
Stochastic analysis, autumn 2011, Exercises-3, 27.09.11

1. • Show that the linear space generated by the Haar system, which
coincides with the set of functions which are piecewise constant on
the dyadic partition Dn for some n ∈ N, is dense in the space of
continuous functions C([0, 1],R) under the supremum norm

‖ f ‖∞:= sup
t∈[0,1]

|f(t)|

We recall Luzin’s theorem from real analysis: if x : [0, 1] → R is a
measurable function, for all ε > 0 there exists a continuous function
f such that

λ({t : x(t) 6= f(t)}) < ε

where λ(dt) is Lebesgue measure.
• Show that C([0, 1],R) is dense in L2([0, 1], dt).
• Show that the Haar system is a complete orthonormal basis of L2([0, 1], dt).

2. LetX(ω) ∈ R and Y (ω) = (Y1(ω), . . . , Yd(ω)) ∈ Rd withX,Yi ∈ L2(Ω,F , P ).
Consider the linear subspace generated by Y (ω)

Lin(Y ) = {a+ b · Y (ω) : a ∈ R, b ∈ Rd}.

Note that this is a (d+ 1)-dimensional space.
We define the best linear estimator of X given Y as the L2-orthogonal
projection Ê(X|Y ) of X on the linear subspace Lin(Y ) generated by Y .
Equivalently

Ê(X|Y )(ω) = â+ b̂ · Y (ω)

for some deterministic â ∈ R b̂ ∈ Rd where

(â, b̂Y (ω)) = arg min
a,b

E
({
X − (a+ b · Y )

}2)
Note that the conditional expectation E(X|Y ) = E(X|σ(Y )) is the L2-
orthogonal projection ofX on the infinite dimensional subspace L2(Ω, σ(Y ), P ) ⊃
Lin(Y ), and in general E(X|Y ) 6= Ê(X|Y ).

• Show that

Ê(X|Y ) = E(X) + (Y − E(Y ))Σ−1Y Y Σ′XY

E

(
(X − Ê(X|Y ))2

)
= ΣXXΣ−1Y Y Σ′XY

where the covariance matrix of (X,Y ) = (X,Y1, . . . , Yd) is denoted
as

Σ =

(
ΣXX ΣXY

Σ′XY ΣY Y

)
Hint: assume E(X) = E(Yi) = 0, and maximize the mean square
error with respect to the parameters a, b.
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• Show that when the vector (X,Y ) is jointly gaussian, all conditional
distributions are gaussian and the best linear estimator Ê(X|Y ) coin-
cides with the conditional expectation E(X|Y ). (Use Bayes formula!
).
Hint: recall that the joint distribution of a gaussian vector is specified
by the mean vector and covariance matrix.

3. Let (Bt(ω) : t ∈ [0, 1]) a Brownian motion, and Dn = (k2−n : k =
0, 1, . . . , 2n).

Show that for fixed n and dyadic indexes

d = (2k + 1)2−n ∈ Dn \Dn−1, d− = 2k2−n, d+ = (2k + 2)2−n ∈ Dn−1

with k = 0, . . . 2n−1,

Gd(ω) :=

(
Bd(ω)− Bd−(ω) +Bd+(ω)

2

)
2(n+1)/2, , d ∈ D

are i.i.d. standard gaussian variable (E(Gd) = 0, E(G2
d) = 0).

4. Let G(ω) ∼ N (0, 1), and f ∈ L2(R, dγ) where γ(dx) = φ(x)dx.

Here

φ(x) =
1√
2π

exp
(
−x

2

2

)
denotes the standard gaussian density.

Consider the function

u(t, x) = EP

(
f(x+G

√
t)

)
• Show that u(t, x) is smooth in the open set (0,∞) × R. This does

not require any smoothness on f .
Hint: write

u(t+ ε, x)− u(t, x)

ε
,

u(t, x+ ε)− u(t, x)

ε

as integrals, and do an opportune change of variable in order to use
the smoothness of the gaussian density φ when you take the limit as
ε→ 0.

• Use the gaussian integration by parts formula to express the partial
derivatives for t > 0

∂

∂t
u(t, x),

∂

∂x
u(t, x),

∂2

∂x2
u(t, x)

5. Let

p(x, t) =
1√
t
φ
( x√

t

)
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• By using the Markov property of Bronwian motion (which follows
from the independence of increments), show that for 0 ≤ t ≤ T

p(y − x, T − t)dy = P (BT ∈ dy|Bt = x) = P (BT−t + x ∈ dy)

Denote for t ∈ [0, T ]

v(t, x) =

∫
R
g(y)p(y − x, T − t)dy = EP (f(BT )|Bt = x)

for some f ∈ L2(R, dγ), where γ(dy) = p(y, T )dy is the N (0, T )
gaussian measure.

• Show that v(t, x) is smooth in [0, T )×R with respect to the variables
(t, x), the partial derivatives

∂

∂t
v(t, x),

∂

∂x
v(t, x),

∂2

∂x2
v(t, x)

• Show that v(t, x) satifies the partial differential equation (heath equa-
tion)

∂

∂t
v(t, x) = −1

2

∂2

∂x2
v(t, x) , 0 ≤ t < T
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