Stochastic analysis, autumn 2011, Exercises-10, 22.11.2011

1. Let τ be a \mathbb{F}-stopping time in the filtration generated by a Brownian motion B_{t}, such that $E(\tau)<\infty$.

- Use Doob maximal inequality to show that $\left(B_{\tau \wedge t}: t \in \mathbb{R}^{+}\right)$is a martingale bounded in $L^{2}(P)$.
- Prove Wald's identities

$$
E\left(B_{\tau}\right)=0 \quad, \quad E\left(B_{\tau}^{2}\right)=E(\tau)
$$

Hint: Doob optional sampling theorem cannot be applied directly since $\left(B_{t}: t \in \mathbb{R}^{+}\right)$is not uniformly integrable, neither $\tau(\omega)$ is assumed to be bounded. Note also that

$$
B_{\tau}(\omega)=\sum_{n=1}^{\infty}\left(B_{\tau \wedge n}(\omega)-B_{\tau \wedge(n-1)}(\omega)\right)
$$

2. Let M_{t} a continuous \mathbb{F}-martingale with $E\left(M_{t}^{2}\right)<\infty \forall t$, and let A_{t} be a continuous and bounded \mathbb{F}-adapted process with finite variation on finite intervals.

Show that for $0 \leq s \leq t$

$$
M_{t} A_{t}-M_{s} A_{s}=\int_{0}^{t} A_{s} d M_{s}+\int_{0}^{t} M_{s} d A_{s}
$$

where on the right side we have an Ito integral and a Riemann Stieltjes integral.

Note that the Ito integral $\left((A \cdot M)_{t}: t \in \mathbb{R}^{+}\right)$is a square integrable martingale (why ?).
Hint Note that

$$
M_{t} A_{t}-M_{s} A_{s}=M_{t}\left(A_{t}-A_{s}\right)+A_{s}\left(M_{t}-M_{s}\right)
$$

and use telescopic sums for some $s=r_{0}<r_{1}<\cdots<r_{n}=t$, letting the step-size of the partition going to zero.
3. Let B_{t} a Brownian motion and denote by \mathbb{F} its filtration.

Consider the pathwise Ito-Föllmer formula.
$f\left(B_{t}, t\right)=f\left(B_{0}, 0\right)+\int_{0}^{t} f_{x}\left(B_{s}, s\right) d B_{s}+\int_{0}^{t}\left(f_{s}\left(B_{s}, s\right)+\frac{1}{2} f_{x x}\left(B_{s}, s\right)\right) d s$
where the pathwise Föllmer integral coincides with the Ito integral. We assume that $f(x, s)$ is such that the the integrals above exist. Since the gaussian distribution has exponential moments, it is more than enough to assume that the derivatives have polynomial growth.
Show that if $f\left(B_{t}, t\right)$ is a local martingale, necessarily

$$
f\left(B_{t}, t\right)=f\left(B_{0}, 0\right)+\int_{0}^{t} f_{x}\left(B_{s}, s\right) d B_{s}
$$

Hint: a local martingale with finite variation is constant.
4. By using independence of increment, and the formula for the characteristic function of a standard gaussian $E\left(\exp \left(i \theta B_{1}\right)\right)=\exp \left(-\theta^{2} / 2\right), i=\sqrt{-1}$, we have seen that

$$
\begin{aligned}
& Z_{t}(\theta)=\exp \left(i \theta B_{t}+\frac{1}{2} \theta^{2} t\right)=\cos \left(\theta B_{t}\right) \exp \left(\theta^{2} t / 2\right)+i \sin \left(\theta B_{t}\right) \exp \left(\theta^{2} t / 2\right) \\
& =M_{t}(\theta)+i N_{t}(\theta)
\end{aligned}
$$

is a complex valued \mathbb{F}-martingale, where

$$
M_{t}(\theta)=\cos \left(\theta B_{t}\right) \exp \left(\theta^{2} t / 2\right), \quad N_{t}(\theta)=\sin \left(\theta B_{t}\right) \exp \left(\theta^{2} t / 2\right)
$$

Equivalently M_{t} and N_{t} are real valued martingales.

- Check that M_{t} and N_{t} are in $L^{2}(P)$.
- Use Exercise 1 and 2 together with Ito formula to compute $\langle M(\theta)\rangle_{t}$, $\langle N(\theta)\rangle_{t}$, and $\langle N(\theta), M(\theta)\rangle_{t}$.
Hint: express $M(\theta)_{t}=M(\theta)_{0}+\int_{0}^{t} f_{x}\left(s, B_{s}\right) d B_{s}$ as an Ito integral, use the formula $\langle Y \cdot M\rangle_{t}=\int_{0}^{t} Y_{s}^{2} d\langle M\rangle_{s}$.

5. Compute $E\left(M_{t}^{2}(\theta)\right)$ and $E\left(N_{t}^{2}(\theta)\right)$

Hint: As an alternative to the direct calculation, use the isometry
$E\left(M_{t}^{2}(\theta)\right)=E\left(M_{0}(\theta)^{2}\right)+E\left(\langle M(\theta)\rangle_{t}\right), \quad E\left(N_{t}^{2}(\theta)\right)=E\left(N_{0}(\theta)^{2}\right)+E\left(\langle N(\theta)\rangle_{t}\right)$
and the previous exercise to show that

$$
E\left(M_{t}^{2}(\theta)\right)=1+\int_{0}^{t} E\left(N_{s}^{2}(\theta)\right) d s, \quad E\left(N_{t}^{2}(\theta)\right)=\int_{0}^{t} E\left(M_{s}^{2}(\theta)\right) d s
$$

which gives a deterministic 2-dimensional linear differential system with unknown functions $\xi_{t}=E\left(M_{t}^{2}(\theta)\right), \eta_{t}=E\left(N_{t}^{2}(\theta)\right)$. To solve it use hyperbolic functions:

$$
\sinh (x)=\left(e^{x}-e^{-x}\right) / 2, \quad \cosh (x)=\left(e^{x}+e^{-x}\right) / 2,
$$

