Stochastic analysis, autumn 2011, Exercises-1, 13.09.11

1. A random vector $X=\left(X_{1}, \ldots, X_{n}\right)$ is jointly gaussian if there is a vector $\mu \in \mathbb{R}^{n}$ and a $m \times n$ matrix A such that in matrix notation

$$
X(\omega)=\mu+Y(\omega) A
$$

where $Y=\left(Y_{1}, \ldots, Y_{m}\right)$ are independent standard gaussian variables, with $E\left(Y_{i}\right)=0, E\left(Y_{i} Y_{j}\right)=\delta_{i j}$.

- Compute the probability density of X.
- Compute the covariance $E\left(X_{i} X_{j}\right)$.

You can assume that $m=n$ and the matrix A is invertible.
2. Recall the definition: a standard Brownian motion $\left(B_{t}: t \geq 0\right)$ is a stochatic process with

- $B_{0}=0$
- the increments are indepenent gaussian with $\left(B_{t}-B_{s}\right) \sim \mathcal{N}(0, t-s)$, for $s \leq t$.
- the trajectories are continuous.

Show that the Brownian motion is a gaussian process, that is for all $n \in \mathbb{N}$ $0 \leq t_{1} \leq \cdots \leq t_{n}$,
$\left(B_{t_{1}}, \ldots, B_{t_{n}}\right)$ is a jointly gaussian random vector.
Hint: use the chain rule to write the joint density.
3. Let $\left(B_{t}: t \geq 0\right)$ a standard Brownian motion.

For $t \in(0,1)$ use Bayes formula to write the regular conditional density of B_{t} conditionally on B_{1}

For $0<t_{1}<\cdots<t_{n}<1$ compute the finite dimensional conditional distribution of $\left(B_{t_{1}}, \ldots, B_{t_{n}}\right)$ given $\left\{B_{1}=0\right\}$.
For $s \leq t$ compute $E\left(B_{t} B_{s} \mid B_{1}=0\right)$
4. When $f \in C^{2}$, from Ito Föllmer we get the semimartingale decomposition of the process $f\left(B_{t}(\omega)\right)$ as an Ito integral plus a process with finite variation of on compacts. Write the semimartingale decomposition in the following cases $f(x)=x^{n} ; \quad f(x)=\sin (x) ; \quad f(x)=\exp (x)$.
5. Use Ito formula to express $\exp \left(B_{t}-\frac{1}{2} t\right)$ as an Ito-Föllmer integral
6. Let $\left(B_{t}(\omega)\right)_{t \geq 0}$ and $\left(W_{t}(\omega)\right)_{t \geq 0}$ two indepenent Brownian motions defined on the same probability space. Adapt the proof of lemma ?? to show that quadratic covariation

$$
\begin{equation*}
[W, B]_{t}=\lim _{\Delta(\Pi) \rightarrow 0} \sum_{i}\left(W_{t_{i+1}}-W_{t_{i}}\right)\left(B_{t_{i+1}}-B_{t_{i}}\right) \xrightarrow{P} 0 \tag{1}
\end{equation*}
$$

where we take the limit over partitions $\Pi=\left(0=t_{0} \leq t_{1} \leq \cdots \leq t_{n}=t\right)$, $n \in \mathbb{N}$ as $\Delta(\Pi) \rightarrow 0$ Hint: take the limit in $L^{2}(P)$ and use independence. The process $[W, B]_{t}$ is called quadratic covariation .
Show that for the dyadic sequence of partitions $\Pi_{n}=D_{n}$ we have also almost sure convergence in (1).

