Stochastic analysis, autumn 2011, Exercises-7, 01.11.2011

1. Suppose we have an urn which contains at time t = 0 two balls, one black and one white. At each time $t \in N$ we draw uniformly at random from the urn one ball, and we put it back together with a new ball of the same colour.

We introduce the random variables

 $X_t(\omega) = \mathbf{1} \{ \text{ the ball drawn at time } t \text{ is black } \}$

and denote $S_t = (1 + X_1 + \dots + X_t),$

 $M_t = S_t/(t+2)$, the proportion of black balls in the urn.

We use the filtration $\{\mathcal{F}_n\}$ with $\mathcal{F}_n = \sigma\{X_s : s \in \mathbb{N}, s \leq t\}$.

i) Compute the Doob decomposition of (S_t) , $S_t = S_0 + N_t + A_t$, where (N_t) is a martingale and (A_t) is predictable.

ii) Show that (M_t) is a martingale and find the representation of (M_t) as a martingale transform $M_t = (C \cdot N)_t$, where (N_t) is the martingale part of (S_t) and (C_t) is predictable.

iv) Note that the martingale $(M_t)_{t\geq 0}$ is uniformly integrable (Why ?). Show that P a.s. and in L^1 exists $M_{\infty} = \lim_{t\to\infty} M_t$. Compute $E(M_{\infty})$.

v) Show that $P(0 < M_{\infty} < 1) > 0$.

Since $M_{\infty}(\omega) \in [0, 1]$, it is enough to show that $0 < E(M_{\infty}^2) < E(M_{\infty})$ with strict inequalities.

Hint: compute the Doob decomposition of the submartingale (M_t^2) , and than take expectations before going to the limit to find the value of $E(M_{\infty}^2)$.

2. A branching process $(Z_t)_{t \in \mathbb{N}}$ with integer values, represents the size of a population evolving randomly in discrete time.

We start with $Z_0(\omega) = 1$ individual at time t = 0.

Inductively each of the $Z_{t-1}(\omega)$ individuals in the (t-1) generation has a random number of offspring $X_{i,t}$. These offspring numbers are independent and identically distributed with law $\pi = (\pi(n) : n = 0, 1, ...)$,

 $\pi(n) = P(X_{i,t} = n).$

The size of the new generation at time t is then

$$Z_t(\omega) = \sum_{i=1}^{Z_{t-1}(\omega)} X_{i,t}(\omega)$$

We assume that the mean offspring number is finite

$$\mu = E_{\pi}(X) = \sum_{n=0}^{\infty} n\pi(n) < \infty$$

- Show that $Z_t(\omega)$ is a martingale, (respectively supermartingale, submartingale) when $\mu = 1$ (respectively $0 \le \mu < 1, 1 < \mu < \infty$, in the filtration generated by the process Z itself.
- For $\mu \neq 1$, write the Doob decomposition of Z_t and compute the mean $E(Z_t)$ for $t \in \mathbb{N}$.
- Assume that $\mu \leq 1$, and that the offspring distribution is non-trivial, meaning that $0 \leq \pi(X = 1) < 1$. The case P(X = 1) = 1 is trivial, nothing happens.

Show that

$$\lim_{t \to \infty} Z_t(\omega) = 0 \quad P \text{ a.s}$$

Hint: first show that a finite limit $Z_{\infty}(\omega)$ exists P a.s. Consider

$$P(Z_{\infty} = 0 | Z_1 = n) = P(Z_{\infty} = 0)^n$$

since $P(Z_{\infty} = 0)$ is the probability that descendance of a single individual becomes extinct, is the probability that independently for each of its children the respective descendances become extinct.

By computing first the conditional probability $P(Z_{\infty} = 0 | \sigma(Z_1))(\omega)$ and taking expectation, show that the unknown $q = P(Z_{\infty} = 0)$ satisfies the equation

$$q = E_P(q^X), \quad q \in [\pi(0), 1]$$

where $P(X = n) = \pi(n)$ is the offspring distribution.

Note that since $\mu = E(X) \leq 1$ and $\pi(1) = P(X = 1) < 1$, necessarily $\pi(0) = P(X = 0) > 0$, and $P(Z_{\infty} = 0) \geq P(X = 0) > 0$. Therefore the q = 0 is not a solution.

q=1 is also a solution. We show that there are no other solutions. Note that by Jensen inequality for the concave function $x\mapsto q^x$ with $q\in[0,1]$

$$E(q^X) \geq q^{E(X)} \geq q$$

Show that the inequality is strict in the non-trivial case:

If 0 < q < 1 cannot be a solution since the derivative

$$\frac{d}{dq}E_P(q^X) = E\left(\frac{d}{dq}q^X\right) = E(Xq^{X-1}) < E(X) \le 1$$

with strict inequality in the non-trivial case in the P(X = 1) < 1.

You need to check that it is allowed to take a derivative inside the expectation.

This implies that

$$E_P(q^X) > q, \forall q \in (0,1)$$

- Assume that $\mu = 1$. Show that the martingale $(Z_t : t \in \mathbb{N})$ is not uniformly integrable
- 3. We now make a change of measure and define a new measure P' such that under Q the offspring numbers are independent and identically distributed with

$$P'(X_{i,t} = n) = \pi'(n)$$

with $\pi'(n) = 0$ when $\pi(n) = 0$. Compute the likelihood ratio process $\frac{dP'_t}{dP_t}(\omega)$ on the filtration $\mathbb{F} = (\mathcal{F}_t)$ with $\mathcal{F}_t = \sigma(X_{i,s} : i \in \mathbb{N}, 1 \le s \le t)$.

4. Consider an i.i.d. random sequence $(U_t : t \in \mathbb{N})$ with uniform distribution on [0, 1], $P(U_1 \in dx) = \mathbf{1}_{[0,1]}(x)dx$. Note that $E_P(U_t) = 1/2$.

Consider also the random variable $-\log(U_1(\omega))$ which is 1-exponential w.r.t. *P*.

$$P(-\log(U_1) > x) = \begin{cases} \exp(-x) & \operatorname{kun} x \ge 0\\ 1 & \operatorname{kun} x < 0 \end{cases}$$

 $-\log(U_1) \in L^1(P)$ with $E_P(-\log(U_1)) = 1$.

• Let $Z_0 = 1$, and

$$Z_t(\omega) = 2^t \prod_{s=1}^t U_s(\omega)$$

Show that (Z_t) is a martingale in the filtration $\mathbb{F} = (\mathcal{F}_t : t \in \mathbb{N})$, with $\mathcal{F}_t = \sigma(Z_1, Z_2, \dots, Z_t) = \sigma(U_1, U_2, \dots, U_t)$.

- Show that $E_P(Z_t) = 1$.
- Show that the limit $Z_{\infty}(\omega) = \lim_{t \to \infty} Z_t(\omega)$ exists P almost surely.
- Show that

$$Z_{\infty}(\omega) = 0 \quad P\text{-a.s.}$$

Hint Compute first the P-a.s. limit

$$\lim_{t \to \infty} \frac{1}{t} \log(Z_t(\omega))$$

(remember Kolmogorov's strong law of large numbers!).

- Show that the martingale $(Z_t(\omega) : t \in \mathbb{N})$ is not uniformly integrable.
- Show that $\log(Z_t(\omega))$ is a supermartingale, does it satisfy the assumptions of Doob's martingale convergence theorem ?
- At every time $t \in \mathbb{N}$, define the probability measure

$$Q_t(A) := E_P(Z_t \mathbf{1}_A) \qquad \forall A \in \mathcal{F}_t$$

on the probability space (Ω, \mathcal{F}) . Show that the random variables (U_1, \ldots, U_t) are i.i.d. also under Q_t , compute their probability density under Q_t .