
Stochastic analysis, autumn 2011, Exercises-1, 13.09.11

1. A random vector X = (X1, . . . , Xn) is jointly gaussian if there is a vector
µ ∈ Rn and a m× n matrix A such that in matrix notation

X(ω) = µ+ Y (ω)A

where Y = (Y1, . . . , Ym) are independent standard gaussian variables, with
E(Yi) = 0, E(YiYj) = δij .

• Compute the probability density of X.

• Compute the covariance E(XiXj).

You can assume that m = n and the matrix A is invertible.

Solutions

For a measurable test function f(x1, . . . , xn),

EP

(
f(X1, . . . , Xn)

)
= EP

(
f(µ1 +A1,· · Y, . . . , µ1 +A1,·)

)
=

(2π)−d/2

∫
Rd

f(µ1 +
∑
i

A1iyi, . . . , µd +
∑
i

Adiyi)

× exp(−1

2

d∑
i=1

y2
i )dy1 . . . dyd

by the change of variable formula,
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with x = µ+Ay with inverse y = A−1(x− µ)

= (2π)−d/2

∫
Rd

f(x1, . . . , xd)

× exp

(
−1

2

d∑
i=1

( d∑
j=1

(A−1)ij(xj − µj)
)2)|J(x1, . . . , xd)|dx1dx2 . . . dxd

= (2π)−d/2

∫
Rd

f(x1, . . . , xd)

× exp

(
−1

2

d∑
i=1

( d∑
k=1

(A−1)ik(xk − µk)
( d∑
j=1

(A−1)ij(xj − µj)
)2)|det(J(x1, . . . , xd))|dx1dx2 . . . dxd

= (2π)−d/2

∫
Rd

f(x1, . . . , xd)

× exp

(
−1

2

d∑
k=1

d∑
j=1

( d∑
i=1

(A−1)ik(A−1)ij

)
(xk − µk)(xj − µj)|det(J(x1, . . . , xd))|dx1dx2 . . . dxd

= (2π)−d/2

∫
Rd

f(x1, . . . , xd)

× exp

(
−1

2
(x− µ)

(
A−1(A−1)>

)
(x− µ)>

)
|J(x1, . . . , xd)|dx1dx2 . . . dxd

= (2π)−d/2

∫
Rd

f(x1, . . . , xd)

× exp

(
−1

2
(x− µ)

(
AA>

)−1

(x− µ)>
)
|det(J(x1, . . . , xd))|dx1dx2 . . . dxd =

(2π)−d/2

∫
Rd

f(x1, . . . , xd)

× exp

(
−1

2
(x− µ)Σ−1(x− µ)>

)
|det(J(x1, . . . , xd))|dx1dx2 . . . dxd

where Σ = AA> is the covariance matrix of (X1, . . . , Xd) since

E((Xi − µi)(Xj − µj)) = E(Ai·Y Aj cotY ) =

d∑
k=1

d∑
h=1

AikAjhE(YkYh) =

d∑
k=1

AikAjk = (AA>)ij

where E(YkYh) = δhk.
J(x) is the Jacobian matrix of the linear transformation x 7→ y

Jik(x) =

(
∂yi
∂xk

)
= (A−1)hk

which does not depend on (x1, . . . , xd).
Note that det(A) = det(A>) and det(AA>) = det(A) det(AT ) = det(A)2.
Also det(A−1) = det(A)−1. Therefore

|det(A−1)| = |det(A)−1| = det(AA>)−1/2 = det(Σ)−1/2

It follows that X = (X1, . . . , Xd) has density

pX(x1, . . . , xd) = (2π)−d/2 det(Σ)−1/2 exp

(
−1

2
(x− µ)Σ−1(x− µ)>

)
(1)
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2. Recall the definition: a standard Brownian motion (Bt : t ≥ 0) is a
stochatic process with

• B0 = 0

• the increments are indepenent gaussian with (Bt−Bs) ∼ N (0, t−s),
for s ≤ t.
• the trajectories are continuous.

Show that the Brownian motion is a gaussian process, that is for all n ∈ N
0 ≤ t1 ≤ · · · ≤ tn,
(Bt1 , . . . , Btn) is a jointly gaussian random vector.

Hint: use the chain rule to write the joint density.

Solution Instead we use the independence of increments: for d ∈ N and
0 = t0 ≤ t1 ≤ · · · ≤ td denote ∆Bi = Bti −Bti−1 . Then

(Bt1 , . . . , Btd) =

1 0
11 1


∆B1

...
∆Bd


where (∆B1, . . . ,∆Bd) are independent. (Bt1 , . . . , Btd) is a jointly gaus-
sian vector since it is the linear transformation of independent gaussian
variables.

We write the the joint density of (Bt1 , . . . , Btd) using the Markov property
(to be shown in one of the following exercises) and the chain rule:

p(x1, . . . , xd) =

1√
t1
φ

(
x1√
t1

)
1√

t2 − t1
φ

(
x2 − x1√
t2 − t1

)
. . .

1√
td − td−1

φ

(
xd − xd−1√
td − td−1

)
where φ(x) is the standard gaussian density.

Alternatively compute first the covariance matrix: for 0 ≤ s ≤ t

E(BsBt) = E(B2
s ) + E(Bs(Bt −Bs)) = s+ E(Bs)E(Bt −Bs) = s ∧ t

by the independence of the increments. Therefore the joint density of
(Bt1 , . . . , Btd) is given by the expression (1) with µ = 0 and Σij = ti ∧ tj .

3. Let (Bt : t ≥ 0) a standard Brownian motion.

For t ∈ (0, 1) use Bayes formula to write the regular conditional density
of Bt conditionally on B1

For 0 < t1 < · · · < tn < 1 compute the finite dimensional conditional
distribution of (Bt1 , . . . , Btn) given {B1 = y}.
For s ≤ t compute E(BtBs|B1 = 0)
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Solution By Bayes formula the conditional density is

pBt1
,...,Btd

|B1
(x1, . . . , xd|y) =

pBt1
,...,Btd

,B1
(x1, . . . , xd, y)

pB1
(y)

=

1√
t1
φ

(
x1√
t1

)
1√

t2 − t1
φ

(
x2 − x1√
t2 − t1

)
. . .

1√
td − td−1

φ

(
xd − xd−1√
td − td−1

)
1√

1− td
φ

(
y − xd√
1− td

)
φ(y)−1 =

pBt1
|B1

(x1, y)pBt2
|Bt1

,B1
(x2|x1, y) . . . pBtd

|Btd−1
B1

(xd|xd−1, y)

where in the last expression we applied the chain rule to the conditional
probability density and used Markov property. We comÃěute the terms
in the last product:

pBt1
|B1

(x1, y) =
1√
t1
φ

(
x1√
t1

)
1√

1− t1
φ

(
y − x1√
1− t1

)
φ(y)−1

1√
2πt1(1− t1)

exp

(
−1

2

(
x2

1

t1
+

(y − x1)2

1− t1
− y2

))
=

1√
2πt1(1− t1)

exp(−1

2

x2
1(1− t1 + t1) + y2t1(1− 1 + t1))− 2yx1t1

t1(1− t1)

)
=

1√
2πt1(1− t1)

exp

(
−1

2

(x1 − yt1)2

t1(1− t1)

)
which means Bt1 given B1 = y is conditionally gaussian with conditional
mean yt1 and conditional variance t1(1− t1) and

pBtd
|Btd−1

,B1
(xd|xd−1, y) = pBtd

−Btd−1
|B1−Btd−1

(xd − xd−1|y − xd−1) =

1√
2π(td − td−1)(1− td)

exp

(
−1

2

(xd − xd−1 − (y − xd−1)(td − td−1))2

(td − td−1)(1− td)

)
=

1√
2π(td − td−1)(1− td)

exp

(
−1

2

(xd − xd−1 − (y − xd−1)(td − td−1))2

(td − td−1)(1− td)

)

=
1√

2π(td − td−1)(1− td)
exp

(
−1

2

(
xd − (xd−1(1− td + td−1) + y(td − td−1))

)2

(td − td−1)(1− td)

)
which means Btd given Btd−1

= xd−1 and B1 = y is conditionally gaussian
with conditional mean

(
y(td− td−1)+xd−1(1− td + td−1)

)
and conditional

variance (td − td−1)(1− td).

4. When f ∈ C2, from Ito Föllmer we get the semimartingale decomposi-
tion of the process f(Bt(ω)) as an Ito integral plus a process with finite
variation of on compacts. Write the semimartingale decomposition in the
following cases f(x) = xn; f(x) = sin(x); f(x) = exp(x).

Bn
t = n

∫ t

0

Bn−1
s dBs +

n(n− 1)

2

∫ t

0

Bn−2
s ds

sin(Bt) =

∫ t

0

cos(Bs)dBs −
1

2

∫ t

0

sin(Bs)ds

exp(Bt) =

∫ t

0

exp(Bs)dBs +
1

2

∫ t

0

exp(Bs)ds
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5. Use Ito formula to express exp(Bt − 1
2 t) as an Ito-Föllmer integral:

Solution The process Xt = Bt− 1
2 t has quadratic variation [X]t = [B]t =

t, since the difference (Xt−Bt) = 1
2 t has finite total variation and therefore

zero quadratic variation. By Ito formula

exp(Bt −
1

2
t)− 1 =

∫ t

0

exp(Bs −
1

2
s)(dBs −

1

2
ds) +

1

2

∫ t

0

exp(Bs −
1

2
s)ds

=

∫ t

0

exp(Bs −
1

2
s)dBs

Alternatively we could use the multivariate Ito formula for f(x, t) =
exp(x− 1

2 t)

f(Bt, t)− 1 =

∫ t

0

∂

∂x
f(Bs, s)dBs +

∫ t

0

(
∂

∂t
f(Bs, s) +

1

2

∂2

∂x2
f(Bs, s)

)
ds

which gives the same result.

6. Let (Bt(ω))t≥0 and (Wt(ω))t≥0 two independent Brownian motions de-
fined on the same probability space. Adapt the proof of lemma ?? to
show that quadratic covariation

[W,B]t = lim
∆(Π)→0

∑
i

(Wti+1
−Wti)(Bti+1

−Bti)
P→ 0 (2)

where we take the limit over partitions Π = (0 = t0 ≤ t1 ≤ · · · ≤ tn = t),
n ∈ N as ∆(Π)→ 0 Hint: take the limit in L2(P ) and use independence.

The process [W,B]t is called quadratic covariation .

Solution

We first show convergence in L2(P ) (which implies convergence in proba-
bility) as ∆(Πn). For the dyadic sequence of partitions Πn = Dn we have
also almost sure convergence in (2).

The since W and B are independent, the variance of the sum approximat-
ing sums is

E

({ ∑
0<tnk≤1

(Btnk+1
−Bn

tk
)(Wtnk+1

−Wn
tk

)

}2)
=

∑
0<tnk≤1

E
(
(Btnk+1

−Btnk
)2
)
E
(
(Wtnk+1

−Wtnk
)2
)

= 2n2−2n = 2−n

( since increments over disjoint intervals are independent the cross-product
terms have zero expectation). This shows convergence in L2(P ) and in
probabiliy.

Let ε > 0 and

Aε
n =

{
ω : |

∑
tnk≤1

(Bn
tk+1

(ω)−Bn
tk

(ω))(Wn
tk+1

(ω)−Wn
tk

(ω))| > ε
}

by Chebychev inequality

P (Aε
n) ≤ 2−nε−2
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Therefore ∑
n

P (Aε
n) ≤ ε−2

∞∑
n=0

2−n <∞

Applying Borel Cantelli lemma, ∀ε > 0

P
(
lim sup

n
Aε

n

)
= 0

Taking ε = 1/m, m ∈ N and countable intersection of the complements

P

( ⋂
m≥0

⋃
k≥0

⋂
n≥k

A1/m
n

)
= 1

which is the probability that exists [W,B]1 = 0 by taking limits among
the dyadic sequence.
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