Stochastic analysis, autumn 2011, Exercises-2, 23.09.11

1. Let

$$
f(x)=f(0)+\int_{0}^{x} \dot{f}(y) d y, \quad h(x)=h(0)+\int_{0}^{x} \dot{h}(y) d y,
$$

absolutely continous function with $\dot{f}, \dot{h} \in L^{2}(\mathbb{R}, \phi(x) d x)$ where $\phi(x) d x$ is the standard gaussian measure.

- For a standard gaussian random variable $G(\omega)$ with $E(G)=0, E(G)=$ 1 prove the gaussian integration by parts formula:

$$
E_{P}\left(f^{\prime}(G) h(G)\right)=E_{P}\left(f(G)\left(G h(G)-h^{\prime}(G)\right)\right)
$$

Hint: rewrite the expectation as integral, and use integration by parts with respect to Lebesgue measure.
Assume first that $f(x)$ is compactly supported, and note that one can approximate $f(x)$ in $L^{2}(\mathbb{R}, \phi(x) d x)$ by absolutely continuous compactly supported functions.

- Write the corresponding gaussian integration by parts for $B_{t}(\omega) \sim$ $\mathcal{N}(0, T)$ with $T>0$

2. Show that a process X_{t} with independent increments is Markov, which means for $0 \leq s \leq t \operatorname{and} \mathcal{F}_{s}^{X}=\sigma\left(X_{u}: 0 \leq u \leq s\right)$ and a bounded measurable test function $f(x)$

$$
E\left(f\left(X_{t}\right) \mid \mathcal{F}_{s}^{X}\right)=E\left(f\left(X_{t}\right) \mid \sigma\left(X_{s}\right)\right)
$$

Hint. use first the decomposition $X_{t}=X_{s}+\left(X_{t}-X_{s}\right)$ and the definition of conditional expectation to show first that for a bounded measurable test-function

$$
E\left(f\left(X_{t}\right) \mid \sigma\left(X_{s}\right)\right)(\omega)=\left.E\left(f\left(y+\left(X_{t}-X_{s}\right)\right)\right)\right|_{y=X_{s}(\omega)}
$$

3. $\left(N_{t}(\omega): t \geq 0\right)$ is a λ-Poisson process $(\lambda>0)$ if $N_{0}=0$ and it has independent increments with $\left(N_{t}-N_{s}\right) \sim \operatorname{Poisson}(\lambda(t-s))$

- Show that the Poisson process is non-decreasing with piecewise constant trajectories, it is P-almost surely finite on and increases only by jumps of size 1 .
Hint: Show that

$$
P\left(\exists t \leq T: \Delta N_{t} \geq 2\right)=0
$$

Write it as limits of probabilities of events depending on a finite number of increments.

- Compute the probability density of the first jump time $\tau(\omega)$.

Hint: $P(\tau>t)=P\left(N_{t}=0\right)$.
4.
5. For a fixed $t \in[0,1]$ consider the function $s \mapsto h_{t}(s):=(s \wedge t)=\min (s, t)$

- Show that $h_{t}(\cdot)=(t \wedge \cdot)$ belongs to the Cameron-Martin space H.
- Show that $B_{t}(\omega):=B\left(h_{t}\right)$ is a Brownian motion.
- Show that $K(t, s):=\operatorname{Cov}\left(B_{t}, B_{s}\right)=E\left(B_{t} B_{s}\right)=s \wedge t$.
- Show the reproducing kernel Hilbert space property in the Cameron Martin space H : for $h \in H$

$$
(K(t, \cdot), h(\cdot))_{H}=h(t)
$$

