
The usual (frequentist) approach to assessing evidence 
for a population association between genetic variants and 
a phenotype of interest is to compute a p‑value for the 
null hypothesis (H0) of no association. Despite their 
widespread use, p-values have a striking and funda-
mental limitation1–3: from a p-value alone it is difficult to 
quantify how confident one should be that a given SNP 
is truly associated with a phenotype. Indeed, the same 
p-value computed at different SNPs or in different stud-
ies can have different implications for the plausibility of 
a true association depending on the factors that affect 
the power of the test, such as the minor allele frequency 
(MAF) of the SNP and the size of the study. This is  
because the probability that a SNP with a given p-value  
is truly associated with the phenotype depends not only 
on how unlikely that p-value is under H0 (which is the 
same for all tests) but also on how unlikely it is under  
the alternative hypothesis H1 (which differs from test to 
test). For example, a p-value of 10–8 may seem to offer 
strong evidence against H0, but if a test has very low 
power then such a p-value may be almost as unlikely 
under H1 as under H0 and therefore provide little evi-
dence against H0. One response to such concerns is to 
avoid performing low-powered tests, for example by 
discarding low-MAF SNPs. However, this approach is 
inadequate for solving the problem and carries the risk 
that detectable associations might be discarded.

Bayesian methods provide an alternative approach 
to assessing associations that alleviates the limitations 
of p-values at the cost of some additional modelling 
assumptions. For example, a Bayesian analysis requires 
explicit assumptions about effect sizes at truly associated 

SNPs. Because of computational constraints, Bayesian 
approaches were not widely used until about 15 years ago, 
since when they have become more prevalent in many 
areas of science, including genetics4–9. This advance is 
now extending to genetic association studies, as recent 
papers have shown practical and theoretical advantages 
of using Bayesian approaches for the assessment of 
association10–20. Several software packages (for exam-
ple, SNPTEST11 and BIMBAM12,20) now allow simple 
genome-wide Bayesian analyses to be performed easily 
and quickly on a standard desktop computer.

Many genetics researchers are currently unfamiliar 
with Bayesian methods, and some may be reluctant to 
adopt them because they fear that editors and reviewers 
will also be unfamiliar with them. However, we believe 
that the benefits of Bayesian methods will lead to their 
widespread use in future genetic association analyses. 
Bayesian methods compute measures of evidence that 
can be directly compared among SNPs within and across 
studies. In addition, they provide a rational and quan-
titative way to incorporate biological information, and 
they can allow for a range of possible genetic models 
in a single analysis. Moreover, Bayesian approaches 
allow a coherent approach to combining results across 
studies (meta‑analysis), across SNPs in genes and  
across gene pathways, which will be increasingly impor-
tant as we move from single-SNP analyses towards more  
integrative approaches.

In this Review, we present a guide for newcomers 
to understanding and implementing a Bayesian analy-
sis in some of the most common settings. We focus 
particularly on the additional modelling assumptions 
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Frequentist
A statistical school of thought 
in which inferences about 
unknowns are justified not  
with reference to probabilities 
for the inferred value, but  
on the basis of measures of 
performance under imaginary 
repetitions of the procedure 
that was used to make  
the inference.

Bayesian statistical methods for 
genetic association studies
Matthew Stephens* and David J. Balding‡,§

Abstract | Bayesian statistical methods have recently made great inroads into many areas  
of science, and this advance is now extending to the assessment of association between 
genetic variants and disease or other phenotypes. We review these methods, focusing 
on single-SNP tests in genome-wide association studies. We discuss the advantages of 
the Bayesian approach over classical (frequentist) approaches in this setting and provide 
a tutorial on basic analysis steps, including practical guidelines for appropriate prior 
specification. We demonstrate the use of Bayesian methods for fine mapping in 
candidate regions, discuss meta-analyses and provide guidance for refereeing 
manuscripts that contain Bayesian analyses.
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Table 1 | Frequentist and Bayesian summaries of evidence for association

trait snP* p-values‡ log10(BF)§ PPA

trend test General test π = 10–4 π = 10–5

BD rs420259 2.2 × 10–4 6.3 × 10–8 4.1 0.56 0.11

CD rs9858542 7.7 × 10–7 3.6 × 10–8 4.7 0.83 0.33

T2D rs9939609 5.2 × 10–8 1.9 × 10–7 5.3 0.95 0.67

CD rs17221417 9.4 × 10–12 4.0 × 10–11 8.9 0.99999 0.99987

T1D rs17696736 2.2 × 10–15 1.5 × 10–14 12.5 1.00000 1.00000

The table shows p-values under two tests, a Bayes factor (BF) and corresponding posterior 
probability of association (PPA) for two values of the prior probability, π, for certain SNPs 
reported by the Wellcome Trust Case Control Consortium13. When BF ≈ 1/π (rows 1–3), the PPA, 
can depend sensitively on the researcher’s prior level of scepticism (as shown by the difference in 
PPA depending on whether π = 10–4 or π = 10–5), and researchers may differ in their conclusions. 
When BF>>1/π, then PPA ≈ 1 (rows 4–5) and the change in π has little effect. BD, bipolar disorder; 
CD, Crohn’s disease; T1D, type 1 diabetes; T2D, type 2 diabetes. * SNPs have been selected to 
illustrate particular points and not to be representative of the study results. ‡ Taken from REF. 13.  
§ BF = 0.8 BFa + 0.2 BFg, in which BFa and BFg are the additive and general model BFs from REF. 13.

Population association
Also known as true association. 
An association between a SNP 
and a phenotype that is present 
in the population from which a 
sample is taken. A population 
association can arise owing to 
population structure, but for 
simplicity we assume here  
that this possibility has been 
eliminated (for example, by 
covariate adjustment) and 
hence that population 
associations are caused  
by a functional SNP, either 
directly or through linkage 
disequilibrium.

p-value
The probability, if the null 
hypothesis were true, that an 
imaginary future repetition of 
the study would generate 
stronger evidence for 
association than that actually 
observed. A p‑value is 
conventionally interpreted as 
measuring the strength of 
evidence for association, but 
there is no simple relationship 
between a p‑value and the 
probability that the association 
is genuine.

Power
For a given population 
association, the power  
of a statistical test is the 
probability that the null 
hypothesis is rejected under 
imaginary repetitions of  
the study.

that are required by Bayesian approaches compared 
with standard frequentist analyses, and we attempt to 
provide practical guidelines for the most important of 
these assumptions. We hope that this will facilitate more 
interpretable analyses and more robust conclusions from 
future genetic association studies.

Calculating probabilities of association
We consider first the problem of computing, for each 
SNP in a genome-wide association (GWA) study, the 
probability that it is truly associated with phenotype. This 
posterior probability of association (PPA) can be thought 
of as the Bayesian analogue of a p-value obtained, for 
example, by using the Armitage trend test (ATT) or the 
Fisher exact test (for example, REF. 21). The calculation 
can be split into the three steps below.

Choose a value for π, the prior probability of H1. The 
value of π at a SNP quantifies our belief, given current 
knowledge, that the SNP is associated with the pheno-
type in question. One can allow π to vary across SNPs 
— for example, it could vary depending on the MAF, 
proximity to genes of interest or conservation across 
species. However, if π is assumed to be the same for all 
SNPs, it can be interpreted as a prior estimate of the 
overall proportion of SNPs that are truly associated 
with a phenotype. Typically, only a minority of SNPs is 
expected to be truly associated with a given phenotype: 
the range 10–4 to 10–6 has been suggested13 for π. The 
probability of H0 is taken to be 1 – π, which implic-
itly assumes that either H0 or H1 is true. Therefore, we 
should specify H0 and H1 so that they exhaust all realis-
tic possibilities or else keep in mind that any results are 
conditional on this assumption.

Compute a Bayes factor for each SNP. A Bayes factor 
(BF) is the ratio between the probabilities of the data 
under H1 and under H0. The BF is similar to a likelihood 
ratio, but it compares two different models rather than 
two parameter values in a model. The observed data are 
BF times more likely under H1 than under H0, and so 

the larger the BF, the stronger the support in the data 
for H1 compared with H0. A BF of one indicates that the 
data are equally probable under the two hypotheses and 
hence offers no help in discriminating between them.

Calculate the posterior odds on H1. The BF and π can be 
used to compute the posterior odds (PO) on H1:

PO = BF × π/(1 – π) (1)

This can be used to calculate the PPA:

PPA = PO/(1 + PO) (2)

See TABLE 1 for some numerical values of BF and π and 
the resulting PPA.

The PPA can be interpreted directly as a probability, 
irrespective of power, sample size or how many other 
SNPs were tested. It can be used in a further analysis 
involving the relative costs of false positives and false 
negatives to make an explicitly reasoned decision about 
which SNPs to pursue further14.

Intuitively, the PPA combines the evidence in the 
observed association data (the BF) with the prior prob-
ability (π) that a SNP is truly associated with phenotype. 
Because π is typically so small, the BF has to be large (for  
example, >104 – 106) to provide convincing evidence  
for an association (that is, to give a PPA close to 1). This 
contrasts with many other scientific applications in 
which a BF of 10 can be considered as strong evidence22 
against H0. The requirement for a large BF is analogous 
to setting a stringent threshold for genome-wide signifi-
cance in a frequentist approach. However, in a Bayesian 
analysis the reason for requiring a large BF is the small 
number of SNPs that is expected to be truly associated 
and not the large number of tests that is actually or 
potentially performed (which is the usual argument for 
requiring low p-values). See BOX 1 for further discussion 
of these multiple-testing issues.

Because the PPA can easily be computed from the BF 
for any given π, in practice the BF is often used as the 
primary summary of the evidence for association at a 
SNP, which leaves open the choice of π. If π is chosen 
to be constant over SNPs, the BF gives the same rank-
ing of SNPs as the PPA. In TABLE 1 the BFs also give the 
same ranking as the trend test p-values. In general BF and 
p-value rankings are similar except for low-MAF SNPs, 
and in BOX 2 we discuss assumptions under which the two 
rankings are almost identical, including low-MAF SNPs. 
It is also possible to translate a BF into a p-value by treat-
ing it as a classical test statistic and computing p-values 
by permutation12 — this approach is sometimes referred 
to as a ‘Bayes/non-Bayes compromise’ (REF. 23). This can 
generate test statistics with good frequentist properties but 
does not solve the problem that the interpretation of the  
resulting p-value depends on factors that affect power.

Calculating a Bayes factor
calculating a BF requires assumptions that are similar to 
those required for performing a frequentist power analy-
sis. These assumptions concern the effects on phenotype 
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Bayesian
A statistical school of thought 
that holds that inferences 
about any unknown parameter 
or hypothesis should be 
encapsulated in a probability 
distribution, given the observed 
data. Computing this posterior 
probability distribution usually 
proceeds by specifying a prior 
distribution that summarizes 
knowledge about the unknown 
before the observed data are 
considered, and then using 
Bayes’ theorem to transform 
the prior distribution into a 
posterior distribution.

of different genotypes at a SNP under H1. Note that the 
apparent effect sizes at a tested SNP, which we model 
here, could also be due to an ungenotyped functional 
SNP with different effect sizes. We focus here on binary 
(for example, case–control) phenotypes, for which effect 
sizes can be expressed in terms of odds ratios (ORs). 
For quantitative (continuous) phenotypes, the effect 
size parameters are usually differences between the  
genotype-specific phenotype means.

let θhet denote the logarithm (base e) of the OR 
between the heterozygote and the common homozygote. 
let θhom denote the logarithm of the OR between rare 
and common homozygotes. The null hypothesis is:

H0: θhet = θhom = 0 (3)

The general alternative, H1, is that at least one of θhet 
and θhom is non-zero. If we consider a precise alternative, 
for example:

H1: θhet = t1, θhom = t2 (4)

in which t1 and t2 are known, then:

(5)BF =
P(data | θhet = t1, θhom = t2)

P(data | θhet = 0, θhom = 0)

However, in practice the values of θhet and θhom under 
H1 are unknown, and computing the numerator of the 
BF requires averaging (mathematically: integrating) 
over possible values for t1 and t2, which are weighted 
by their plausibilities before the association data were 
observed. These weights are referred to as the prior 
distribution for θhet and θhom under H1, and specifying 
this distribution is a crucial part of any Bayesian analy-
sis, which we now consider in detail. In addition, there 
are usually nuisance parameters, such as the intercept 
or covariate parameters in logistic regression, that must 
have prior distributions assigned to them. However, 
we do not discuss these in detail because the choice 
of prior distribution for these parameters is generally 
not crucial (essentially because they are common to  
H0 and H1).

Genetic models. Specifying a prior distribution for θhet 
and θhom under H1 usually proceeds by first selecting one 
or more genetic models and then specifying effect size 
prior distributions under those models. We now review 
four types of genetic model — and their associated effect 
size prior distributions — for which the BF is easily cal-
culated using software or simple formulae. We then offer 
suggestions on how these could be used and combined 
in practice. Note that the models discussed here can be 
used to design a study as well as to analyse it14. Before 
the study is conducted the PPA can be regarded as a 
random quantity, and the researcher can investigate its 
distribution under a chosen model for various choices 
of design parameters, such as sample size.

Model 1: Strict additive model. In this model, θhom = 2θhet 
and so there is only a single effect size parameter. The 
most common choice is a normal (Gaussian) prior dis-
tribution for θ (= θhet) with a mean of zero and a standard 
deviation of σ, which we denote as N(0,σ). SNPTEST 
and BIMBAM can both compute BFs under this model  
(in BIMBAM, this is done by setting σd = 0). Both pro-
grams use a Laplace approximation (for example, REF. 11) 
and produce similar results. Alternatively, Wakefield14 has 
derived a simple formula that generally agrees closely with 
SNPTEST and BIMBAM. The Wakefield approximate  
Bayes factor (WABF) against H0 can be written:

WABF = √{v2/(v2+σ2)} exp(σ2Z2/2(v2 + σ2)) (6) 

in which Z = θ̂/v, θ̂ is the maximum‑likelihood estimate 
of θ and v is the standard deviation of θ̂. Z is the sta-
tistic for the Wald test, which is similar to the ATT and 

 Box 1 | Multiple testing

The usual frequentist rationale for setting the significance level for testing an 
individual SNP is based on controlling the probability of wrongly rejecting H

0
 for at 

least one SNP, assuming that all SNPs follow H
0
. This results in procedures (for 

example, the Bonferroni correction) that require more stringent significance 
thresholds as more tests are performed. These approaches can be criticized because 
the assumption of no true association at any SNP in the genome is highly 
implausible. Moreover, they can lead to undesirable consequences: investigators 
may refrain from performing additional analyses that could reveal interesting 
associations (for example, tests involving non-additive effects) because they fear 
the ‘multiple testing’ penalty that these additional analyses will confer on all tests. 
This contributes to a waste of scientific effort because expensive data are not 
thoroughly interrogated.

By contrast, the Bayesian analyses we outline here do not depend on the number 
of tests performed. It is helpful to distinguish two types of multiple testing.

The first type is multiple tests of the same null hypothesis against different 
alternative models (such as additive or dominant genetic models). In a Bayesian 
approach, a single Bayes factor (BF), and hence a single posterior probability of 
association (PPA), is obtained through a weighted average over the alternative 
models. This takes account of differences in power among tests (within the BF 
calculation) and of differences in plausibility among alternative models (through 
model weights). Frequentist approaches, such as a Bonferroni correction, have 
difficulty in taking account of either of these factors.

The second type is multiple tests of different null hypotheses, such as when 
testing many SNPs for association. In the Bayesian approach, the strength of the 
evidence for each SNP being associated with the phenotype (the BF) is weighed 
against its prior probability to compute the PPA for each SNP, without reference to 
the number of SNPs tested.

Those familiar with the Bonferroni correction may worry that, as more tests are 
performed, the expected number of false positive associations will increase. 
Although this is true, under reasonable assumptions the expected number of  
true positive associations will also increase and the ratio of true positives to  
false positives will remain roughly constant. Informally, if one cares about the false 
discovery rate (FDR), rather than the probability of making even one false discovery, 
then the number of tests is effectively irrelevant: what is relevant is the proportion 
of tests that are null.

As the above paragraph suggests, the Bayesian approach of reporting a PPA, which 
depends on the proportion of tests that are null (π) but not on the number of tests, 
has close connections with frequentist approaches that control the FDR40. Indeed, 
some frequentist approaches to controlling the FDR, which are popular in 
microarray analyses, do not involve explicit consideration of the number of tests but 
do involve treating π as a parameter to be estimated41. Estimating π in the context of 
genome-wide association (GWA) studies is usually harder than for microarray 
experiments, because π is usually much smaller for a GWA study than for a typical 
microarray experiment that is looking for differential expression between two 
conditions. However, the difficulty in assigning π does not change the logic that 
both the FDR and the PPA depend on its value.
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Meta-analysis
The combination of the results 
of multiple scientific studies 
that address the same, or 
similar, hypotheses.

Posterior probability of 
association
The probability that a SNP  
is truly associated with a 
phenotype. The posterior 
probability of association 
depends on modelling 
assumptions that should  
be made explicit in a  
careful analysis.

Likelihood ratio
The ratio of the probabilities  
of the observed data for two 
different values of the unknown 
parameter(s) under a given 
statistical model.

also to the likelihood ratio test in logistic regression.  
A convenient feature of the WABF is that θ̂ and v are 
usually available from the output of a standard frequen-
tist analysis, which allows a classical analysis to be easily 
converted into a Bayesian analysis under this model (see 
the SLCO1B1 example below).

Model 2: Strict dominant or recessive models. These 
are both single-parameter models that are obtained by 
setting θhet = θhom for dominant models and θhet = 0 for 
recessive models. The methods for strict additive mod-
els can also be used to compute BFs for strict dominant 
or recessive models by using a N(0,σ) prior distribution 
on θhom. For example, to fit a dominant model, one can 
simply code all the rare homozygotes as heterozygotes 
and then apply the methods for additive models.

Model 3: General models centred on additivity. Both 
SNPTEST and BIMBAM include options to relax the 
additivity assumption and still place the most weight 
on parameter values that are close to additive; a user-

specified value controls the concentration of these 
prior distributions around additive models. It would 
be straightforward to similarly consider models cen-
tred on dominance or recessivity, but this does not yet 
seem to have been implemented. unlike the additive 
model, dominant and recessive models imply that only 
one genotype has a different effect from the other two. 
Because of this, apparent recessive and dominant effects 
may be more likely to reflect a genotyping anomaly than 
apparent additive effects, which may partly explain the 
focus on additive models in current practice. However, 
as genotyping quality has improved, this rationale has 
become less compelling.

Model 4: General models not centred on additivity. For 
binary data, REF. 21 proposed a general model that is not 
based on logistic regression but directly models the case–
control counts for each genotype; we use pBF (prospec-
tive BF) to denote the corresponding BF. under H1 the 
case–control proportions for each of the three genotypes 
are assumed to be independent, whereas under H0 these 
proportions are equal. For purposes of illustration, only 
uniform prior distributions for the genotype propor-
tions were previously reported21, and in Supplementary 
information S1 (box) we introduce more realistic and 
efficient prior distributions based on the beta distribu-
tion. Adjusting the beta prior parameters allows one to 
control the effect size distribution under H1 but does 
not allow near-additive effects to be weighted more 
than far-from-additive effects. It is not easy to include  
covariates in this model, which is straightforward under  
regression models.

The models described above are all prospective 
because they treat the genotypes as fixed and the pheno-
types as random observations. For case–control studies, 
retrospective models (which fix phenotypes and treat 
genotypes as random) should be used in principle. 
However, in many practical settings the two approaches 
give the same results24, and the more convenient pro-
spective model is often used for case–control data (for 
example, REF. 13). A retrospective BF (rBF), which is 
analogous to the pBF, is described in Supplementary 
information S1 (box).

Each of the above models and associated prior dis-
tributions has its limitations, and it may be advanta-
geous to combine two or more of them. For example, 
although the additive model is attractive in its simplic-
ity, we know that not all functional SNPs act additively, 
and an analysis based on an additive model alone risks 
missing truly associated SNPs with non-additive effects. 
Fortunately, combining models in a Bayesian analy-
sis is straightforward: the overall BF is the weighted 
average of the BFs computed under each model. (As 
the pBF and rBF are not based on logistic regression, 
they do not use exactly the same H0 as the other mod-
els and so averaging, for example, the WABF and the 
pBF is not strictly valid; however, the two H0 can be 
chosen to be similar and so this is unlikely to cause a 
problem in practice.) Below we discuss both averaging 
over genetic models and averaging over effect sizes in  
each model.

 Box 2 | Connections between Bayes factors and p‑values

Given the ubiquity of p-values, it is natural to seek relationships between them and 
the Bayes factor (BF). For example, given a p-value from a published study, is it 
possible to compute a corresponding BF? We have emphasized that an advantage of 
BFs over p-values is that the strength of the evidence that the BF conveys does not 
vary with factors that affect power, such as sample size or minor allele frequency 
(MAF). As this is not true of p-values, it follows that any translation from p-values to 
BFs has to depend on further assumptions. Nevertheless, some interesting 
connections exist between BFs and p-values.

Optimistic BFs
Under general assumptions1, the following result holds for p-values that satisfy 
p < 1/e, in which e ≈ 2.72:

BF < –1/(e p log(p)) (7)

For example, a SNP with p = 10–6 has BF<2.7 × 104, and hence if π = 10–4 the SNP has a 
substantial probability of being unassociated (posterior probability of association (PPA) 
< 0.72). By contrast, if p = 10–7 then BF<2.3 × 105 and the PPA could be >0.95. Note also 
that when p = 0.05, we obtain BF<2.5, which is at best only modest evidence against H

0
. 

This is striking given the widespread adoption of a significance level of 0.05.
As equation 7 provides only an upper bound on the BF, it can be thought of as 

providing an ‘optimistic’ BF for a given p-value. It seems unlikely that any useful lower 
bound exists, and so there is no corresponding ‘pessimistic’ BF.

the implied prior of p-values
The BF under a strictly additive model, with a N(0,σ) distribution for the effect size 
under H

1
, produces approximately the same ranking as p-values from standard 

additive-model tests, providing that σ2 is chosen to be proportional to a factor that 
depends on sample size42 but is asymptotically proportional to 1/MAF(1 – MAF).  
A similar result holds for non-additive models42.

Therefore, for a given sample size, ranking SNPs by their p-values is equivalent to a 
Bayesian analysis that makes some very specific assumptions. In particular, it 
assumes that truly associated low-MAF SNPs tend to have larger effect sizes than 
SNPs with a larger MAF. Broadly speaking, this assumption may be reasonable43,44, 
but there is no apparent justification45 for the mathematical form 1/MAF(1 – MAF). 
Bayesians are free to choose the dependence of σ on MAF according to whatever 
formula they believe best fits the available background information, and hence they 
can in principle develop better ways to prioritize SNPs for follow up. Furthermore, 
and perhaps more importantly, this example shows that frequentist analyses can 
make implicit assumptions of which the user is unaware — see the ‘Imputation’ 
subsection in the main text for another example.
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Table 2 | Tail probabilities under various prior distributions

π = 10–4, 
θ ~ n(0,0.2)

π = 10–4, 
θ ~ n(0,0.4)

π = 10–4, mixture 
of normals*

neG shape 1.0, 
scale 0.0012

neG shape 1.4, 
scale 0.006

neG shape 1.8, 
scale 0.015

P[|θ|>0.05] 8.0 × 10–5 9.0 × 10–5 8.1 × 10–5 5.8 × 10–4 3.5 × 10–3 1.7 × 10–2

P[|θ|>0.1] 6.2 × 10–5 8.0 × 10–5 6.4 × 10–5 1.4 × 10–4 5.3 × 10–4 2.1 × 10–3

P[|θ|>0.2] 3.2 × 10–5 6.2 × 10–5 3.6 × 10–5 3.6 × 10–5 7.8 × 10–5 2.0 × 10–4

P[|θ|>0.4] 4.5 × 10–6 3.2 × 10–5 8.8 × 10–6 9.0 × 10–6 1.1 × 10–5 1.7 × 10–5

P[|θ|>1] 5.7 × 10–11 1.2 × 10–6 1.1 × 10–6 1.4 × 10–6 8.5 × 10–7 6.2 × 10–7

Each entry gives the probability for a SNP to have an effect size θ above a given threshold under a given prior distribution. In the 
first 3 columns the SNP is assumed to have probability 10–4 of a non-zero effect. Given a non-zero effect, the distribution for θ is 
either a single normal (columns 1 and 2) or a weighted average of 3 normal distributions (column 3), each with a different 
standard deviation. The final value of column 1 illustrates the ‘thin tails’ property of the normal distribution, which markedly 
reduces the weighting of very large effect sizes. In the final three columns all SNPs have a non-zero effect, but the normal- 
exponential-gamma (NEG)29,46 prior distribution has a sharp peak around zero, so most effect sizes are negligible. The NEG has 
‘fat tails’ that decrease only slowly for large effect sizes, which indicates agnosticism about the magnitude of non-negligible 
effects. From the middle row, the expected numbers of SNPs with |θ|>0.2 (so that the odds ratio is >1.22 or <0.82) per 100,000 
tested range from 3.2 (column 1) to 20 (column 5). Note that many of these SNPs will not be detected in a typical genome-wide 
association study because of limited power, and also that these numbers can include multiple SNPs in high linkage 
disequilibrium with the same functional variant. * Under H

1
, θ ~ 0.9 × N(0,0.2) + 0.05 × N(0,0.4) + 0.05 × N(0,0.8).

Odds
The probability of the 
occurrence of a particular 
event (for example, the onset 
of disease) divided by the 
probability of the event  
not occurring. It is often 
mathematically convenient to 
transform a probability, which 
must lie between zero and one, 
to odds, which can take any 
positive value.

Bonferroni correction
When multiple hypotheses  
are tested, the Bonferroni 
correction to the overall 
desired significance level (α) is 
obtained by dividing it by the 
number of tests (k), so that 
each hypothesis is rejected if 
p‑value < α/k.

False discovery rate
For a sequence of hypothesis 
tests, the false discovery rate  
is the proportion of times H0 is 
true among those tests for 
which H0 is rejected.

Odds ratio
The odds ratio comparing, for 
example, two genotypes is  
the odds for individuals with the 
first genotype divided by  
the odds for individuals  
with the second genotype.

Logistic regression
A regression model for binary 
outcomes (such as case and 
control) in which the logarithm 
of the odds is related linearly 
to one or more predictors, such 
as SNP minor allele count(s).

Laplace approximation
A method for approximating 
the integral of a (possibly 
multidimensional) probability 
density based on replacing 
that density by a Gaussian 
probability density with  
the same mean and  
variance–covariance matrix.

Maximum-likelihood 
estimate
The maximum‑likelihood 
estimate of an unknown 
parameter in a statistical 
model is the value of the 
parameter that maximizes  
the probability under the 
model of the observed data.

Averaging over genetic models. We recommend allowing  
for both additive and non-additive effects by, for exam-
ple, using a weighted combination of models 2 and 3 
above or a combination of models 1, 2 and 4. Weights 
should be chosen to reflect the investigator’s belief about 
the plausibility of each type of effect given the current 
theory and previous data. For example, if an investigator 
believes that most SNPs will act in a near-additive man-
ner, with a minority acting either dominantly or reces-
sively, then they might put 80% weight on the general 
model centred on additivity (model 3) and 10% weight 
on each of the dominant and recessive models (model 2).  
In this case, the overall BF would be computed as  
0.8 BFa + 0.1 BFd + 0.1 BFr, in which BFa, BFd and BFr are 
the BFs under the near-additive, dominant and recessive 
models, respectively.

Even small weights on non-additive models can 
allow the identification of large non-additive effects 
without substantial reduction in the ability to detect 
near-additive effects. Although the choice of weights 
may differ from one researcher to another, typically 
the effect on the PPA is small unless some weights are 
chosen to be at, or close to, zero (see further discussion 
below). An example is provided in TABLE 1, in which BFs 
were computed under a weighted average of additive 
and general (near-additive) models. For bipolar dis-
order, SNP rs420259 has a PPA of 0.56 when π = 10–4, 
which is inconclusive but indicates that the SNP merits 
further investigation. under a strictly additive model the 
PPA would be 0.01 and the SNP would probably have  
been ignored.

combining models in an interpretable way is much 
harder in the frequentist framework. For example, for 
realistic effect and sample sizes the ATT tends to have 
more power than the Fisher exact test for associations 
that are close to additive and, conversely, the Fisher exact 
test has better power to detect far-from-additive effects. 
The two tests can be combined by, for example, regard-
ing the smaller of the two p‑values as a test statistic — a 
method that is similar to the MAX test25. However, this 

treats the ATT and Fisher exact test equally, which may 
not be optimal. An attractive Bayesian alternative is to 
form a weighted combination of the WABF and rBF — 
which can be viewed as Bayesian analogues of the ATT 
and Fisher exact test (see Supplementary information S1  
(box)) — in accordance with the researcher’s prior  
probability of additive and non-additive effects.

Averaging over effect sizes. The prior distributions asso-
ciated with models 1–3 above involve an N(0,σ) distri-
bution for the effect size, which decays quickly in the 
tails. consequently, no single value of σ allows for most 
effects to be small while also making sufficient allow-
ance for occasional large effects. For example, under an 
additive model in which π = 10–4 and the prior distribu-
tion on θ is N(0,0.2) (TABLE 2, column 1), ~5 SNPs per 
million are predicted to have |θ|>0.4, but the probability 
for a SNP to have |θ|>1 is minuscule — <1 in 10 billion 
(recall that θ = 1 means OR = 2.72). Although most 
investigators would accept that |θ|>1 rarely occurs, they 
may be reluctant to assume it to be this unlikely for a 
phenotype that lacks previous GWA studies. Increasing 
σ to 0.4 (TABLE 2, column 2) increases P[|θ|>1], but it 
also implies that 32 SNPs per million have |θ|>0.4, 
which may be regarded as unrealistically high.

A simple solution to this problem is to replace the 
N(0,σ) prior distribution with a mixture of normal dis-
tributions12 that gives an increased, although still small, 
probability to very large ORs and only slightly affects 
the probabilities that are assigned to more moderate 
effects (TABLE 2, column 3). The BF under the mixture 
prior distribution is simply the weighted average of the 
BFs under each normal prior distribution, so the WABF 
and other methods based on the normal prior distribu-
tion are also applicable to the mixture prior distribution. 
In addition to the possible dependence of π on the MAF, 
as mentioned above, it is plausible that σ varies with the 
MAF. One way to incorporate this is to choose mixture 
weights that give more weight to larger values of σ as 
the MAF decreases.
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Figure 1 | Dependence of the Bayes factor on minor allele count and on the prior 
standard deviation of the effect size. The curves show the Wakefield approximate 
Bayes factor (WABF; equation 6) for a SNP with a p-value ≈ 5 × 10–7 using 4 values of  
n

0
, which is the minor allele count among cases and controls combined. There are n

0
 

cases and n
0
 controls, so the minor allele fraction remains constant at 0.25. As σ (the 

standard deviation of the effect size) increases from 0, the log
10

(WABF) for each SNP 
rises from 0 to a maximum value of 4.57 before gradually decreasing as σ continues to 
increase. If n

0
≥250, the Bayes factors (BFs) vary by roughly one order of magnitude for 

0.2<σ<1, but when n
0
 = 50, the BF varies more markedly, by several orders of 

magnitude for σ in this range. If π = 10–4, then log
10

(WABF)<4.57 implies PPA<0.79. 
Therefore, under our assumptions, a SNP just reaching the p-value threshold of  
5 × 10–7 still has a substantial chance of being a false discovery.

Statin
A class of drugs that is used  
to lower cholesterol levels in 
people with, or at risk of, 
cardiovascular disease.

Sensitivity. As there is always some flexibility in the 
choice of weights and the choice of values for σ, one 
should consider the sensitivity of the results to these 
choices. Briefly, sensitivity tends to be greatest in situ-
ations with less information, such as small studies, or 
when testing SNPs with a low MAF. FIGURE 1 shows how 
the WABF varies with σ for different minor allele counts 
when the p-value ≈ 5 × 10–7. For common SNPs that are 
typed in large studies, small changes in σ will typically 
have little effect on the BF, but σ can have a big impact if 
the minor allele count is not large.

Example. variants in SLCO1B1 have been reported26 to 
be associated with statin-induced myopathy. The most 
significant SNP from the GWA study was rs4363657, 
which had a reported p-value of 4.1 × 10–9, which is 
conventionally regarded as highly significant. Based on 
the reported summary data26, σ = 0.2, 0.4 and 0.8 give 
log10(WABF) = 2.2, 4.1 and 5.2, respectively. Therefore, 
the WABF depends strongly on σ. If one assumes 
σ = 0.2 and π = 10–4 (TABLE 2, column 1), the PO is 
approximately 102.2/104, which gives a PPA of 0.02, so 
the SNP would be dismissed as almost certainly a false 
discovery. By contrast, using the mixture-of-normals 
prior distribution (TABLE 2, column 3), one obtains 
log10(BF) = 3.9 and PPA ≈ 0.44.

The reason that different prior distributions produce 
such different conclusions here is that the data suggest a 
large effect size (θ̂ = 1.46, OR = 4.3) in a small study (only 
about 25 copies of the risk allele were observed among 
the 192 controls26). under the N(0,0.2) prior distribution 

the observed effect size is almost impossible a priori, and 
therefore the analysis leads to the conclusion that it is 
almost certainly due to sampling error. By contrast, the 
mixture prior distribution puts greater weight on large θ, 
and so leads to the conclusion that the observed associa-
tion merits further investigation. An alternative Bayesian 
analysis based on estimation rather than testing (BOX 3) 
reaches similar conclusions. However, replication data 
and functional results for a non-coding variant in high 
linkage disequilibrium (lD) with rs4363657 were also 
reported26. These bolster the case for association but are 
not taken into account in our reanalyses.

Beyond simple analyses
Incorporating external biological information. In the 
PPA calculations above we have ignored (as do most 
analyses) the fact that some SNPs may be good candi-
dates for influencing a phenotype — for example, SNPs 
that lie in or near a gene that has a known biological func-
tion and is plausibly related to the phenotype. The MAF 
of a SNP, known copy number variation, conservation 
across species and evidence of selection may also be rel-
evant to both the prior plausibility of association and the 
effect size under H1. Indeed, many investigators use such 
information informally when interpreting the results of 
an association study. A Bayesian approach allows such 
reasoning to be quantified through the specification of 
π, which facilitates scrutiny and rational debate.

Hypothetical example. In an association study for 
c-reactive protein (cRP) levels, a SNP in the hepato-
cyte nuclear factor 1 homeobox A (HNF1A) gene has a 
BF of 3 × 103, whereas a SNP in a gene desert has a BF 
of 104. Investigator 1 assigns a prior probability π = 10–4 
to each SNP and obtains PPAs of 0.23 for the HNF1A 
SNP and 0.50 for the gene-desert SNP. He therefore 
argues that the gene-desert SNP is a higher priority for 
follow up. Investigator 2 judges that SNPs near HNF1A 
are good candidates for affecting cRP levels, and she 
adopts a prior probability of π = 5 × 10–4 for the SNP 
near HNF1A and chooses π = 0.9 × 10–4 for the SNP in 
the gene desert. She obtains PPAs of 0.60 for the HNF1A 
SNP and 0.47 for the for the gene-desert SNP and argues 
that the HNF1A SNP is a higher priority for follow up. 
Both of these investigators would agree that both SNPs 
should be followed up if resources allow this and that the 
case is not yet convincing for either association being 
genuine. Investigator 3 argues that HNF1A is an excel-
lent candidate gene for affecting cRP levels and elects 
to use a prior probability of π = 10–2 for the SNP in this 
gene. He then obtains a PPA of 0.97 and concludes that 
the association is genuine.

As this example shows, the choice of π for each SNP 
can and should be informed by evidence, but inevita-
bly it has a subjective element. There is a widespread 
desire to avoid subjectivity in scientific reasoning, but we 
would argue that the real problem is hidden subjectivity; 
openness about subjective assumptions can be helpful in 
clarifying the roles of important but difficult-to-assess 
factors, such as the genomic context of a SNP. Although 
the prior probability adopted by Investigator 3 may seem 
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Genotype imputation 
method
A method for estimating 
(‘imputing’) the unobserved 
genotypes of study subjects, 
both for individuals with 
missing or unreliable 
genotypes at a genotyped  
SNP and for all individuals  
at an ungenotyped SNP.

extreme, it is similar to the prior probabilities that are 
implicitly assumed in candidate gene analyses that use 
much less stringent significance thresholds than are 
typical for a GWA study. By making such assumptions 
explicit, the Bayesian analysis facilitates clear discussion 
and honest assessment of the strength of the evidence.

Imputation. Genotype imputation methods11,12,27 have 
recently emerged as a powerful approach for testing 
variants that were not genotyped in a study. Many SNPs 
are easy to impute accurately, but SNPs that are not well 
correlated with genotyped SNPs are hard to impute (no 
genotype is assigned a probability close to one). Tests 
of hard-to-impute SNPs tend to have lower power than 
tests of easy-to-impute SNPs, and this power difference 
will occur whatever testing procedure is used, even if the 
uncertainty in imputed genotypes is properly accounted 

for. The lower power at hard-to-impute SNPs should be 
taken into consideration when assessing the strength of 
the evidence for an association. Simply ranking imputed 
SNPs by their p-values ignores these differences in power 
among tests — or, equivalently, it makes the implicit 
assumption that all tests have the same power. This 
would require that hard-to-impute SNPs have larger 
effect sizes than easy-to-impute SNPs, which seems 
absurd. To avoid this, p-values for imputed SNPs need 
to be weighted according to power. Doing this correctly 
leads to replacing the p-value with a BF, which automati-
cally reduces the weight of the hard-to-impute SNPs. See 
REF. 20 for further discussion and comparisons.

Fine mapping. When, as often arises, many SNPs in a 
genomic region show association with a phenotype, it 
is likely that most of these SNPs are not functional, but 

Box 3 | do we need a null hypothesis?

Both p-values and the Bayes 
factors (BFs) we have focused 
on here require a null 
hypothesis H

0
. The 

dichotomization of effects into 
zero and non-zero values can  
be criticized as being artificial 
and unrealistic because there 
may be many SNPs that are 
weakly associated with a 
complex phenotype with effect 
sizes that are too small to be 
either detectable or of practical 
interest. Recognizing this 
dichotomy as artificial makes π, 
the proportion of SNPs 
following H

0
, difficult to 

interpret and hence difficult  
to assign a meaningful value to.

An alternative Bayesian approach is to use a prior distribution for the effect-size parameter θ that does not categorize 
effects into zero and non-zero, and then focus on estimating θ instead of testing whether θ = 0. A suitable prior distribution 
should assign high probability densities to values of θ near zero, but the distributions should have ‘fat tails’ that allow for a 
few SNPs to have substantial effect sizes. This can be accomplished using the normal-exponential-gamma (NEG)29,46 prior 
distribution (TABLE 2). Next, Bayes’ theorem is used to compute the posterior distribution for θ, which can be presented 
visually for direct interpretation. Posterior probabilities of the form P(|θ|>t), in which t denotes some effect-size threshold 
of interest, are comparable to the posterior probability of association (PPA) in the hypothesis-testing paradigm. An 
advantage of the estimation approach is that the user can explicitly control t, which may vary for different phenotypes 
and perhaps decline over time as knowledge advances and study design and analysis improve. To demonstrate this 
approach, we applied it to the data for SNP rs4363657 from the genome-wide study in REF. 26 (see the figure). We 
assumed an additive model and considered each of the NEG distributions from TABLE 2 as prior distributions for θ.

The figure shows the posterior densities for θ, which were obtained by numerical approximation. In each case the 
posterior density is bimodal, featuring a large spike around zero (truncated in the figure) that corresponds to values 
that are strongly supported by the prior distribution and a broad mode above one that indicates effects that are 
supported by the data but that are ‘shrunk’ towards zero by an amount that depends on the prior shape parameter. The 
posterior probabilities of |θ|>0.1 under the 3 prior distributions are approximately 0.47, 0.39 and 0.35, which are similar 
to the PPA of 0.44 that we computed under the hypothesis-testing paradigm using a mixture-of-normals prior 
distribution (see main text). Despite the fact that the genome-wide study data generated a highly significant p-value of 
4.1 × 10–9, our Bayesian analyses indicate that, under a wide range of different assumptions, these data alone are not 
sufficient to ascertain whether the association is genuine. A further reinforcement of the difficulty of interpreting 
p-values comes from noting that, under a range of prior assumptions, the evidence for this SNP being truly associated is 
not as strong as for SNPs with less significant p-values in TABLE 1.

To allow for the effect-size distribution to vary with minor allele frequency (MAF), we could choose NEG parameters 
as a function of MAF. Further, an independent NEG prior distribution could be assigned to a dominance term to 
investigate non-additive models.
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their association reflects lD with one or a few causal 
SNPs that may or may not be genotyped. Important 
unresolved challenges are: to identify how many dis-
tinct causal associations underlie the association data; to 
detect which of the genotyped SNPs are causal or those 
that best tag unobserved causal variants; and to quantify 
the strength of the evidence in each case.

Given a set of SNPs S for which genotype data are 
available, the goal of identifying causal or causal-tagging 
SNPs can be formulated as a problem of deciding which 
explanatory variables should be included in a regres-
sion model9,12,16. In a Bayesian approach, each subset 
of S is assigned a prior probability of being the ‘true’ 
model, and posterior probabilities are then computed; 
both prior and posterior probabilities should add up to 
one over all models (including the model that includes 
no SNPs).

Although undesirable, unless S is small it is often 
necessary in practice to assign zero prior probability 
to many models that are collectively implausible. For 
example, one might assume that the number of causal 
variants is at most three and assign zero prior prob-
ability to all models with more than three SNPs. If this 
assumption is wrong, the analysis is still likely to be 
useful in helping to identify the three most important 
causal variants. Even with this assumption, there could  
be many thousands of models to assess, which  
could make it challenging to summarize their poste-
rior probabilities. One useful summary is the PPA for 
each individual SNP, which is obtained by adding up the 
probabilities of all models containing that SNP. One can 
also summarize the evidence for exactly X causal SNPs 
in a region by adding up the posterior probabilities that 
are assigned to models containing X SNPs.

If several SNPs are in strong lD and each is strongly 
associated with phenotype, it is likely that at most one 
is causal, but it is difficult to assess which one. In the 
Bayesian approach outlined above, the high-lD SNPs 
are likely to ‘share’ the PPA among them so that the 
total PPA over these SNPs is high but each SNP has 
only a modest PPA. Extracting this information from 
the full posterior distribution is possible (BOX 4) but 
not straightforward. By contrast, step-wise selection 
or penalized likelihood approaches, such as the lasso 
approach28,29, typically select just one or a few SNPs. 
These approaches provide a superficially simpler solu-
tion and can be faster to compute but do not provide 
probabilities measuring the (often low) level of cer-
tainty associated with the resulting models, which is 
in contrast to the rich information provided in a full 
Bayesian solution.

Meta-analysis. Once a SNP has been found to be 
associated with a phenotype in one study, the next 
step is usually to investigate its effect in further stud-
ies, perhaps using different populations and/or study 
designs. Replication can provide useful confirmation 
of the original result, but true genetic effects can vary 
greatly among populations and studies owing to differ-
ences in environmental exposures, differences in the 
lD between tested and functional variants and/or dif-
ferences in genetic background. Meta-analysis can be 
used to increase confidence in an apparent association  
and to investigate the heterogeneity of the effect  
sizes and genetic models30.

In ‘fixed-effects’ meta-analysis, the effect size θ 
is assumed to be constant across studies and the null 
hypothesis is θ = 0. In ‘random-effects’ meta-analysis,  

Box 4 | An example of fine mapping using a Bayesian approach

Using data from an association study for C-reactive protein (CRP)47, we applied a 
Bayesian regression approach, implemented using BIMBAM12, to analyse 103 HapMap 
SNPs that lie within 50 kb of the CRP gene (see the figure). The observed data 
consisted of 4 SNPs genotyped in 1,910 individuals and a further 10 SNPs genotyped 
in 980 of those individuals. We used BIMBAM to impute the remaining genotypes in all 
1,910 individuals using 60 unrelated HapMap individuals as a panel to learn about 
patterns of linkage disequilibrium (LD) among SNPs. We assumed that effects add 
across SNPs, and at each SNP we used the prior S2 from REF. 12, which is a general 
prior that is centred on additivity (model 3 in the main text). We averaged the results 
over σ

a
 = 0.1, 0.2 and 0.4, and used σ

d
 = σ

a
/4 (REF. 12). We used a prior distribution on 

the number of functional SNPs that gave weights in the ratios 4/2/1/0 to 1-SNP, 2-SNP, 
3-SNP and >3-SNP models, respectively. All models with the same number of 
functional SNPs were assumed to be equally likely a priori.

Under these assumptions the posterior probabilities for 1, 2 and 3 functional SNPs were 
0.03, 0.32 and 0.64, respectively. Therefore, our analysis supports multiple functional 
variants that influence plasma CRP levels in the region of the CRP gene — additional 
analysis may reveal support for more than the three SNPs that we considered here.  
The figure shows the posterior probability of association (PPA) for each SNP (assuming at 
most three SNPs in each model), and the SNPs are coloured to highlight groups that have 
high LD with each other, so we expect that at most one of them is a causal SNP.

To summarize the results, the 3 main groups of SNPs (coloured black, red and green) 
each have marginal probabilities that add up to >0.7. Therefore our results suggest 
that each of these groups includes or tags one functional SNP, although there is 
substantial uncertainty about which one (the largest marginal probability of any SNP 
is 0.22 and the largest probability assigned to any specific combination of SNPs is just 
0.0085). These low posterior probabilities can make the Bayesian result seem 
complicated, but this shows the large uncertainty about which SNPs are functional, 
which is inevitable in the presence of high LD among SNPs.

Given the complexity of the situation, the limitations of this analysis (for example, it 
ignores possible interactions among SNPs) and the limitations of the data (the majority 
of the SNPs are imputed, rather than typed), it is reassuring that the results are broadly 
consistent with those of another investigation16 of this gene that used different data 
and a different Bayesian analysis and identified SNPs rs1130864, rs1205 and rs3093077 
as showing independent association with CRP concentration. Although these SNPs are 
not assigned the highest marginal posterior probabilities in our analysis, one of them is 
included in each of the black, red and green clusters shown in the figure.
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Hardy–Weinberg 
equilibrium
This holds at a given locus in a 
given population when the two 
alleles of individuals in the 
population are mutually 
independent.

θ is assumed to vary across populations according to an 
N(μ,τ) distribution in which τ is unknown. However, 
the null hypothesis is usually H0: μ = 0 instead of the 
more appropriate H0’: μ = τ = 0 (see REF. 31 for a discus-
sion in the setting of linkage analyses). Testing of H0 
was developed for applications in which only modest 
heterogeneity of effects is expected. For genetic asso-
ciations, a high level of heterogeneity (large τ) is often 
plausible, but a higher variance in apparent effect sizes 
makes it less likely that H0 will be rejected (because an 
apparent mean effect becomes less significant as the 
variance increases). By contrast, increasing τ makes  
the rejection of H0’ more likely. Therefore, heterogene-
ous genetic effects will often be missed if H0 is tested 
instead of H0’. For example, a fixed-effects meta-analysis 
gave a p-value of 1.3 × 10–12 for a SNP in the fat mass and 
obesity-associated (FTO) gene and type 2 diabetes but 
only p = 0.015 for a random-effects meta-analysis of the  
same data32. In the random-effects meta-analysis,  
the high value of τ across studies, which was largely due 
to the varying body mass indexes of the study subjects, 
has weakened the evidence for a true association instead 
of strengthening it.

Broadly speaking, the fixed-effects model is implau-
sible for genetic associations, and researchers are often 
encouraged to adopt the more conservative random-
effects analysis30,32. Researchers are understandably 
reluctant to do this because of the potentially large  
and typically unwarranted loss of power, and instead 
they typically test H0’’: τ = 0 and perform a fixed-effects 
analysis if H0’’ is accepted. This two-step procedure 
is unsatisfactory because a false H0’’ may be accepted 
owing to inadequate power or, in large studies, H0’’ may 
be rejected for low heterogeneity, leading to the adop-
tion of a random-effects analysis with reduced power. 
A Bayesian analysis using, for example, WinBuGS9,33 
for modest numbers of SNPs overcomes these problems 
by allowing researchers the flexibility to formulate an 
appropriate null hypothesis and to contrast it with a 
suitable alternative hypothesis, which allows some 
heterogeneity (for example, REFS 16,18). Moreover, 
Bayesian methods can also incorporate variations 
in genetic models across studies and the effects of  
deviation from Hardy–Weinberg equilibrium34.

Guidance for refereeing Bayesian analyses. The Bayesian 
approach is well suited to the needs of a scientist engaged 
in the disinterested pursuit of knowledge, but its greater 
flexibility can make it more difficult for referees and edi-
tors to perform a gatekeeper role in maintaining high 
publication standards. Some critics worry, for example, 
that a researcher who is desperate to publish at all costs 
could exaggerate the prior probability of an outcome 
supported by the data to boost the reported PPA, even 
though this could subsequently harm the researcher’s 
professional reputation.

What prior assumptions are reasonable in a Bayesian 
analysis? And what minimum standards can reviewers 
reasonably impose? A Bayesian analysis requires more 
assumptions to be made explicitly, and researchers should 
be required to describe their modelling assumptions in 

sufficient detail. However, reviewers and editors should 
keep an open mind towards differing subjective assess-
ments, and Bayesian analyses should not be penalized 
for openness, particularly when the corresponding fre-
quentist analysis would evade criticism by keeping issues 
hidden. For example, a Bayesian’s choice of effect-size 
prior distribution is always open to criticism, whereas 
the frequentist can escape such scrutiny by not making 
any explicit choice. Yet the problem does not disappear 
in a frequentist analysis: the performance of frequentist 
tests depends on their power, and power calculations 
require assumptions about effect sizes. Similar com-
ments apply to the choice of π. In a frequentist analysis 
this is hidden in the choice of a ‘genome-wide signifi-
cance’ level, which can depend on many factors that are 
specific to individual studies35, but this dependence is 
rarely discussed.

Rather than ask authors to provide a strong rationale 
for every assumption, we suggest that reviewers focus 
on whether some assumptions seem to be unreasonable 
or poorly chosen. If so, they might ask, for example, for 
results under a different prior distribution to be included. 
However, it is impossible to present results under all 
priors, and presenting comprehensive results from one 
or two defensible priors should, in most cases, suffice. 
Of course, a thorough analysis — whether Bayesian or 
frequentist — will assess the sensitivity of key results to 
assumptions and highlight where a reasonable reader 
might reach a different conclusion.

Perspective
Even simple Bayesian methods have advantages over 
standard frequentist analyses, and we believe that the 
advantages of a Bayesian approach will increase as  
the current simplistic ‘one SNP at a time’ testing 
paradigm is replaced by the testing of more detailed 
hypotheses in more complex data sets. One common 
and understandable concern regarding the methods 
described here is the need to pre-specify subjective val-
ues for π and the parameters of the prior distribution 
of effect sizes under H1, such as σ and the weights for 
different genetic models. It is possible and desirable to 
learn about these quantities from previous association 
data for the same or related phenotypes. Similarly, it 
should be possible to quantitatively assess prior prob-
abilities for each SNP on the basis of whether it is a non-
synonymous coding SNP or whether it lies in or near 
a promoter region. Indeed, several recent publications 
show progress along these lines. For example, a recent 
Bayesian analysis36 reported effect-size distributions, the 
abundance of additive over dominant effects and SNP-
specific prior probabilities that affect phenotype in the 
context of SNP associations with expression traits (see 
also REF. 37). Furthermore, a positive association has been 
shown between a gene showing differential expression 
(across a large experimental database) and it harbouring  
disease-associated variants38.

In addition to these potentially exciting new devel-
opments, there remain some important extensions 
to simple Bayesian analysis that would benefit from 
further development. For example, adjustment for 
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population structure does not yet seem to be inte-
grated into available Bayesian analyses, and Bayesian 
approaches for survival-time data are limited to can-
didate-gene association studies39. current software 
has limited functionality for incorporating relevant 
observed covariates (for example, sex, smoking or 

covariates measuring population structure), although 
this is straightforward in principle in a Bayesian regres-
sion-based analysis. In Supplementary information S1 
(box) we show the performance of several BFs and 
standard p-values in a small simulation study and in a 
reanalysis of a small GWA study.
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