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Extensions of the coalescent

» The coalescent with migration
e Island models
e Splitting models
e Spatial models

» Gene tree vs. species tree

e Recombination




Coalescent with migration

 Population subdivided in demes/subpopulations

e Standard coalescent event within each deme
e Geometric distribution

e At each generation, each individual has a
probability m to migrate to another deme
e Geometric distribution for time to migration
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Genealogies in subdivided populations

Population 1 Population 2
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Basic algorithm with migration

o Sample n genes from two geographical locations
» Label these individuals by sample location

» Draw a (geometric/exponential) coalescent time with
a rate being the sum of the coalescent and migration
probabilities

e Choose the kind of event that it will be proportional to
the rates of the different events.
o If the event is a coalescent, then randomly draw two
individuals from the same population to coalesce.

o If the event is a migration event, re-label one randomly
chosen individual.
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Fst and coalescence time

» We can think of F<; as a measure of the
difference in coalescent times within
subpopulations relative to the coalescent times
between subpopulations:

Fy =" (Slatkin 1991)

* t,: average coalescent time for a pair of alleles
chosen randomly within subpopulations

e t,: average coalescent time for a pair sampled at
random in different subpopulations
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Two populations with migration

» 2 genes within a
population:

m  t,=4N (Strobeck 1987 )

e Does not depend on m!

N N 2 genes between
- populations:
< | « P(migration)=2m

i\‘ l e E[time to migrate]=1/2m
e t;=1/2m+4N
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Generalization

e Finite island model
e d demes of size N
e Migration rate m
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o With d=2 we recover the previous result

o Infinite island model
® d—ooo

° d/(d-1)—1 F




Infinite island model
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./fastsimcoal -i island model 20 0.005 10 100.par -n 100
./LaunchArlSumStatDirMac.sh island model 20 0.005 10 100 SettingsDNAStats.ars stats.txt

In R:

res=read.table(”stats.txt",header=T)

mean (resS$FST)

\\\\?/(1+4*100*9*0.005*10/9)
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Population split

» A population of size N split in 2
N populations of size N t
generations ago

» 2 genes within a population:
° t0=2N

e 2 genes between populations:
® t,=t+2N
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Gene tree vs. species tree
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Gene tree and species Gene tree and species

tree congruent tree incongruent

» —t/2N 2> —t/2N

P=1-%e ‘ P==ze ‘

» Can estimate divergence times and ancestral population sizes
e Chen and Li (2001) found with 53 autosomal regions 68% of congruent trees
o t=0.766*2Ne
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Founder effect

e A small proportion of
individuals from a population
of size N found a new
population of size N(1-9)

t, =2N
Bottleneck severity @ ty, =2N(1-9)

imN(l—m t, =N+N(1-9)
t =2N

F =2

ST:2
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What does Fst measure?

e Fst can be used as a statistic to summarize
patterns of differentiation between populations

» However, the interpretation of Fst depends
critically on which model applies to the
populations of interest
e Migration rates
e Time since separation
e Founder events

 Explicit modeling of population histories allows us

to distinguish between different demographic
scenarios: see ABC course
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Isolation with migration model

» A complex model with 6
parameters

o Still easy to simulate but...

e Difficult to infer parameters

e Old split with high migration

reassembles to a recent split
with low migration
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Stepping stone model

» Grid representation of a
continuous habitat in 1D or 2D

.« Migration occurs only between
adjacent demes in the grid

 Limited analytical results in 1D
(Wilkins and Wakeley 2002):

e Expected coalescence time

increases with geographical
distance between genes

e Ancestor biased toward the center
» Border tend to isolate genes
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SPLATCHE

SPatial. And Temporal Coalescences in Heterogeneous Environment
http://www.splatche.com/
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Demographic simulations

— Cell or deme
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Emigration and growth

* N, = size of deme at time t
o Distribute m N, emigrants to 4 nearest
neighboring demes.

e Controlled through friction values (f;), for each
deme.

» Relative difficulty of moving through a deme

e Multinomial with parameters:
1

pPi = 1
! ?zlfj K-N
 Logistic growth for each deme: N, :N,(Hr — j

e K: carying capacity K
e r: growth rate




Carrying capacity map Friction map
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Genetic coalescent simulation
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Ancestral Recombination Graph (ARG)

il

DNA sequence f t

- | —-.

T

=

T

The ancestral recombination graph records all recombination and all
coalescent events having occurred in the ancestry of some observed

gene lineages (thick lines).

The probability of a recombination event at any time is J(L-1r
where j is the number of remaining lineages, L is the sequence length
(bp) and r the recombination rate between adjacent nucleotides.
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Different coalescent trees for different positions
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Recurrent mutations and recombinations can
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lead to the same pattern of polymorphism

A

McVean, Awadalla, Fearnhead 2002 Genetics /
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Event types:
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Not all events have effects in an ARG

. Recombination in ancestral material
. Recombination in non-ancestral material that has ancestral material to both sides

. Coalescent between chromosomes carrying ancestral material
Source: Marjoram and Wall (2006) /




ARG Is not a very efficient way to model A

recombination

» We model (follow) many lineages that have no impact on current levels of
diversity

» The number of gene lineages to follow can explode if recombination rate
is large.

» This leads to high memory requirements and is computationally inefficient

Need of alternative and more efficient algorithms:

« Sequentially Markov Coalescent (McVean and Cardin 2005)
The idea is to simulate a different tree for each non-recombining segment

Instead of the whole ARG
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SMC algorithm

* Generate a tree at the leftmost end of a DNA sequence of L nucleotides

ACGGCGCTAGCCTGCTATCATCGCCGCTCTAGAGCTCGCTAGCTCGATCGAGCCCTAGAGGGTCTCCCAACACAACTTT
MRCA’ l

l MRCA | T | foresseremaenenaee

M AP TR

e A recombination event can occur between any adjacent nucleotide with probability r 7,
where ris the recombination rate per nucleotide and 7, is the total length of the first
genalogy.

* Find the position of the next recombination by drawing a random exponentially distributed
number exp(r T,)

» Generate a recombination event on the tree by drawing a random number uniformly on 1..
T]

* Remove the lineage belonging to the left tree and implement a normal coalescent process
for this new recombining lineage until it coalesces with another lineage

* Note that the new tree has a potentially different topology and MRCA
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Recombination approximations

Modified sequentially Markov coalescent (SMC”)

Marjoram, P. and Wall, J.D. 2006. Fast “coalescent’ simulation. BMC

Genet. 7: 16.

l MRCA
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Different topology, same MRCA

Same topology, same MRCA
l MRCA’

Different topology, different MRCA




fastsimcoal

» Uses the SMC’ algorithm for DNA sequences

» Uses a multiple recombination approach for other data types with loci
simulated at variable recombination distances:
» Allows for several recombinations events per tree and per branch

GG E

First recombination event Recombination events on Coal between two
discarded lineages are ignored recombined lineages

Coal between a recombined New tree Shared lineages between the two trees
wleage and a discarded lineage




