
Stochastic analysis, autumn 2011, Exercises-7, 01.11.2011

1. Suppose we have an urn which contains at time t = 0 two balls, one black
and one white. At each time t ∈ N we draw uniformly at random from
the urn one ball, and we put it back together with a new ball of the same
colour.

We introduce the random variables

Xt(ω) = 1
{
the ball drawn at time t is black

}
and denote St = (1 +X1 + · · ·+Xt),

Mt = St/(t+ 2), the proportion of black balls in the urn.

We use the filtration {Fn} with Fn = σ{Xs : s ∈ N, s ≤ t}.

i) Compute the Doob decomposition of (St), St = S0 + Nt + At, where
(Nt) is a martingale and (At) is predictable.

ii) Show that (Mt) is a martingale and find the representation of (Mt) as
a martingale transform Mt = (C ·N)t, where (Nt) is the martingale part
of (St) and (Ct) is predictable.

iv) Note that the martingale (Mt)t≥0 is uniformly integrable (Why ?).
Show that P a.s. and in L1 exists M∞ = limt→∞Mt . Compute E(M∞).

v) Show that P (0 < M∞ < 1) > 0 .

Since M∞(ω) ∈ [0, 1], it is enough to show that 0 < E(M2
∞) < E(M∞)

with strict inequalities.

Hint: compute the Doob decomposition of the submartingale (M2
t ), and

than take expectations before going to the limit to find the value of
E(M2

∞).

2. A branching process (Zt)t∈N with integer values, represents the size of a
population evolving randomly in discrete time.

We start with Z0(ω) = 1 individual at time t = 0.

Inductively each of the Zt−1(ω) individuals in the (t − 1) generation has
a random number of offspring Xi,t. These offspring numbers are indepen-
dent and identically distributed with law π = (π(n) : n = 0, 1, . . . ),

π(n) = P
(
Xi,t = n

)
.

The size of the new generation at time t is then

Zt(ω) =

Zt−1(ω)∑
i=1

Xi,t(ω)
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We assume that the mean offspring number is finite

µ = Eπ(X) =

∞∑
n=0

nπ(n) <∞

• Show that Zt(ω) is a martingale, (respectively supermartingale, sub-
martingale ) when µ = 1 (respectively 0 ≤ µ < 1, 1 < µ <∞, in the
filtration generated by the process Z itself.
• For µ 6= 1, write the Doob decomposition of Zt and compute the

mean E(Zt) for t ∈ N.
• Assume that µ ≤ 1, and that the offspring distribution is non-trivial,

meaning that 0 ≤ π(X = 1) < 1. The case P (X = 1) = 1 is trivial,
nothing happens.
Show that

lim
t→∞

Zt(ω) = 0 P a.s.

Hint: first show that a finite limit Z∞(ω) exists P a.s. Consider

P (Z∞ = 0|Z1 = n) = P (Z∞ = 0)n

since P (Z∞ = 0) is the probability that descendance of a single in-
dividual becomes extinct, is the probability that independently for
each of its children the respective descendances become extinct.

By computing first the conditional probability P (Z∞ = 0|σ(Z1))(ω)
and taking expectation, show that the unknown q = P (Z∞ = 0)
satisfies the equation

q = EP (qX), q ∈ [π(0), 1]

where P (X = n) = π(n) is the offspring distribution.

Note that since µ = E(X) ≤ 1 and π(1) = P (X = 1) < 1, necessarily
π(0) = P (X = 0) > 0, and P (Z∞ = 0) ≥ P (X = 0) > 0. Therefore
the q = 0 is not a solution.

q = 1 is also a solution. We show that there are no other solutions.
Note that by Jensen inequality for the concave function x 7→ qx with
q ∈ [0, 1]

E(qX) ≥ qE(X) ≥ q

Show that the inequality is strict in the non-trivial case:

If 0 < q < 1 cannot be a solution since the derivative

d

dq
EP (qX) = E

(
d

dq
qX
)

= E(XqX−1) < E(X) ≤ 1

with strict inequality in the non-trivial case in the P (X = 1) < 1.
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You need to check that it is allowed to take a derivative inside the
expectation.
This implies that

EP (qX) > q,∀ q ∈ (0, 1)

• Assume that µ = 1. Show that the martingale (Zt : t ∈ N) is not
uniformly integrable

3. We now make a change of measure and define a new measure P ′ such that
under Q the offspring numbers are independent and identically distributed
with

P ′(Xi,t = n) = π′(n)

with π′(n) = 0 when π(n) = 0. Compute the likelihood ratio process
dP ′t
dPt

(ω) on the filtration F = (Ft) with Ft = σ(Xi,s : i ∈ N, 1 ≤ s ≤ t).

4. Consider an i.i.d. random sequence (Ut : t ∈ N) with uniform distribution
on [0, 1], P (U1 ∈ dx) = 1[0,1](x)dx. Note that EP (Ut) = 1/2.
Consider also the random variable − log(U1(ω)) which is 1-exponential
w.r.t. P .

P (− log(U1) > x) =

{
exp(−x) kun x ≥ 0
1 kun x < 0

− log(U1) ∈ L1(P ) with EP (− log(U1)) = 1.

• Let Z0 = 1, and

Zt(ω) = 2t
t∏

s=1

Us(ω)

Show that (Zt) is a martingale in the filtration F = (Ft : t ∈ N), with
Ft = σ(Z1, Z2, . . . , Zt) = σ(U1, U2, . . . , Ut).

• Show that EP (Zt) = 1.
• Show that the limit Z∞(ω) = limt→∞ Zt(ω) exists P almost surely.
• Show that

Z∞(ω) = 0 P -a.s.

Hint Compute first the P -a.s. limit

lim
t→∞

1

t
log(Zt(ω))

(remember Kolmogorov’s strong law of large numbers!).
• Show that the martingale (Zt(ω) : t ∈ N) is not uniformly integrable.
• Show that log(Zt(ω)) is a supermartingale, does it satisfy the as-

sumptions of Doob’s martingale convergence theorem ?
• At every time t ∈ N, define the probability measure

Qt(A) := EP (Zt1A) ∀A ∈ Ft
on the probability space (Ω,F).
Show that the random variables (U1, . . . , Ut) are i.i.d. also under Qt,
compute their probability density under Qt.
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