dMs −→

∫
AsdMs in L2(Ω).

3. Let Bt a Brownian motion and denote by F its filtration.
Consider the pathwise Ito-Föllmer formula.

f(Bt, t) = f(B0, 0) +

∫ t

0

fx(Bs, s)dBs +

∫ t

0

(
fs(Bs, s) +

1

2
fxx(Bs, s)

)
ds

where the pathwise Föllmer integral coincides with the Ito integral. We
assume that f(x, s) is such that the the integrals above exist. Since the
gaussian distribution has exponential moments, it is more than enough to
assume that the derivatives have polynomial growth.
Show that if f(Bt, t) is a local martingale, necessarily

f(Bt, t) = f(B0, 0) +

∫ t

0

fx(Bs, s)dBs
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Hint: a local martingale with finite variation is constant.

Solution By Ito formula the difference

f(Bt, t)− f(B0, 0)−
∫ t

0

fx(Bs, s)dBs =

∫ t

0

(
fs(Bs, s) +

1

2
fxx(Bs, s)

)
ds

is a continuous local martingale with finite variation, which is necessarily
constant ≡ 0.

4. By using independence of increment, and the formula for the characteristic
function of a standard gaussian E(exp(iθB1)) = exp(−θ2/2), i =

√
−1,

we have seen that

Zt(θ) = exp
(
iθBt +

1

2
θ2t
)

= cos(θBt) exp(θ2t/2) + i sin(θBt) exp(θ2t/2)

= Mt(θ) + iNt(θ)

is a complex valued F-martingale, where

Mt(θ) = cos(θBt) exp(θ2t/2), Nt(θ) = sin(θBt) exp(θ2t/2),

Equivalently Mt and Nt are real valued martingales.

• Check that Mt and Nt are in L2(P ).
Solution Since | cos(θ)| ≤ 1, E(M2

t ) ≤ exp(θ2) <∞
• Use Exercise 1 and 2 together with Ito formula to compute 〈M(θ)〉t,
〈N(θ)〉t, and 〈N(θ),M(θ)〉t.

Hint: express M(θ)t = M(θ)0 +
t∫

0

fx(s,Bs)dBs as an Ito integral,

use the formula 〈Y ·M〉t =
∫ t

0
Y 2
s d〈M〉s.

Solution

dMt = −NtθdBt, dNt = MtθdBt

Mt = 1− θ
∫ t

0

NsdBs, Nt = θ

∫ t

0

MsdBs,

〈M〉t = θ2

∫ t

0

N2
s ds, 〈N〉t = θ2

∫ t

0

M2
s ds,

〈M,B〉t = −θ
∫ t

0

Nsds, 〈N,B〉t = θ

∫ t

0

Msds, 〈M,N〉t = −θ2

∫ t

0

MsNsds

5. Compute E(M2
t (θ)) and E(N2

t (θ))

Hint: As an alternative to the direct calculation, use the isometry

E(M2
t (θ)) = E(M0(θ)2) + E(〈M(θ)〉t), E(N2

t (θ)) = E(N0(θ)2) + E(〈N(θ)〉t)

and the previous exercise to show that

E(M2
t (θ)) = 1 +

∫ t

0

E(N2
s (θ))ds, E(N2

t (θ)) =

∫ t

0

E(M2
s (θ))ds
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which gives a deterministic 2-dimensional linear differential system with
unknown functions ξt = E(M2

t (θ)), ηt = E(N2
t (θ)). To solve it use hyper-

bolic functions:

sinh(x) = (ex − e−x)/2, cosh(x) = (ex + e−x)/2,

Solution By Fubini

E(M t
2) = E(M2

0 ) + E(〈Mt〉) = 1 + θ2

∫ t

0

E(N2
s )ds,

E(N t
2) = E(M2

0 ) + E(〈Nt〉) = 0 + θ2

∫ t

0

E(M2
s )ds,

i.e. E(M2
t ) = ξt and E(N2

t ) = ηt solving the linear differential system

ξt = 1 + θ2

∫ t

0

ηsds,

ηt = 0 + θ2

∫ t

0

ξsds,

In matrix form

d

(
ξt
ηt

)
= θ2

(
0 1
1 0

)(
ξt
ηt

)
dt = θ2A

(
ξt
ηt

)
dt

with solution (
ξt
ηt

)
= exp

(
θ2At

)(ξ0
η0

)
where (ξ0, η0) = (1, 0), and we use the matrix exponential

exp
(
θ2At

)
=

∞∑
n=0

(θ2t)n

n!
An(1, 0)>

where A2n = Id, A2n+1 = A.

ξt =

∞∑
n=0

(θ2t)2n

(2n)!
= cosh(θ2t) =

1

2

{
exp(θ2t) + exp(−θ2t)

}
ηt =

∞∑
n=0

(θ2t)2n+1

(2n+ 1)!
= sinh(θ2t) =

1

2

{
exp(θ2t)− exp(−θ2t)

}
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