Stochastic analysis, autumn 2011, Exercises-8, 08.11.2011

1. • Let $\tau(\omega) \in \mathbb{R}^+ \cup \{+\infty\}$ a stopping time w.r.t. to a filtration $\mathbb{F} = (\mathcal{F}_t : t \in \mathbb{R}^+)$.

Show that for all $\varepsilon \ge 0$, $(\tau(\omega) + \varepsilon)$ is also a \mathbb{F} -stopping time.

- Suppose that $\tau(\omega) \in \mathbb{R}^+ \cup \{+\infty\}$ a \mathbb{F} -stopping time and for some $\varepsilon > 0, \ \tau_{-\varepsilon}(\omega) := (\tau(\omega) \varepsilon) \lor 0$ is a \mathbb{F} -stopping time as well. What can you say about τ ?
- Construct a stopping time $\tau(\omega)$ such that for all $\varepsilon > 0$, $\tau_{-\varepsilon}(\omega) := (\tau(\omega) \varepsilon) \lor 0$ is not a stopping time. Hint: consider the first hitting time at some level a in the the filtration generated by a Brownian motion (B_t) , with $\mathcal{F}_t = \sigma(B_s : 0 \le s \le t)$.
- 2. Let $(M_t : t \in \mathbb{R}^+)$ a \mathbb{F} -martingale, and \mathbb{G} a filtration with $\mathcal{G}_t \subseteq \mathcal{F}_t$ We assume that (M_t) is also \mathbb{G} -adapted. Show that (M_t) is a martingale in the smaller filtration \mathbb{G} .
- 3. Let $(M_t : t \in \mathbb{R})$ a *F*-martingale under *P*, and \mathcal{G}_t a filtration such that $\forall t \geq 0$, the σ -algebrae \mathcal{G}_t and $\sigma(M_s : s \leq t)$ are *P*-independent. Show that under *P*, $(M_t : t \in \mathbb{R}^+)$ is a martingale in the enlarged filtration

Show that under P, $(M_t : t \in \mathbb{R}^+)$ is a martingale in the emarged nitration $(\mathcal{F}_t \vee \mathcal{G}_t : t \ge 0).$

- 4. Let $(B_t : t \ge 0)$ a Brownian motion in the filtration \mathbb{F} , which means
 - $B_0(\omega) = 0$
 - $t \mapsto B_t(\omega)$ is continuous
 - $\forall 0 \leq s \leq t$, $(B_t B_s)$ is *P*-independent from \mathcal{F}_s , conditionally gaussian with conditional mean $E(B_t B_s | \mathcal{F}_s) = 0$ and conditional variance $E((B_t B_s)^2 | \mathcal{F}_s) = t s$

Let $\theta \in \mathbb{R}, \theta \neq 0$.

- Show that $Z_t = \exp(\theta B_t \frac{1}{2}\theta^2 t)$ is a \mathbb{F} -martingale. Hint: use independence of increments and remember that $E(\exp(\theta G)) = \exp(\theta^2 \sigma^2/2)$ when $G(\omega) \sim \mathcal{N}(0, \sigma^2)$.
- Show that the limit $\lim_{t\to\infty} Z_t(\omega)$ exists P almost surely. Hint: use Doob martingale convergence theorem.
- Show that $(Z_t : t \ge 0)$ is not uniformly integrable. Hint: use Kakutani's theorem
- Show that $\lim_{t\to\infty} Z_t(\omega) = 0$, *P* almost surely.
- 5. For $\theta \in \mathbb{R}$, consider now $M_t = \exp(i\theta B_t + \frac{1}{2}\theta^2 t) \in \mathbb{C}$ where $i = \sqrt{-1}$ is the imaginary unit.

Recall that $E(\exp(i\theta G)) = \exp(-\theta^2 \sigma^2/2)$ when $G(\omega) \sim \mathcal{N}(0, \sigma^2)$.

- Show that M_t is complex valued \mathbb{F} -martingale, which means that real and imaginary parts are \mathbb{F} -martingales.
- Show that $\lim_{t\to\infty} M_t(\omega) = \infty$.