Stochastic analysis, autumn 2011, Exercises-1, 13.09.11

1. A random vector $X=\left(X_{1}, \ldots, X_{n}\right)$ is jointly gaussian if there is a vector $\mu \in \mathbb{R}^{n}$ and a $m \times n$ matrix A such that in matrix notation

$$
X(\omega)=\mu+Y(\omega) A
$$

where $Y=\left(Y_{1}, \ldots, Y_{m}\right)$ are independent standard gaussian variables, with $E\left(Y_{i}\right)=0, E\left(Y_{i} Y_{j}\right)=\delta_{i j}$.

- Compute the probability density of X.
- Compute the covariance $E\left(X_{i} X_{j}\right)$.

You can assume that $m=n$ and the matrix A is invertible.

Solutions

For a measurable test function $f\left(x_{1}, \ldots, x_{n}\right)$,

$$
\begin{aligned}
& E_{P}\left(f\left(X_{1}, \ldots, X_{n}\right)\right)=E_{P}\left(f\left(\mu_{1}+A_{1, \cdot} \cdot Y, \ldots, \mu_{1}+A_{1, \cdot}\right)\right)= \\
& (2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} f\left(\mu_{1}+\sum_{i} A_{1 i} y_{i}, \ldots, \mu_{d}+\sum_{i} A_{d i} y_{i}\right) \\
& \times \exp \left(-\frac{1}{2} \sum_{i=1}^{d} y_{i}^{2}\right) d y_{1} \ldots d y_{d}
\end{aligned}
$$

by the change of variable formula,
with $x=\mu+A y$ with inverse $y=A^{-1}(x-\mu)$

$$
\begin{aligned}
& =(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} f\left(x_{1}, \ldots, x_{d}\right) \\
& \times \exp \left(-\frac{1}{2} \sum_{i=1}^{d}\left(\sum_{j=1}^{d}\left(A^{-1}\right)_{i j}\left(x_{j}-\mu_{j}\right)\right)^{2}\right)\left|J\left(x_{1}, \ldots, x_{d}\right)\right| d x_{1} d x_{2} \ldots d x_{d} \\
& =(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} f\left(x_{1}, \ldots, x_{d}\right) \\
& \times \exp \left(-\frac{1}{2} \sum_{i=1}^{d}\left(\sum_{k=1}^{d}\left(A^{-1}\right)_{i k}\left(x_{k}-\mu_{k}\right)\left(\sum_{j=1}^{d}\left(A^{-1}\right)_{i j}\left(x_{j}-\mu_{j}\right)\right)^{2}\right)\left|\operatorname{det}\left(J\left(x_{1}, \ldots, x_{d}\right)\right)\right| d x_{1} d x_{2} \ldots d x_{d}\right. \\
& =(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} f\left(x_{1}, \ldots, x_{d}\right) \\
& \times \exp \left(-\frac{1}{2} \sum_{k=1}^{d} \sum_{j=1}^{d}\left(\sum_{i=1}^{d}\left(A^{-1}\right)_{i k}\left(A^{-1}\right)_{i j}\right)\left(x_{k}-\mu_{k}\right)\left(x_{j}-\mu_{j}\right)\left|\operatorname{det}\left(J\left(x_{1}, \ldots, x_{d}\right)\right)\right| d x_{1} d x_{2} \ldots d x_{d}\right. \\
& =(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} f\left(x_{1}, \ldots, x_{d}\right) \\
& \times \exp \left(-\frac{1}{2}(x-\mu)\left(A^{-1}\left(A^{-1}\right)^{\top}\right)(x-\mu)^{\top}\right)\left|J\left(x_{1}, \ldots, x_{d}\right)\right| d x_{1} d x_{2} \ldots d x_{d} \\
& =(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} f\left(x_{1}, \ldots, x_{d}\right) \\
& \times \exp \left(-\frac{1}{2}(x-\mu)\left(A A^{\top}\right)^{-1}(x-\mu)^{\top}\right)\left|\operatorname{det}\left(J\left(x_{1}, \ldots, x_{d}\right)\right)\right| d x_{1} d x_{2} \ldots d x_{d}= \\
& (2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} f\left(x_{1}, \ldots, x_{d}\right) \\
& \times \exp \left(-\frac{1}{2}(x-\mu) \Sigma^{-1}(x-\mu)^{\top}\right)\left|\operatorname{det}\left(J\left(x_{1}, \ldots, x_{d}\right)\right)\right| d x_{1} d x_{2} \ldots d x_{d}
\end{aligned}
$$

where $\Sigma=A A^{\top}$ is the covariance matrix of $\left(X_{1}, \ldots, X_{d}\right)$ since
$E\left(\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right)=E\left(A_{i} . Y A_{j \cot } Y\right)=\sum_{k=1}^{d} \sum_{h=1}^{d} A_{i k} A_{j h} E\left(Y_{k} Y_{h}\right)=\sum_{k=1}^{d} A_{i k} A_{j k}=\left(A A^{\top}\right)_{i j}$
where $E\left(Y_{k} Y_{h}\right)=\delta_{h k}$.
$J(x)$ is the Jacobian matrix of the linear transformation $x \mapsto y$

$$
J_{i k}(x)=\left(\frac{\partial y_{i}}{\partial x_{k}}\right)=\left(A^{-1}\right)_{h k}
$$

which does not depend on $\left(x_{1}, \ldots, x_{d}\right)$.
Note that $\operatorname{det}(A)=\operatorname{det}\left(A^{\top}\right)$ and $\operatorname{det}\left(A A^{\top}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)^{2}$.
Also $\operatorname{det}\left(A^{-1}\right)=\operatorname{det}(A)^{-1}$. Therefore

$$
\left|\operatorname{det}\left(A^{-1}\right)\right|=\left|\operatorname{det}(A)^{-1}\right|=\operatorname{det}\left(A A^{\top}\right)^{-1 / 2}=\operatorname{det}(\Sigma)^{-1 / 2}
$$

It follows that $X=\left(X_{1}, \ldots, X_{d}\right)$ has density

$$
\begin{equation*}
p_{X}\left(x_{1}, \ldots, x_{d}\right)=(2 \pi)^{-d / 2} \operatorname{det}(\Sigma)^{-1 / 2} \exp \left(-\frac{1}{2}(x-\mu) \Sigma^{-1}(x-\mu)^{\top}\right) \tag{1}
\end{equation*}
$$

2. Recall the definition: a standard Brownian motion $\left(B_{t}: t \geq 0\right)$ is a stochatic process with

- $B_{0}=0$
- the increments are indepenent gaussian with $\left(B_{t}-B_{s}\right) \sim \mathcal{N}(0, t-s)$, for $s \leq t$.
- the trajectories are continuous.

Show that the Brownian motion is a gaussian process, that is for all $n \in \mathbb{N}$ $0 \leq t_{1} \leq \cdots \leq t_{n}$,
$\left(B_{t_{1}}, \ldots, B_{t_{n}}\right)$ is a jointly gaussian random vector.
Hint: use the chain rule to write the joint density.
Solution Instead we use the independence of increments: for $d \in \mathbb{N}$ and $0=t_{0} \leq t_{1} \leq \cdots \leq t_{d}$ denote $\Delta B_{i}=B_{t_{i}}-B_{t_{i-1}}$. Then

$$
\left(B_{t_{1}}, \ldots, B_{t_{d}}\right)=\left(\begin{array}{ccc}
1 & & 0 \\
& 1 & \\
& &
\end{array}\right)\left(\begin{array}{c}
\Delta B_{1} \\
\vdots \\
\Delta B_{d}
\end{array}\right)
$$

where $\left(\Delta B_{1}, \ldots, \Delta B_{d}\right)$ are independent. $\left(B_{t_{1}}, \ldots, B_{t_{d}}\right)$ is a jointly gaussian vector since it is the linear transformation of independent gaussian variables.

We write the the joint density of $\left(B_{t_{1}}, \ldots, B_{t_{d}}\right)$ using the Markov property (to be shown in one of the following exercises) and the chain rule:

$$
\begin{aligned}
& p\left(x_{1}, \ldots, x_{d}\right)= \\
& \frac{1}{\sqrt{t_{1}}} \phi\left(\frac{x_{1}}{\sqrt{t_{1}}}\right) \frac{1}{\sqrt{t_{2}-t_{1}}} \phi\left(\frac{x_{2}-x_{1}}{\sqrt{t_{2}-t_{1}}}\right) \ldots \frac{1}{\sqrt{t_{d}-t_{d-1}}} \phi\left(\frac{x_{d}-x_{d-1}}{\sqrt{t_{d}-t_{d-1}}}\right)
\end{aligned}
$$

where $\phi(x)$ is the standard gaussian density.
Alternatively compute first the covariance matrix: for $0 \leq s \leq t$
$E\left(B_{s} B_{t}\right)=E\left(B_{s}^{2}\right)+E\left(B_{s}\left(B_{t}-B_{s}\right)\right)=s+E\left(B_{s}\right) E\left(B_{t}-B_{s}\right)=s \wedge t$
by the independence of the increments. Therefore the joint density of $\left(B_{t_{1}}, \ldots, B_{t_{d}}\right)$ is given by the expression (1) with $\mu=0$ and $\Sigma_{i j}=t_{i} \wedge t_{j}$.
3. Let $\left(B_{t}: t \geq 0\right)$ a standard Brownian motion.

For $t \in(0,1)$ use Bayes formula to write the regular conditional density of B_{t} conditionally on B_{1}

For $0<t_{1}<\cdots<t_{n}<1$ compute the finite dimensional conditional distribution of $\left(B_{t_{1}}, \ldots, B_{t_{n}}\right)$ given $\left\{B_{1}=y\right\}$.
For $s \leq t$ compute $E\left(B_{t} B_{s} \mid B_{1}=0\right)$

Solution By Bayes formula the conditional density is

$$
\begin{aligned}
& p_{B_{t_{1}}, \ldots, B_{t_{d}} \mid B_{1}}\left(x_{1}, \ldots, x_{d} \mid y\right)=\frac{p_{B_{t_{1}}, \ldots, B_{t_{d}}, B_{1}}\left(x_{1}, \ldots, x_{d}, y\right)}{p_{B_{1}}(y)}= \\
& \frac{1}{\sqrt{t_{1}}} \phi\left(\frac{x_{1}}{\sqrt{t_{1}}}\right) \frac{1}{\sqrt{t_{2}-t_{1}}} \phi\left(\frac{x_{2}-x_{1}}{\sqrt{t_{2}-t_{1}}}\right) \ldots \frac{1}{\sqrt{t_{d}-t_{d-1}}} \phi\left(\frac{x_{d}-x_{d-1}}{\sqrt{t_{d}-t_{d-1}}}\right) \frac{1}{\sqrt{1-t_{d}}} \phi\left(\frac{y-x_{d}}{\sqrt{1-t_{d}}}\right) \phi(y)^{-1}= \\
& p_{B_{t_{1}} \mid B_{1}}\left(x_{1}, y\right) p_{B_{t_{2}} \mid B_{t_{1}}, B_{1}}\left(x_{2} \mid x_{1}, y\right) \ldots p_{B_{t_{d}} \mid B_{t_{d-1} B_{1}}\left(x_{d} \mid x_{d-1}, y\right)}
\end{aligned}
$$

where in the last expression we applied the chain rule to the conditional probability density and used Markov property. We comÃěute the terms in the last product:

$$
\begin{aligned}
& p_{B_{t_{1} \mid B_{1}}\left(x_{1}, y\right)}=\frac{1}{\sqrt{t_{1}}} \phi\left(\frac{x_{1}}{\sqrt{t_{1}}}\right) \frac{1}{\sqrt{1-t_{1}}} \phi\left(\frac{y-x_{1}}{\sqrt{1-t_{1}}}\right) \phi(y)^{-1} \\
& \frac{1}{\sqrt{2 \pi t_{1}\left(1-t_{1}\right)}} \\
& \exp \left(-\frac{1}{2}\left(\frac{x_{1}^{2}}{t_{1}}+\frac{\left(y-x_{1}\right)^{2}}{1-t_{1}}-y^{2}\right)\right)= \\
& \frac{1}{\sqrt{2 \pi t_{1}\left(1-t_{1}\right)}} \exp \left(-\frac{1}{2} \frac{\left.x_{1}^{2}\left(1-t_{1}+t_{1}\right)+y^{2} t_{1}\left(1-1+t_{1}\right)\right)-2 y x_{1} t_{1}}{t_{1}\left(1-t_{1}\right)}\right)= \\
& \frac{1}{\sqrt{2 \pi t_{1}\left(1-t_{1}\right)}} \\
& \exp \left(-\frac{1}{2} \frac{\left(x_{1}-y t_{1}\right)^{2}}{t_{1}\left(1-t_{1}\right)}\right)
\end{aligned}
$$

which means $B_{t_{1}}$ given $B_{1}=y$ is conditionally gaussian with conditional mean $y t_{1}$ and conditional variance $t_{1}\left(1-t_{1}\right)$ and

$$
\begin{aligned}
& p_{B_{t_{d}} \mid B_{t_{d-1}}, B_{1}}\left(x_{d} \mid x_{d-1}, y\right)=p_{B_{t_{d}}-B_{t_{d-1}} \mid B_{1}-B_{t_{d-1}}\left(x_{d}-x_{d-1} \mid y-x_{d-1}\right)=} \begin{array}{l}
\frac{1}{\sqrt{2 \pi\left(t_{d}-t_{d-1}\right)\left(1-t_{d}\right)}} \exp \left(-\frac{1}{2} \frac{\left(x_{d}-x_{d-1}-\left(y-x_{d-1}\right)\left(t_{d}-t_{d-1}\right)\right)^{2}}{\left(t_{d}-t_{d-1}\right)\left(1-t_{d}\right)}\right) \\
=\frac{1}{\sqrt{2 \pi\left(t_{d}-t_{d-1}\right)\left(1-t_{d}\right)}} \exp \left(-\frac{1}{2} \frac{\left(x_{d}-x_{d-1}-\left(y-x_{d-1}\right)\left(t_{d}-t_{d-1}\right)\right)^{2}}{\left(t_{d}-t_{d-1}\right)\left(1-t_{d}\right)}\right) \\
=\frac{1}{\sqrt{2 \pi\left(t_{d}-t_{d-1}\right)\left(1-t_{d}\right)}} \exp \left(-\frac{1}{2} \frac{\left(x_{d}-\left(x_{d-1}\left(1-t_{d}+t_{d-1}\right)+y\left(t_{d}-t_{d-1}\right)\right)\right)^{2}}{\left(t_{d}-t_{d-1}\right)\left(1-t_{d}\right)}\right)
\end{array} \\
&
\end{aligned}
$$

which means $B_{t_{d}}$ given $B_{t_{d-1}}=x_{d-1}$ and $B_{1}=y$ is conditionally gaussian with conditional mean $\left(y\left(t_{d}-t_{d-1}\right)+x_{d-1}\left(1-t_{d}+t_{d-1}\right)\right)$ and conditional variance $\left(t_{d}-t_{d-1}\right)\left(1-t_{d}\right)$.
4. When $f \in C^{2}$, from Ito Föllmer we get the semimartingale decomposition of the process $f\left(B_{t}(\omega)\right)$ as an Ito integral plus a process with finite variation of on compacts. Write the semimartingale decomposition in the following cases $f(x)=x^{n} ; \quad f(x)=\sin (x) ; \quad f(x)=\exp (x)$.

$$
\begin{aligned}
& B_{t}^{n}=n \int_{0}^{t} B_{s}^{n-1} d B_{s}+\frac{n(n-1)}{2} \int_{0}^{t} B_{s}^{n-2} d s \\
& \sin \left(B_{t}\right)=\int_{0}^{t} \cos \left(B_{s}\right) d B_{s}-\frac{1}{2} \int_{0}^{t} \sin \left(B_{s}\right) d s \\
& \exp \left(B_{t}\right)=\int_{0}^{t} \exp \left(B_{s}\right) d B_{s}+\frac{1}{2} \int_{0}^{t} \exp \left(B_{s}\right) d s
\end{aligned}
$$

5. Use Ito formula to express $\exp \left(B_{t}-\frac{1}{2} t\right)$ as an Ito-Föllmer integral:

Solution The process $X_{t}=B_{t}-\frac{1}{2} t$ has quadratic variation $[X]_{t}=[B]_{t}=$ t, since the difference $\left(X_{t}-B_{t}\right)=\frac{1}{2} t$ has finite total variation and therefore zero quadratic variation. By Ito formula

$$
\begin{aligned}
& \exp \left(B_{t}-\frac{1}{2} t\right)-1=\int_{0}^{t} \exp \left(B_{s}-\frac{1}{2} s\right)\left(d B_{s}-\frac{1}{2} d s\right)+\frac{1}{2} \int_{0}^{t} \exp \left(B_{s}-\frac{1}{2} s\right) d s \\
& =\int_{0}^{t} \exp \left(B_{s}-\frac{1}{2} s\right) d B_{s}
\end{aligned}
$$

Alternatively we could use the multivariate Ito formula for $f(x, t)=$ $\exp \left(x-\frac{1}{2} t\right)$
$f\left(B_{t}, t\right)-1=\int_{0}^{t} \frac{\partial}{\partial x} f\left(B_{s}, s\right) d B_{s}+\int_{0}^{t}\left(\frac{\partial}{\partial t} f\left(B_{s}, s\right)+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} f\left(B_{s}, s\right)\right) d s$
which gives the same result.
6. Let $\left(B_{t}(\omega)\right)_{t \geq 0}$ and $\left(W_{t}(\omega)\right)_{t \geq 0}$ two independent Brownian motions defined on the same probability space. Adapt the proof of lemma ?? to show that quadratic covariation

$$
\begin{equation*}
[W, B]_{t}=\lim _{\Delta(\Pi) \rightarrow 0} \sum_{i}\left(W_{t_{i+1}}-W_{t_{i}}\right)\left(B_{t_{i+1}}-B_{t_{i}}\right) \xrightarrow{P} 0 \tag{2}
\end{equation*}
$$

where we take the limit over partitions $\Pi=\left(0=t_{0} \leq t_{1} \leq \cdots \leq t_{n}=t\right)$, $n \in \mathbb{N}$ as $\Delta(\Pi) \rightarrow 0$ Hint: take the limit in $L^{2}(P)$ and use independence. The process $[W, B]_{t}$ is called quadratic covariation.

Solution

We first show convergence in $L^{2}(P)$ (which implies convergence in probability) as $\Delta\left(\Pi_{n}\right)$. For the dyadic sequence of partitions $\Pi_{n}=D_{n}$ we have also almost sure convergence in (2).
The since W and B are independent, the variance of the sum approximating sums is
$E\left(\left\{\sum_{0<t_{k}^{n} \leq 1}\left(B_{t_{k+1}^{n}}-B_{t_{k}}^{n}\right)\left(W_{t_{k+1}^{n}}-W_{t_{k}}^{n}\right)\right\}^{2}\right)=\sum_{0<t_{k}^{n} \leq 1} E\left(\left(B_{t_{k+1}^{n}}-B_{t_{k}^{n}}\right)^{2}\right) E\left(\left(W_{t_{k+1}^{n}}-W_{t_{k}^{n}}\right)^{2}\right)=2^{n} 2^{-2 n}$
(since increments over disjoint intervals are independent the cross-product terms have zero expectation). This shows convergence in $L^{2}(P)$ and in probabiliy.

Let $\varepsilon>0$ and

$$
A_{n}^{\varepsilon}=\left\{\omega:\left|\sum_{t_{k}^{n} \leq 1}\left(B_{t_{k+1}}^{n}(\omega)-B_{t_{k}}^{n}(\omega)\right)\left(W_{t_{k+1}}^{n}(\omega)-W_{t_{k}}^{n}(\omega)\right)\right|>\varepsilon\right\}
$$

by Chebychev inequality

$$
P\left(A_{n}^{\varepsilon}\right) \leq 2^{-n} \varepsilon^{-2}
$$

Therefore

$$
\sum_{n} P\left(A_{n}^{\varepsilon}\right) \leq \varepsilon^{-2} \sum_{n=0}^{\infty} 2^{-n}<\infty
$$

Applying Borel Cantelli lemma, $\forall \varepsilon>0$

$$
P\left(\lim \sup _{n} A_{n}^{\varepsilon}\right)=0
$$

Taking $\varepsilon=1 / m, m \in \mathbb{N}$ and countable intersection of the complements

$$
P\left(\bigcap_{m \geq 0} \bigcup_{k \geq 0} \bigcap_{n \geq k} A_{n}^{1 / m}\right)=1
$$

which is the probability that exists $[W, B]_{1}=0$ by taking limits among the dyadic sequence.

