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Abstract

Gene expression analysis has become a ubiquitous tool for studying a wide range of human diseases. In a typical analysis we
compare distinct phenotypic groups and attempt to identify genes that are, on average, significantly different between
them. Here we describe an innovative approach to the analysis of gene expression data, one that identifies differences in
expression variance between groups as an informative metric of the group phenotype. We find that genes with different
expression variance profiles are not randomly distributed across cell signaling networks. Genes with low-expression
variance, or higher constraint, are significantly more connected to other network members and tend to function as core
members of signal transduction pathways. Genes with higher expression variance have fewer network connections and also
tend to sit on the periphery of the cell. Using neural stem cells derived from patients suffering from Schizophrenia (SZ),
Parkinson’s disease (PD), and a healthy control group, we find marked differences in expression variance in cell signaling
pathways that shed new light on potential mechanisms associated with these diverse neurological disorders. In particular,
we find that expression variance of core networks in the SZ patient group was considerably constrained, while in contrast
the PD patient group demonstrated much greater variance than expected. One hypothesis is that diminished variance in SZ
patients corresponds to an increased degree of constraint in these pathways and a corresponding reduction in robustness
of the stem cell networks. These results underscore the role that variation plays in biological systems and suggest that
analysis of expression variance is far more important in disease than previously recognized. Furthermore, modeling patterns
of variability in gene expression could fundamentally alter the way in which we think about how cellular networks are
affected by disease processes.
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Introduction

In studying biological systems, we tend to think of groups as being

defined by specific, measurable parameters, and of the important

differences between those groups as being defined by a significant

average difference in those parameters. Much of the language we

use in describing biological systems is based on this bias and we talk

about genes being expressed in a tissue at a particular level, or about

differences in gene expression between groups reflecting the

mechanism driving their phenotypic differences.

This view of biological systems has been extremely useful in that

nearly all of our understanding of biological systems is based on

interpreting average behavior. Variance in this context is only

used as a measure of the significance of those mean differences

(through the use of statistical measures such as a t-test or

ANOVA). Rarely has the variability across a population been

considered in the analysis of transcriptional differences between

populations. Arguably, variance has been largely ignored because

it has been considered solely in the context of experimental

reproducibility, and therefore something that must be reduced.

This was a reasonable bias in the early days of microarrays, but the

robustness and reproducibility of the current generation of array

platforms [1] allows us to look at additional drivers of variance in

gene expression studies. Increasingly there is evidence that

biological sources of variation may play an important role in

determining cellular and organismal phenotypes [2-8], as well as in

helping to explain a wide range of biological phenomena ranging

from reduced penetrance [9,10] to evolutionary fitness [11].
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The direct link between genetics and reduced penetrance,

expression variability and phenotype was elegantly demonstrated

in C. elegans by Raj and colleagues, who showed that variation in

the number of transcripts expressed in any individual cell, as well

as the number of cells expressing the transcript of interest, directly

influenced the development of the worm’s intestine [6]. Mutations

in key developmental transcription factors affected not just the

mean expression of target genes, but also the variance of their

expression levels. Their model proposed a threshold effect of

absolute gene expression on phenotype, where the availability of

the transcripts dictated cell fate. Penetrance of the mutant trait was

therefore determined by quantifiable variance in gene expression

levels.

Variation, in genetic and phenotypic terms, has long been

considered an important component of population fitness and

adaptability. Similarly, one way to interpret the association

between expression variance and phenotype is to consider how

this might play a role in determining phenotype. Consider a

pathway that plays a role in a developmental process or in a cell’s

response to a particular environmental stimulus. If the genes in

that pathway have very low variance, a natural interpretation is

that those genes are themselves highly constrained, and that the

spectrum of potential responses from activation of that pathway is

itself limited.

This interpretation was explored by examining the difference in

gene expression variance in neural stem cells and fibroblasts

derived from patients suffering from Schizophrenia (SZ), patients

suffering from Parkinson’s disease (PD), and healthy donors

(controls). We demonstrate how gene expression variance can be

used as a way to distinguish between phenotypic groups, the way

in which constraint provides information about network topology,

and to provide insight into the mechanisms associated with disease

and normal states.

Of course it should be noted that any analysis of variance must

be carefully considered in light of the methods used to collect and

analyze biological datasets. Variation in biological systems has

long been considered ‘‘noise’’ to be minimized either through

careful experimental design or through the use of data

normalization methods designed to improve comparisons between

individual samples. However variation includes both biological

and experimental (or random) effects and it is the former, rather

than the latter which is important in the current study.

In our analysis, we considered highly-constrained and lowly-

constrained genes, descriptors synonymous with low variance and

high-variance states, respectively. These definitions, in part, helped

to define our hypothesis: that the degree of variation in the

expression of the genes associated with a particular cellular

network is indicative of the plasticity [12] of that network. In this

sense, high variance is associated with increased plasticity and low

variance with diminished plasticity.

Our approach provides important evidence supporting the

hypothesis that variation is an essential feature of biological

systems and one that influences disease phenotype. In particular

we illustrated that patterns of variance in certain key pathways are

not random, but provide a potential mechanistic understanding of

the phenotypic differences that arise in the development and

progression of particular neurological diseases.

Results

Variance is not distributed randomly across signaling
networks

The olfactory neuroepithelium is a continually regenerating

tissue, and stem cells isolated from biopsied material give rise to

neurons and glia in culture [13], and in transplant models in the

rat [14,15]. Patient-derived human olfactory neurosphere-derived

(hONS) cells have been shown to be an informative tissue-specific

system for studying the etiology of human brain disorders like PD

and SZ [16,17]. In a previous study, gene expression data from

these hONS stem cell lines were used to identify disease-specific

cellular alterations by comparing absolute expression profiles of

hONS between donor groups [16]. Here, we use this same data set

to focus instead on patterns of variability as a means to assess how

hONS deviate from the normal population in PD and SZ donors,

and explore the implications that variability may have on these

disease processes.

Tissue biopsies from skin (fibroblasts) or the neuroepithelium of

the nose were obtained from nine Schizophrenia (SZ) and eleven

healthy control donors. Olfactory biopsies were taken from an

additional thirteen donors with Parkinson’s disease (PD) [16].

Adult stem cell lines are grown from olfactory biopsies for several

passages as primary cultures, then moved through a neurosphere

process to enrich for neural stem cells [13]. hONS cells are

monolayer cultures expanded from disaggregated neurospheres

[13,16]. Patient-specific lines were grown from primary olfactory

mucosa biopsies (primary) and hONS from all donor groups,

additionally skin fibroblast cell lines were grown from the SZ

patients and control donors. Genome-wide transcriptional profil-

ing was performed on individual donor lines with replication (see

Material and Methods). Principal component analysis (Figs. 4–6 in

Text S1) shows that the samples clustered by the disease status of

the donors. All donors used in this analysis were male.

Figure 1 presents an outline of our analysis pipeline. We first

examined the genome-wide expression variance distributions

between skin fibroblasts and hONS derived from the same donors

in the control group (Figure 2). Of the 22,184 probes represented

on the Illumina microarray; 14,986 probes were detected in at

least one cell type. To minimize experimental effects in our

analysis, great care was taken to standardize our laboratory

protocols and the assays that were performed. To explore the

potential contributions of experimental noise, we consider a

number of normalization approaches for microarray data and

show that these effects do not contribute to the differences that we

observe.

As a measure of variance, we used the coefficient of variation

(CV) which is computed for each gene by dividing the standard

deviation of its expression measures across a sample population by

its average expression. We designate highly-constrained genes as

those falling below the lower 25th percentile of the genome-wide

CV distribution based on all donors and lowly-constrained genes

as those above the upper 25th percentile; those genes in the range

Author Summary

Genes are a repository of information that provides the
framework for cellular processes, with the flow of
information from gene (DNA) to phenotype via an
intermediate molecule—the messenger RNA. We under-
stand that sequence variations in a gene may lead to
phenotypic variations, but less well understood is how
variation in the information flow itself might also impact
on phenotype. In this study we demonstrated that disease
phenotypes were correlated with expression variance. A
change in expression variance might infer that the genetic
networks representing information flow were less robust—
surprisingly, we found that too little and too much
variance were equally detrimental in the context of
neurological disease.

Expression Variance and Neurological Disease
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between the 25th and 75th percentile we refer to as the ‘‘Mid

Variability’’ gene set. Basing our analysis on CV values protects

against detecting patterns in variability influenced by trends in

absolute expression alone (Text S1).

Normalization procedures are assumed to reduce or stabilize

variance. To assess the impact of normalization on expression

variance, CV distributions were examined using five normaliza-

tion regimes and summarized in Figure 2: i) log2 transformed;

ii) log2 transformed and median normalised in the presence or;

iii) absence of non-detected probes; iv) log2 transformed and

quantile normalized; v) log2 transformed and robust spline

normalization. The distribution of expression values was consistent

across all of the normalization strategies, which most likely reflects

the high level of reproducibility of the raw data. CV was robust to

the normalization strategy used but was most impacted by

background correction or detection thresholds when using median

normalization: this is discussed further in the Text S1, however all

subsequent analyses were run on log2 transformed, quantile

normalized data. Background subtraction was not performed, but

data was thresholded using the Illumina detection scores. While

the absolute numbers of genes in the ‘low’, ‘medium’ and ‘high’

variance categories varied slightly between the normalization

methods, concordance was high (Figure 2B .75% overlap low-

variance genes; .85% overlap high-variance genes) and the

patterns in the underlying data types were highly reproducible

(Figs. 1–3 in Text S1).

Using gene expression data from hONS and skin fibroblasts

isolated from control donors, we next isolated the core attractor

pathways whose differential expression distinguish a normal

hONS stem cell expression phenotype, using the attract method

that we recently developed [18]. Rather than testing individual

genes, attract begins by using an ANOVA based method to test

gene sets defined by KEGG pathways for their ability to

distinguish between phenotypic states. Pathways ranked as

significant are then each decomposed into ‘‘synexpression

groups’’—subsets with expression profiles that are both highly

correlated and informative for distinguishing between phenotypes.

These synexpression groups are then expanded to include genes

with highly correlated profiles from within the original dataset,

producing a collection of ‘‘core pathway modules.’’

The top five attract modules were the MAPK signaling pathway,

the focal adhesion pathway, the purine metabolism pathway, the

Figure 1. Overview of analysis pipeline.
doi:10.1371/journal.pgen.1002207.g001
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neurotrophin signaling pathway and the cell cycle pathway

(Table 1), each of which has previously been linked to important

aspects of stem cell biology [19–21]. These modules were

significantly different between the cell types tested at the 0.05

level (after adjusting for multiple testing using the Benjamini-

Hochberg method). They were also the most ‘‘representative

pathways,’’ in the sense that they contained the largest numbers of

genes in the list of array probes significant between classes.

Overall we found 21 significant pathways (adjusted P-values

,0.05). However, many of these pathways were overlapping in

their gene content (see Table S1) and together represent three key

common biological themes—immune response, growth factor

signaling, and DNA replication—that are consistent with the

phenotypic differences between the cell types.

In overlaying variance onto these networks we noted that the

numbers of high-variance or highly constrained genes did not

follow the expected population patterns, with a trend towards

more high-variance genes across most of the pathways (Figure 3;

Fig. 7 in Text S1). The purine metabolism and cell cycle pathways

in particular had fewer low-variance and more high-variance

genes than expected (Chi-square goodness of fit P-value ,0.01

and P-value ,1.261026 respectively), an observation consistent in

the hONS and skin fibroblast datasets. In contrast, the

neurotrophin signaling pathway contained far fewer high-variance

genes than expected (Chi-square goodness of fit P-value ,0.01)

suggesting that this network was under greater regulatory

constraint.

Any analysis of variance must consider the contribution of

technical variation to the data. To address this issue we compared

the magnitude of the intra-individual expression variance with the

size of the inter-individual expression variance associated with

each donor group. Four additional donors had each contributed

two independently derived biopsies, resulting in four replicate

samples per donor (see Material and Methods and Text S3). The

intra-individual mean of the CV distribution was smaller than the

inter-individual CV mean, confirming that the technical variation

in this data set was less than the biological variation observed. We

next examined whether this observation held up when controlling

for differences in sample size, by constructing variance distribu-

tions based on the same number of samples (n = 4), and found this

trend persisted. Amongst the four individuals, differences in the

CV distributions, albeit slight were observed for the five core

pathway modules. Collectively these results suggest that repeated

sampling of the same individual is associated with less expression

Table 1. The top 21 most discriminating KEGG pathways between the neuronal stem cells obtained from the disease and healthy
control donor groups.

Rank KEGG Pathway ID KEGG Pathway Name Adjusted p-value
Number of Detected
Illumina IDs

1 4010 MAPK signaling pathway 0.01111 235

2 4510 Focal adhesion 0.03578 193

3 230 Purine metabolism 0.02908 143

4 4722 Neurotrophin signaling pathway 0.0003308 137

5 4110 Cell cycle 0.009490 132

6 4012 ErbB signaling pathway 0.001835 94

7 240 Pyrimidine metabolism 0.009490 88

8 4912 GnRH signaling pathway 0.04171 86

9 5220 Chronic myeloid leukemia 0.04171 86

10 5322 Systemic lupus erythematosus 0.0003308 76

11 4210 Apoptosis 0.04171 74

12 5221 Acute myeloid leukemia 0.04171 58

13 480 Glutathione metabolism 0.02949 45

14 3030 DNA replication 0.0003311 36

15 4672 Intestinal immune network for IgA production 0.01143 32

16 3440 Homologous recombination 0.002277 27

17 5332 Graft-versus-host disease 0.04447 27

18 5330 Allograft rejection 0.009490 26

19 5320 Autoimmune thyroid disease 0.03522 26

20 3430 Mismatch repair 0.009490 25

21 5310 Asthma 0.009490 15

All pathways were significant at the 0.05 level (after adjusting for multiple testing using the Benjamini-Hochberg method) and were ranked by the number of detected
probes represented.
doi:10.1371/journal.pgen.1002207.t001

Figure 2. Expression variance is stable under different normalization strategies. A. Assessing the impact of normalization strategies on
genome-wide variance distribution for the hONS stem cells and fibroblasts from the control group. B. Venn diagram demonstrating the geneset
overlap of low-variance (left) or high-variance (right) identified from representative normalization strategies. There was a .75% concordance in the
low-variance groups and a .90% concordance in the high-variance groups.
doi:10.1371/journal.pgen.1002207.g002
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variance, pointing to a strong genetic component in biological

variability.

Disease status alters the variability profiles in core
pathway modules

The distributions of expression variance for each of the patient

groups highlighted an unexpected observation. Using a two

sample t-test on log2 transformed CV values, we saw significant

deviations from the control pattern in the SZ group (P-value

,2.2610216), and also the PD group (P-value ,0.001). This

suggested that the SZ hONS lines demonstrated much less

variation in their genome-wide expression patterns than was

expected and in contrast, the PD hONS lines showed greater

variation in their genome-wide expression patterns (Figure 4A;

Text S2). Applying the same tests to identify disease-specific

differences in genome-wide average expression showed no

significant differences in either donor group.

We then investigated whether the differences in expression

variance observed at a whole genome level were also apparent in

our five core stem cell networks (Table 1). For each of these, we

found that the SZ and PD groups sit at opposite ends of the

variability spectrum (Figure 4C). The SZ group had a marked

reduction in variance signaling pathway, as evidenced by more

highly-constrained genes whereas the PD group had greater

variance than the control group. The deviation in frequency

distributions between the disease group and the control group was

statistically significant for both SZ and PD groups in hONS stem

cells, as assessed by a Chi-squared test with two degrees of

freedom.

One might anticipate that increased expression variance, as

seen in the PD group, is evidence of poor network integrity, a

model that has been suggested as important in complex diseases.

What was surprising, however, is the observation that the SZ

group has significantly reduced expression variability in these core

pathways, suggesting that both extremes of the variability

spectrum may be implicated in disease processes.

These disease-specific patterns were independent on the

particular cut-off used to define the regions of high and low

constraint in the expression variance distribution (Figure 4). When

more stringent cut-offs were applied (e.g. 5% and 10%) the same

general trend of reduced variance for the SZ group and increased

variance for the PD group was still observed.

Highly-constrained and lowly-constrained genes have
different functional roles as reflected by their position in
cellular networks

Disease status was associated with different proportions of lowly-

constrained and highly-constrained genes; this observation raised

the possibility that these two classes may play distinct roles in

maintaining or driving cellular phenotype. Using Gene Ontology

terms (cellular component, molecular function and biological

process categories) [22], we performed a representation analysis

for each set of highly-constrained and lowly-constrained genes in

the pathway modules for the three donor groups. We then mapped

these genes to networks based on highly-annotated protein-protein

interaction data and compared the patterns of transcriptional

constraint between phenotypic states.

We found that genes with high-variance/low constraints were

both functionally and physically involved at the periphery of signal

transduction pathways. In hONS cells, they functioned largely as

cell surface receptors and tended to be localized in the membrane,

transmembrane or extracellular matrix regions (Table S2). This

might suggest that the hONS were heterogeneous for expression of

growth factor receptors and as a population had dynamic

interactions with the extracellular environment. In contrast,

highly-constrained genes tend to function in signaling roles, such

as protein kinases and phosphatases (see Text S4). This might imply

that all of the cells in the hONS population were competent to

transduce signals through the MAPK pathway, and were only

restricted by the expression of receptors or the availability of ligands.

The hONS stem cells derived from SZ donors demonstrated

both loss of variability at the cell surface, and increased constraint

in the intracellular signaling molecules. For MAPK signaling, we

saw significant functional enrichment of signaling GO categories

(Table S2) for low-variance genes in the SZ and control groups,

while there was enrichment for high-variance genes in the PD

group. This suggests that MAPK signaling is particularly

important for distinguishing between these three groups.

Just as cellular distribution of highly-constrained genes was not

random, we observed a nonrandom pattern in the degree-

Figure 3. Distribution of variance patterns in the top 5 attract pathways for hONS and fibroblast cells. Chi-square goodness of fit was
used to determine if variance profiles differed significantly from the expected 25:50:25% patterns.
doi:10.1371/journal.pgen.1002207.g003
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Figure 4. Expression variance discriminates between disease groups. A. Box plots showing whole-genome phenotype-specific mean
expression levels and the corresponding CVs for hONS cells derived from the Control, PD, and SZ patient groups. As can be seen, there is no
difference in the average log2(expression) measures but noticeable differences in the CVs. Using a two-sample t-test, there is a significant difference
between the SZ and Control groups (p-value,2.2610216) and the PD and Control groups (p-value,0.0013). B. The observation of increase in high-
variance genes for PD and increase in low-variance genes for SZ persists with different percentile cutoffs applied to the variance distribution in the

Expression Variance and Neurological Disease
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distribution (connectivity) of genes based on their expression

variance (Figure 5). The lowly-constrained genes had on average, a

low degree whereas the highly-constrained genes were more highly

connected to other genes in the network; this shift from a random

distribution was marginally statistically significant for the control

group (Chi-squared test; P-value = 0.05958 for control group, P-

value = 0.1219 for SZ group, P-value = 0.09595 for PD group,

see Figs. 19 and 20 in Text S1), suggesting that not only are

constraints imposed on genes linked to specific functional roles but

they also have significantly distinct network topologies. Each

disease group was associated with distinct deviations in degree

distributions from those observed for the control group; the degree

distributions between high and low-variance gene sets became

more identical for the SZ group whereas in the PD group, the high

and low-variance distributions appeared reversed from those

observed in the control group. These observations suggest two

Figure 5. MAPK interaction networks and degree distribution density curves for the highly-constrained (red) and lowly-constrained
(green) genes. p-values assess the significance of how different the two degree distributions are. The ‘‘Mid Variability’’ genes, falling between the
25th and 75th percentile of CV values, are shown in gray for comparison.
doi:10.1371/journal.pgen.1002207.g005

MAPK signaling pathway. C. Ratios of gene counts for the attract pathways, showing a trend towards high-variance genes for PD and a significant
increase in low-variance genes for SZ.
doi:10.1371/journal.pgen.1002207.g004
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different vehicles in which normal regulatory control through a

signaling network may be disrupted or perturbed.

In comparing our three patient groups, we observed a consistent

correlation between the degree of a particular gene and its

expression variance, suggesting that transcriptional variability is an

inherent aspect of all cellular systems (Fig. 20 in Text S1). This is

consistent with our intuition that genes that are highly connected,

and therefore play a central role in signaling or other networks,

must be more tightly regulated than those that play more

peripheral roles, including as cell surface receptors and down-

stream effectors.

It may be that the increased expressivity of those genes

peripheral to the network provides a wider range of potential

phenotypic response to external stimuli. In this way, disease

processes that alter the variability in expression of particular genes

may influence phenotype so that reduced expressivity limits the

spectrum of response while increased expressivity tends toward loss

of regulation over the cell’s end-stage response.

Discussion

In genetics, the concepts of expressivity and penetrance describe

phenotype variability between individuals with shared genotypes

and across populations, respectively. The implicit explanations for

phenotypic variability are differences in genetic, epistatic, or

epigenetic interactions. In genomic analysis, we often see this

variability in terms of sequence or structural polymorphisms

within the genome [23] and focus our efforts on understanding the

link between genetic variation and phenotypic diversity. In this

context, low genetic variation leads to poor evolutionary fitness,

whereas the convergence of multiple variants on disease networks

is increasingly thought to contribute to disease states [24,25].

A key element in the central dogma of molecular biology is the

role played by RNA as an intermediary between gene and protein

(and ultimately with phenotype). In this light it is surprising that

variability of expression levels has received so little attention. This

may reflect the fact that in the analysis of gene expression data,

variance is often associated with technical artifacts rather than being

seen as an intrinsic property that reflects the normal range of

phenotypic heterogeneity. If technical noise intrinsic to the platform

was the major driver in variance, then one would expect these

random effects to affect experimental samples equally. Indeed, as

our goal was to do comparisons between phenotypic groups, we

made every effort to minimize experimental noise, beginning with

standardized protocols for sample collection and laboratory

handling, quality control during RNA extraction, and labeling

and hybridization together so as to avoid potential batch effects.

Given that we see specific biases in the variance profiles that

correlate in a meaningful way with phenotype argues that this is not the

case. Our results suggest that this variability is, in fact, a much more

important measure of phenotype than previously recognized and that

changes in the spectrum of expressivity may be fundamentally linked to

the development of distinct phenotypic states.

The expressivity of individual genes such as the pluripotency

factors Oct4 and Nanog has been highlighted by others as an

important contributor to phenotypic robustness of a population of

embryonic stem cells. Variance of gene expression in these cells is

both predictable and essential – providing a dynamic range of

pluripotency factors which is directly linked to the differentiation

potential of individual cells within that population [26,27]. If

expression variance of one or two key regulators is an important

modifier of phenotype, then it holds that this can be measured at a

pathway level as well. Even across cells derived from different

donors, the distribution of expression variance for a pathway is

predictable, and deviations from this correlate with disease

phenotypes. What are the likely sources of this ‘regulated noise’?

The reduced variance observed between hONS lines derived from

different biopsies from the same donor indicates a role for genetics.

One possible scenario is that genetic polymorphism might impose

a combinatorial impact on the expressivity of genes within a

network, and the consequent alteration of dynamic range of that

network outcome. Indeed, the degree of expression variance of a

reporter construct was found to be a heritable trait in S. cerevisiae

[28]. Epigenetic factors are also likely to play a key role in

expressivity at individual loci, and others have shown stochastic,

population-wide variance in epigenetic modification of key

developmental loci. With increasing evidence that expression

variance is an important phenotypic attribute of cell populations, it

holds that variance profiles may also reflect abnormal genetic or

epigenetic events contributing to disease phenotypes.

In this context, it is perhaps not surprising that the most

profound shifts in expression variance were found in hONS cells

isolated from SZ donors. SZ is a life-long psychotic disorder, with

age of onset in males in early adulthood and later in females. SZ is

considered a disease of neurodevelopment, based on epidemio-

logical, histological and genetic evidence [29–32]. It is clear that

SZ is a complex genetic disease with a strong environmental

component. There are several well replicated genome-wide studies

that have implicated common polymorphisms in the etiology of

the disease, although these account for a small component of the

heritability and an emerging theory is that polygenic risks explain

more of the genetic component of this disease. Reduced expression

variance of hONS networks provides fresh clues into potential

mechanisms underlying diseases like SZ. For example, if the

patterns of gene expressivity found in the hONS reflect those

found in the developing brain, then the orderly cascade of brain

development may be altered. In addition, it is feasible that an

overly constrained biological pathway would be less adept at

buffering environmental stressors.

Neuronal stem cells are the progenitors for neural cell states and

the development of brain is rooted in the cell fate decisions that

occur in these stem cells. Olfactory stem cells have been shown to

serve as a good surrogate for neuronal stem cells and stem cell

differentiation[14]. Our analysis of gene expression in olfactory

stem cells cultured from patients with SZ, PD, and matched

controls identified a number of key pathways that distinguished

these three groups, including key signaling and developmental

pathways. What was surprising about these pathways was that not

only was there a notable difference in expression, but that

expressivity, or variability in gene expression levels, was also

significantly different between these different diseases. Further,

when the expressivity was mapped to protein-protein interaction

networks, there were distinctly different patterns of transcriptional

constraint that depended on the connectivity of the proteins in the

network. Further, these patterns depended not only on disease

state, but also on the degree of connectivity within the

corresponding protein-protein interaction pathway.

In examining the network topology, we found that in the SZ

patients, there was significantly greater regulatory control over

genes at the highly-connected core of the corresponding pathways.

For example, in the MAPK pathway, SZ patients exhibited far less

expressivity in the kinases that represent the core of the pathway.

On the other hand, the PD patients had significantly fewer

constrained genes mapping to the same core pathway regions than

did controls. The increased variance associated with some proteins

such as receptors, may indicate that these proteins have fluctuating

turnover rates in the cell populations, which in turn will influence

the capacity of cells to interact with their environment.
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These data, together, paint a very interesting and compelling

picture of the mechanism associated with disease. One of the

defining characteristics of SZ is the disruption of normal cognitive

processes and this is reflected in fewer neural synapses in parts of

the brain. While it is no doubt a leap to interpret our results as

having a direct link to thought processes in the disease, one could

imagine that a high degree of constraint in key transcription factor

networks that play a role in cellular differentiation and

developmental processes. One could imagine that highly con-

strained transcriptional networks in neuronal stem cells could

reduce the spectrum of cellular phenotypes that could be derived

from those stem cells and reduce the plasticity resulting in the

brain and altering its potential responses and thought patterns.

It is worth noting that among the pathways that demonstrate

highly-constrained gene expression in our SZ patients are those

involved in signaling in cancer. One consequence of increased

constraints, and reduced plasticity, is defects in the network are more

likely to be disastrous. In this kind of model, defects in cancer-related

networks would lead to loss of those cells, preventing the types of

adaption observed in cancer development. Although there are

conflicting reports regarding the risk of cancer in schizophrenics, the

majority of reports suggest that patients with SZ are protected against

cancer in general, and from lung and colorectal, despite increased

smoking [33,34] and drinking habits [35] in this population.

Laboratory studies have also reported reduced tumor growth in

animal models of schizophrenia [36]. Although speculative, the high

degree of transcriptional constraint we found in the MAPK pathway

in SZ patients may explain, in part, these observations.

In contrast, disease states may arise where increased variance

changes the predictability of network outcomes, resulting in dysregu-

lation of the desired cell state. In PD, we observed an increase in the

expression variance of core signaling pathways, which we predict will

diminish the robustness of the network to external events. This may be

an essential element that is shared amongst diseases of aging.

Although SZ and PD represent very different conditions, our

results suggest that changes in expressivity relative to the normal

spectrum of variability, may play an important role in the

development of disease phenotypes. One possible way to interpret

this is in the context of models first proposed by Conrad

Waddington [37] and later refined by Stuart Kauffman [38].

Waddington and Kauffman envisioned what we can interpret as a

gene expression state-space landscape defined by possible gene

expression states. In this landscape, stable cell states represent fixed

points (Kauffman referred to these as ‘‘attractors’’) connected by

evolutionarily-defined ‘‘canals’’ representing the differentiation

pathways connecting distinct cell phenotypes. In this model, the

SZ patients would be characterized by more highly-constrained,

‘‘deeper,’’ canals, limiting the potential end states that one might

achieve during differentiation. PD patients, on the other hand,

could be characterized by a flattening of the same canals (what has

been referred to as ‘‘decanalization’’), increasing dysregulation of

the associated pathways and potentially allowing for a degradation

of the well-defined cellular end states that might be available.

While the potential importance of decanalization in disease has

been discussed [25], we believe that our results are the first to

suggest that over-canalization may be an equally important

process in developing disease phenotypes.

Materials and Methods

Ethics statement
This work uses public expression datasets from patient-derived

cells which were collected under the ethics approval of the Griffith

University ethics committee.

Gene expression data set
Illumina Human-Refseq8 v2 BeadChips (Illumina, Inc.) arrays

were used to capture genome-wide gene expression profiles; the

raw data was summarized using BeadStudio Version 3.1.7(Illu-

mina, Inc). Background correction and normalization methods

were performed using the R/Bioconductor lumi package. All

downstream analyses were performed using Quantile normalized

data, without background correction, and only probes passing the

Illumina detection threshold were included in variance analysis. A

probes was considered to pass the Illumina detection score if it had

a detection p-value #0.01 in at least 75% of individuals in the

same donor group, resulting in 14,986 probes. This expression

data is available from ArrayExpress under the experiment

accession number E-TABM-724.

Intra-individual variance
Illumina Human-Refseq8 v3 BeadChips (Illumina, Inc.) arrays

were used to collect genome-wide gene expression profiles of the

four replicate samples for each of the four donors. The donors

were made up of two healthy controls and two PD patients, and

each donor underwent two independently derived biopsies that

were each replicated twice, giving rise to four samples per donor.

The raw gene expression data set was summarized as above. The

data set was filtered using the same detection filter, and the subset

of 6,809 detected probes common to the v3 and v2 arrays was used

for the comparison of intra-individual and inter-individual

variance analysis. To gauge the effect of sample size on variance,

the inter-individual variance was calculated by computing CV

distributions based on a random subset of 4 individuals from each

donor group, and comparing these to the intra-individual CV

distributions that were calculated from the four samples for each

individual. From the 100 random subsets generated, we observed a

reduction in the difference between the inter-individual variance

and the intra-individual variance when the sample size was

reduced and fixed at four replicates.

Attract method
The attract package can be obtained from Bioconductor [http://

www. bioconductor.org/packages/devel/bioc/html/attract.html] and

is available as a module in the MeV microarray analysis software [39]

(http://www.tm4.org/mev). To identify activated core pathways

whose expression defines a control hONS phenotype, we ran attract

on an expression data set consisting of the skin fibroblasts and two types

of hONS lines from the control patients and a set of mesenchymal stem

cell lines from a group of unrelated individuals. Attract was run using

pathway modules defined by KEGG pathways represented in

Bioconductor (version 2.4.1, Biobase version 2.8.0 and illuminaHu-

manv2BeadID.db version 1.6.0).

Identifying low- and high-expression variance genes
A CV value was calculated for each detected probe by dividing

the standard deviation of its expression in a donor group by its

average group expression. Low and high-expression variance

genes were identified as those genes below and above the 25th

percentile of the genome-wide CV distribution based on values

from all donors.

Assessing the significance of disease status versus
healthy control group

P-values were obtained by comparing the counts of high,

medium and low constraint genes in each of the control, SZ and

PD groups and using a Chi-squared goodness of fit test where
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counts from the control group were designated as the expected

counts.

Representational analysis
For each of the top five pathway modules, we applied a

representational analysis to the set of highly-constrained and

lowly-constrained genes for each of the donor groups. We used

tools from the Bioconductor GOstats package (version 2.14.0, run

on R version 2.11.1). P-values were adjusted for using the

Benjamini-Hochberg method within each ontology class, donor

group and pathway module (Cellular Component, Molecular

Function, or Biological Process) and significant results obtained at

the 0.05 level. To focus on what functional terms were unique to

genes of altered constraint, we excluded significant GO terms that

appeared in both lists of highly-constrained and lowly-constrained

genes and retained only those GO terms that were unique to each

list. The significant GO terms for highly-constrained genes appear

in the Supplementary File.

Network topology p-values
A Kolmogorov-Smirnov test was used to test the degree

distributions of the lowly and highly-constrained gene sets. A

Gaussian kernel density estimator (the density function from R,

using the default method to select bandwidth size) was used to

produce the degree distribution density plots shown in Figure 4.

Literature-curated networks
Protein-protein interactions were defined using two knowledge-

based annotation systems, Ingenuity Pathway Analysis (IPA)

software and the GeneGo metacore tool. Both tools permitted

identification of highly curated protein-protein interactions; using

IPA we extracted the degree of connectivity for each gene in the

attract-networks and an image of the interaction network was

obtained from GeneGo.
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