Stochastic analysis, autumn 2011, Exercises-7, 01.11.2011

1. Suppose we have an urn which contains at time $t=0$ two balls, one black and one white. At each time $t \in N$ we draw uniformly at random from the urn one ball, and we put it back together with a new ball of the same colour.

We introduce the random variables
$X_{t}(\omega)=\mathbf{1}\{$ the ball drawn at time t is black $\}$
and denote $S_{t}=\left(1+X_{1}+\cdots+X_{t}\right)$,
$M_{t}=S_{t} /(t+2)$, the proportion of black balls in the urn.
We use the filtration $\left\{\mathcal{F}_{n}\right\}$ with $\mathcal{F}_{n}=\sigma\left\{X_{s}: s \in \mathbb{N}, s \leq t\right\}$.
i) Compute the Doob decomposition of $\left(S_{t}\right), S_{t}=S_{0}+N_{t}+A_{t}$, where $\left(N_{t}\right)$ is a martingale and $\left(A_{t}\right)$ is predictable.
ii) Show that $\left(M_{t}\right)$ is a martingale and find the representation of $\left(M_{t}\right)$ as a martingale transform $M_{t}=(C \cdot N)_{t}$, where $\left(N_{t}\right)$ is the martingale part of $\left(S_{t}\right)$ and $\left(C_{t}\right)$ is predictable.
iv) Note that the martingale $\left(M_{t}\right)_{t \geq 0}$ is uniformly integrable (Why ?). Show that P a.s. and in L^{1} exists $M_{\infty}=\lim _{t \rightarrow \infty} M_{t}$. Compute $E\left(M_{\infty}\right)$.
v) Show that $P\left(0<M_{\infty}<1\right)>0$.

Since $M_{\infty}(\omega) \in[0,1]$, it is enough to show that $0<E\left(M_{\infty}^{2}\right)<E\left(M_{\infty}\right)$ with strict inequalities.

Hint: compute the Doob decomposition of the submartingale $\left(M_{t}^{2}\right)$, and than take expectations before going to the limit to find the value of $E\left(M_{\infty}^{2}\right)$.
2. A branching process $\left(Z_{t}\right)_{t \in \mathbb{N}}$ with integer values, represents the size of a population evolving randomly in discrete time.
We start with $Z_{0}(\omega)=1$ individual at time $t=0$.
Inductively each of the $Z_{t-1}(\omega)$ individuals in the $(t-1)$ generation has a random number of offspring $X_{i, t}$. These offspring numbers are independent and identically distributed with law $\pi=(\pi(n): n=0,1, \ldots)$,
$\pi(n)=P\left(X_{i, t}=n\right)$.
The size of the new generation at time t is then

$$
Z_{t}(\omega)=\sum_{i=1}^{Z_{t-1}(\omega)} X_{i, t}(\omega)
$$

We assume that the mean offspring number is finite

$$
\mu=E_{\pi}(X)=\sum_{n=0}^{\infty} n \pi(n)<\infty
$$

- Show that $Z_{t}(\omega)$ is a martingale, (respectively supermartingale, submartingale) when $\mu=1$ (respectively $0 \leq \mu<1,1<\mu<\infty$, in the filtration generated by the process Z itself.
- For $\mu \neq 1$, write the Doob decomposition of Z_{t} and compute the mean $E\left(Z_{t}\right)$ for $t \in \mathbb{N}$.
- Assume that $\mu \leq 1$, and that the offspring distribution is non-trivial, meaning that $0 \leq \pi(X=1)<1$. The case $P(X=1)=1$ is trivial, nothing happens.
Show that

$$
\lim _{t \rightarrow \infty} Z_{t}(\omega)=0 \quad P \text { a.s. }
$$

Hint: first show that a finite limit $Z_{\infty}(\omega)$ exists P a.s. Consider

$$
P\left(Z_{\infty}=0 \mid Z_{1}=n\right)=P\left(Z_{\infty}=0\right)^{n}
$$

since $P\left(Z_{\infty}=0\right)$ is the probability that descendance of a single individual becomes extinct, is the probability that independently for each of its children the respective descendances become extinct.

By computing first the conditional probability $P\left(Z_{\infty}=0 \mid \sigma\left(Z_{1}\right)\right)(\omega)$ and taking expectation, show that the unknown $q=P\left(Z_{\infty}=0\right)$ satisfies the equation

$$
q=E_{P}\left(q^{X}\right), \quad q \in[\pi(0), 1]
$$

where $P(X=n)=\pi(n)$ is the offspring distribution.
Note that since $\mu=E(X) \leq 1$ and $\pi(1)=P(X=1)<1$, necessarily $\pi(0)=P(X=0)>0$, and $P\left(Z_{\infty}=0\right) \geq P(X=0)>0$. Therefore the $q=0$ is not a solution.
$q=1$ is also a solution. We show that there are no other solutions. Note that by Jensen inequality for the concave function $x \mapsto q^{x}$ with $q \in[0,1]$

$$
E\left(q^{X}\right) \geq q^{E(X)} \geq q
$$

Show that the inequality is strict in the non-trivial case:
If $0<q<1$ cannot be a solution since the derivative

$$
\frac{d}{d q} E_{P}\left(q^{X}\right)=E\left(\frac{d}{d q} q^{X}\right)=E\left(X q^{X-1}\right)<E(X) \leq 1
$$

with strict inequality in the non-trivial case in the $P(X=1)<1$.

You need to check that it is allowed to take a derivative inside the expectation.
This implies that

$$
E_{P}\left(q^{X}\right)>q, \forall \quad q \in(0,1)
$$

- Assume that $\mu=1$. Show that the martingale $\left(Z_{t}: t \in \mathbb{N}\right)$ is not uniformly integrable

3. We now make a change of measure and define a new measure P^{\prime} such that under Q the offspring numbers are independent and identically distributed with

$$
P^{\prime}\left(X_{i, t}=n\right)=\pi^{\prime}(n)
$$

with $\pi^{\prime}(n)=0$ when $\pi(n)=0$. Compute the likelihood ratio process $\frac{d P_{t}^{\prime}}{d P_{t}}(\omega)$ on the filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)$ with $\mathcal{F}_{t}=\sigma\left(X_{i, s}: i \in \mathbb{N}, 1 \leq s \leq t\right)$.
4. Consider an i.i.d. random sequence $\left(U_{t}: t \in \mathbb{N}\right)$ with uniform distribution on $[0,1], P\left(U_{1} \in d x\right)=\mathbf{1}_{[0,1]}(x) d x$. Note that $E_{P}\left(U_{t}\right)=1 / 2$.
Consider also the random variable $-\log \left(U_{1}(\omega)\right)$ which is 1-exponential w.r.t. P.

$$
P\left(-\log \left(U_{1}\right)>x\right)= \begin{cases}\exp (-x) & \text { kun } x \geq 0 \\ 1 & \text { kun } x<0\end{cases}
$$

$-\log \left(U_{1}\right) \in L^{1}(P)$ with $E_{P}\left(-\log \left(U_{1}\right)\right)=1$.

- Let $Z_{0}=1$, and

$$
Z_{t}(\omega)=2^{t} \prod_{s=1}^{t} U_{s}(\omega)
$$

Show that $\left(Z_{t}\right)$ is a martingale in the filtration $\mathbb{F}=\left(\mathcal{F}_{t}: t \in \mathbb{N}\right)$, with $\mathcal{F}_{t}=\sigma\left(Z_{1}, Z_{2}, \ldots, Z_{t}\right)=\sigma\left(U_{1}, U_{2}, \ldots, U_{t}\right)$.

- Show that $E_{P}\left(Z_{t}\right)=1$.
- Show that the limit $Z_{\infty}(\omega)=\lim _{t \rightarrow \infty} Z_{t}(\omega)$ exists P almost surely.
- Show that

$$
Z_{\infty}(\omega)=0 \quad P \text {-a.s. }
$$

Hint Compute first the P-a.s. limit

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \log \left(Z_{t}(\omega)\right)
$$

(remember Kolmogorov's strong law of large numbers!).

- Show that the martingale $\left(Z_{t}(\omega): t \in \mathbb{N}\right)$ is not uniformly integrable.
- Show that $\log \left(Z_{t}(\omega)\right)$ is a supermartingale, does it satisfy the assumptions of Doob's martingale convergence theorem ?
- At every time $t \in \mathbb{N}$, define the probability measure

$$
Q_{t}(A):=E_{P}\left(Z_{t} \mathbf{1}_{A}\right) \quad \forall A \in \mathcal{F}_{t}
$$

on the probability space (Ω, \mathcal{F}).
Show that the random variables $\left(U_{1}, \ldots, U_{t}\right)$ are i.i.d. also under Q_{t}, compute their probability density under Q_{t}.

