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1 An Introduction to ABCtoolbox

ABCtoolbox was designed to perform Approxi-
mate Bayesian Computation (ABC) estimations
using various recently published algorithms in-
cluding MCMC without likelihood and Popula-
tion Monte Carlo. Due to its potential to interact
with almost any command line simulation soft-
ware, ABCtoolbox can be used to study problems
in different areas including genomics or popula-
tion genetics. This first chapter of the manual
is designed to give a short introduction into Ap-
proximate Bayesian Computations and the use
of ABCtoolbox. We advise the reader to start
with this section. A more detailed (mathemat-
ical) description of all methods implemented in
ABCtoolbox is given in Section 6 “ABC – the
Methodological Reference” on page 54.

1.1 A very short Introduction to ABC

1.1.1 Bayesian Statistics

With the advent of ever more powerful comput-
ers and the refinement of algorithms like Markov
Chain Monte Carlo (MCMC) or Gibbs sam-
pling, Bayesian statistics has become an impor-
tant tool for scientific inference during the past
two decades, especially in population genetics
(Marjoram and Tavare 2006). Using examples
from this field of science we will outline here
the basic principles of Bayesian inference in gen-
eral, and Approximate Bayesian Computations
in particular. Note, however, that the methods
are equally well applicable to any other model or
question.

Consider a modelM generating data D (DNA
sequence data, for example) determined by pa-
rameters θ whose joint prior density we denote
by π(θ). The quantity of interest is the poste-
rior distribution of the parameters which can be
calculated by the Bayesian rule

π(θ|D) = c · fM(D|θ)π(θ), (1)

where f(D|θ) is the likelihood of the data and
c is a normalizing constant. Consider the follow-
ing example: Imagine that the size of a given
population is of interest, but unknown. A crude
probability distribution of the population size is
available from “mark and recapture” data. This
distribution is the a priori information available
and hence the prior for the analysis. Assume

that a new effort is done and a collection of in-
dividuals from this population are sampled and
genetic data becomes available, for instance the
number of segregating sites at a given locus. In
a Bayesian framework, the first step to do is to
set up a model linking the population size (the
parameter of interest) with genetic data, in this
case the number of segregating sites. Then, the
likelihood function is derived for this model. The
best available estimate of the population size a
posteriori of the genetic analysis is then, given
by the Bayesian rule in equation 1, proportional
to the product of the prior and the likelihood
function, given the observed data D (the num-
ber of segregating sites in this example). In other
words, the probability distribution of the param-
eters θ before an experiment was conducted (our
a priori knowledge) is challenged by the outcome
of an experiment (data D).

1.1.2 Approximate Bayesian Computations

Unfortunately, the evaluation of the likelihood
function is far from trivial in complex models and
in many cases even intractable. However, as ini-
tially proposed by Tavare et al. (1997), stochas-
tic simulations can replace the likelihood: a can-
didate parameter vector θ is sampled from the
prior distribution and accepted if the simulated
vector of summary statistics s = (s1, . . . , sn)
is sufficiently “close” to the observed summary
statistics sobs (if ‖ s − sobs ‖< ε, a fixed tol-
erance level). The distribution of the accepted
parameter values is an estimate of the posterior.
Therefore, if it is possible to simulate data (sum-
mary statistics) from a model, Bayesian infer-
ence is possible even if the likelihood is of un-
known analytical form. But this at the cost of
some approximation: the likelihood is assumed
to be constant for all accepted summary statis-
tic vectors. More recently, improvements on the
rejection algorithm presented above have been
proposed, including an MCMC without likeli-
hood (Marjoram et al. 2003) and a Population
Monte Carlo sampler PMC (Sisson et al. 2007).
All these methods are generally subsumed un-
der the term likelihood–free inference or Approx-
imate Bayesian Computations ABC.
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1.1.3 Summary Statistics

In order to evaluate the distance between the
simulated data D′ and the observed data D,
the data needs to be summarized in a quanti-
tative form. This is easily done by calculating
a set of summary statistics on the full data D.
The choice of summary statistics, however, is a
tough one. Too few summary statistics may not
capture the characteristics of the model, which
leads to overall low power for parameter estima-
tion. Too many summary statistics, on the other
hand, may introduce random noise and eventu-
ally distort the estimation procedure (Wegmann
and Excoffier 2008). We generally recommend to
start with few, carfully picked summary statis-
tics or to use linear combinations as proposed by
Wegmann and Excoffier (2008). Some more de-
tailed comments on this issue are given in Section
5.2 “Choosing Summary Statistics” on page 44.

1.1.4 Post–sampling Adjustment

The likelihood–free approach introduced above
makes a tough assumption: the likelihood among
the accepted summary statistic vectors has to be
constant. While this assumption may hold for
very small tolerance levels ε, it is likely to re-
duce the precision of the estimates in most situ-
ations. Luckily we can expect that the truncated
model locally around sobs will exhibit a simpler
structure than the full model (for which likeli-
hood calculations are impossible). Indeed, a lin-
ear relationship between parameters and sum-
mary statistics is often observed locally around
sobs. Recently, Beaumont et al. (2002) intro-
duced a post–sampling regression adjustment,
taking the variation of the likelihood among the
accepted summary statistic vectors into account,
and greatly reduces the dependence on small tol-
erance values ε (and consequently speeding up
the ABC estimation). ABCtoolbox uses an ap-
proach similar in spirit that naturally embeds
into the standard Bayesian framework, which
in turn allows the application of well-known
Bayesian methodologies such as model selection
via Bayes factors. The main assumption is that
the likelihood follows a general linear model
(GLM) among the accepted summary statistic
vectors. Using standard regression techniques,
the likelihood function can be estimated from the
accepted parameter and summary statistic vec-
tors and used to compute the posterior densities.

1.2 Understanding the General Workflow
of ABCtoolbox

ABCtoolbox is a collection of programs that can
be pipelined to estimate model parameters un-
der various ABC algorithms. The package is de-
signed to make use of grid computing and can
be fully controlled via easy to understand in-
put files or the command line. We recommend
to use input files which can easily be modified
and reused at any time. An ABC estimation is
usually performed in two distinct steps: a large
set of simulations is performed first and a sub-
set close to the observed summary statistics sobs
is then used to estimate posterior distributions.
The package incorporates two main programs for
these steps (Figure 1): ABCsampler aims at pro-
ducing a large collection of simulations, resulting
in a matrix of model parameters and their as-
sociated summary statistics, and ABCestimator
is then used to calculate the marginal posterior
distributions from the stored simulations, with
or without regression adjustment.

ABCsampler samples model parameter values
from specified prior distributions, passes these
values to an external simulation program, calls
an external program calculating summary statis-
tics on the simulated data, and finally writes
the parameter values and the resulting summary
statistics into a file. Interaction with external
programs is flexible due to the possibility to pass
values via the command line or via input files.
This allows the use of simulation programs such
as SIMCOAL 2.0 (Laval and Excoffier 2004), ms
(Hudson 2002) or FREGENE (Chadeau-Hyam et al.
2008). Of course, ABCsampler can also interact
with a single program directly generating sum-
mary statistics from model parameters, such as
quantiNemo (Neuenschwander et al. 2008). De-
tails on how ABCsampler interacts with differ-
ent simulation programs and how to configure
ABCsampler to use a specific simulation program
is outlined in Section 2.4 “Using different Simu-
lation Programs” on page 13.

Importantly, ABCsampler is also fully flexible
in the number of programs to be called per it-
eration (Figure 1), which allows the combina-
tion of various types of data. For instance, the
same model parameters can be used to gener-
ate genetic and isotopic data using two differ-
ent simulation programs, respectively. By call-
ing a simulation program such as SIMCOAL 2.0
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Figure 1. ABC Flowchart Flowchart describing the individual steps of an ABC estimation by ABCtoolbox.
Black arrows indicate the standard approach. Alternative approaches including the use of two simulation pro-
grams are shown as dotted lines.

several times, genetic markers with different mu-
tational models (such as DNA sequences and
microsatellites) or different ploidy levels can be
used simultaneously. This feature is explained
in detail in Section 2.7 “Several simulations per
iteration” on page 18. Additionally, ABCsampler
offers the possibility to modify the output of a
simulation program prior to the summary statis-
tics calculation via scripts, which allows, for in-
stance, to reproduce observed patters of missing
data (see Section 2.6 “Modifying files at every it-
eration with bash scripts or programs (optional)”
on page 17).

Beside generating posterior distributions,
ABCestimator is used for validation by analyzing
a large set of pseudo-observed data sets at once.
For each of these data sets, accuracy measures
and the posterior quantiles of the known param-
eter values are computed, which are informative
about potential estimation biases (Wegmann and
Excoffier 2008).

1.3 Obtaining and Installing ABCtoolbox

ABCtoolbox can be obtained, together with this
manual, from the software page of the Compu-
tational and Molecular Population Genetics Lab
at the University of Bern: www.cmpg.unibe.ch.

1.3.1 Content of ABCtoolbox

Beside this manual and several example files,
ABCtoolbox contains the following programs or
scripts. For each piece of software, the section
describing it’s use is given in parentheses.

� ABCsampler (2)
� ABCestimator (3)
� transformer (4.1)
� cumuldens (4.2)
� strStats (4.3)
� glm (4.4)
� plotPosteriors.r (4.5);
� findPLS.r (5.2)

The package further ships with compiled versions
of the programs simcoal2 and arlsumstat for
convenience. They do, however, not belong to
the ABCtoolbox itself.

1.3.2 Licence

ABCtoolbox is free to use, distribute and mod-
ify under the terms of GNU General Pub-
lic Licence as published by the Free Software
Foundation; either version 3 of the licence, or
any later version. In particular ABCtoolbox
comes without any warranty. Note that
both, ABCsampler and ABCestimator contain
files from the newmat11 library to perform ma-
trix operations. The newmat11 library is not
published under the GNU General Public Li-
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cence but is published without any restric-
tion to incorporate it into any software, either
commercial or not. The newmat11 library is
available at http://www.robertnz.net. The pro-
grams simcoal2 and arlsumstat do not be-
long to the package and are distributed on their
own. Please check their respective websites at
www.cmpg.unibe.ch for information on their li-
cence.

1.3.3 Installing ABCtoolbox

Installing is straightforward: download the file
ABCtoolbox.gz and unpack it by typing

$ tar -xzvf ABCtoolbox.tgz

on Linux or on Windows using any zipping soft-
ware. The created folder will contain several
subfolders: one containing the source code of all
programs, one containing all precompiled bina-
ries, one containing all scripts and an additional
one with example files. Note that some Windows
users need to install cygwin (www.cygwin.com)
in order to use the precompiled binaries. In the
folder with example files, however, we provide
the standard cygwin .dll files such that the ex-
ample may run on many Windows computers
without installing cygwin. If the provided bina-
ries do not work on your system simply enter
the directories with the source code and compile
the programs yourself. We successfully compiled
all programs using g++ 4.3 on Linux and Win-
dows systems (using cygwin). Since file handling
and program execution is different between dif-
ferent operating systems, not all functionalities
of ABCsampler may be available in the Windows
version if compiled with different compilers. This
is namely the use of scripts as described in Sec-
tion 2.6 “Modifying files at every iteration with
bash scripts or programs (optional)” on page 17.
To use the whole functionality use the compila-
tion variable GCC with the g++ compiler.

1.4 Running ABCtoolbox – a quick start
guide

ABCtoolbox is a series of computer programs
for parameter estimation with various ABC al-
gorithms including rejection sampling (Tavare
et al. 1997), MCMC without likelihoods (Weg-
mann and Excoffier 2008) and PMC (Beaumont
et al. 2009). The package also includes a pro-
gram to perform a post–sampling adjustment,

which allows for model selection via Bayes factors
(Leuenberger and Wegmann 2009). The magic of
performing ABC estimations is to combine these
different pieces of software such as to build up the
desired ABC algorithm. Here we introduce the
basic setup for the standard rejection algorithm
and the use of the standard post–sampling ad-
justment. We will use the example files provided
in the subfolder exampleFiles. Please copy the
executables of ABCsampler and ABCestimator
into this subfolder when playing around with this
example.

Step 1: The Model The first important step
is to define the model in question. The model
should capture the main features influencing the
data, and yet be as simple as possible. It is very
difficult to get unbiased estimates with models
with more than about 15 parameters. Try to
start with the most simple model possible. An
extension is always possible. Once the model is
set up, it has to be parameterized. Use natu-
ral parameters whenever possible. While ratios
may be nice features, they are generally more
difficult to estimate. As an example we will use
here a simple population genetics model, given in
Figure 2: Consider a population of size N NOW
that was larger in the past and changed its size
T SHRINK generations ago. The ancestral pop-
ulation size is given by N ANCESTRAL. For this
model all necessary example files are provided in
the subfolder exampleFiles.

For each parameter of the model a prior dis-
tribution has to be defined. Prior distributions
are probability distributions of the model param-
eters and should summarize the current (prior)
knowledge of the parameters in question. Try to
avoid too large prior ranges. If your prior covers
several orders of magnitude, be aware that only
very limited weight will be given to small values.
In such cases, it is often advisable to use priors
on the logarithmic scale.

The model parameters used and the corre-
sponding prior distributions are specified in a
specific file with the extension .est. The spe-
cific structure of this file is outlined in Section
2.3 “Defining prior distributions - .est File” on
page 11. The corresponding .est–file is named
example.est.

Step 2: External Programs: The program
ABCsampler is used to generate a large set of
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Figure 2. A simple population genetics model This figure describes the model used as an example throughout
the manual. Consider a population of size N NOW that was larger in the past and changed its size T SHRINK
generations ago. The ancestral population size is given by N ANCESTRAL. For this model all necessary example
files are provided in the subfolder exampleFiles.

simulations with parameter values drawn from
the prior distribution. As mentioned above,
ABCsampler interacts with one or several ex-
ternal programs. In most cases two programs
are needed: one to simulate data, and one
to compute the summary statistics. We will
demonstrate the functionalities of ABCsampler
using the two freely available programs simcoal2
(Laval and Excoffier 2004) to generate data from
our simple model, and the program arlsumstat
to generate summary statistics on the output
of simcoal2. While both programs ship with
ABCtoolbox, they are distributed on their own
with their own licence (see above). We nonethe-
less provide some guidelines on their usage in
Section 5.4 “Using ABCtoolbox with simcoal2
and arlsumstat” on page 50. The binaries nec-
essary to play around with the provided example
are already present in teh example folder.

Step 3: Summary Statistics / Observed Data:
A set of summary statistics, on which the ABC
estimation will be based, has to be defined. The
potential summary statistics are given by the
chosen program to compute summary statistics.
The choice of summary statistics is nonethe-
less a tricky issue. As mentioned above, we
generally recommend to start with few, carfully
picked summary statistics or to use linear combi-
nations as proposed by Wegmann and Excoffier
(2008). Some more detailed comments on this is-
sue are given in Section 5.2 “Choosing Summary
Statistics” on page 44.

Once the set has been defined, compute these

summary statistics on the observed data. Pro-
vide them finally in a specific file named .obs–file
(see Section 2.9 “Passing the observed data: the
.obs file” on page 21). Note that ABCsampler
will only keep the summary statistics mentioned
in the .obs–file, even if the program to compute
the statistics outputs additional ones. The .obs–
file for our example is named example.obs and
is located in the subfolder exampleFiles.

Step 4: Configuring ABCsampler: ABCsampler
is designed to make use of grid computing and
can be fully controlled via an easy to under-
stand .input–file or the command line. We rec-
ommend to use an .input–file, which can eas-
ily be modified and reused at any time. A de-
tailed description on the format of the .input–
file is given in Section 2.2 “.input File” on page
11. The .input–file of our example is named
example.input and is located in the subfolder
exampleFiles.

The most tricky part is to tell ABCsampler
how to use the external programs. ABCsampler
is very flexible in the way it interacts with ex-
ternal programs and almost any command line
program can be used. Details on how to con-
figure ABCsampler to use a specific program is
outlined in Section 2.4 “Using different Simula-
tion Programs” on page 13 and Section 2.5 “Us-
ing different Summary Statistics Programs” on
page 16 for simulation programs and programs
to compute summary statistics, respectively.

Note that the choice of the simulation program
may have an influence on the parameterization of
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the model. For instance, simcoal2 requires the
ancestral size to be specified relative size of the
population. Fortunately ABCtoolbox offers the
possibility to define some parameters as equa-
tions from other (see Section 2.3.3 “[COMPLEX
PARAMETERS]” on page 12). We may therefore
keep the original parameterization and simply
add a new parameter which is the ratio of an-
cestral and current size.
ABCsampler also offers to use an MCMC with-

out likelihood or a Population Monte Carlo algo-
rithm. These algorithms require specific config-
urations, as is described in detail in Section 2.11
“Sampler Types” on page 22.

Step 5: Running sampler: Once ABCsampler
has been configured successfully, it has to be
launched in order to produce a large set of sim-
ulations:

$ ABCsampler example.input

This may take some time, depending on the
number of simulations to perform. To speed up
ABCsampler may be used on a grid (see Section
5.5 “Parallelizing ABCsampler” on page 51). The
output of several runs is easily concatenated (see
Section 5.5 “Parallelizing ABCsampler” on page
51). If ABCsampler detects a problem it will
print an error message (see Section 2.13 “Possi-
ble error Messages” on page 27). It is therefore
advisable to produce a few simulations on a host
machine in order to check if everything is fine,
before sending a job to the grid. Make sure all ex-
ternal programs used by ABCsampler are located
in the running directory or their location is accu-
rately listed in the .input–file. ABCsampler will
wait for any external program to finish. This is
problematic if an external program hangs (such
as simcoal2 does, if its inputfile contains an er-
ror). Try to launch the external program directly
to test if they are working fine.

Step 6: Computing Posterior Distributions:
ABCestimator is used to compute posterior dis-
tributions, with or without post–sampling ad-
justment. If you don’t have a specific rea-
son we recommend to use the post–sampling
adjustment, since it reduces the uncertainty
of the estimates in general. ABCestimator
is configured with a simple .input–file (see
Section 3.2 “.input File” on page 32). An
.input–file working for our simple example is

named estimator.input and is provided in
the subfolder exampleFiles. Simply launch
ABCestimator as follows:

$ ABCestimator estimator.input

Make sure the file containing the per-
formed simulations (from Step 5) is named
example output sampling1.txt, which is the
default name using the provided .input–file for
ABCsampler.

Step 7: Visualization: ABCtoolbox includes an
R script plotting posteriors directly from the out-
put of ABCestimator. Simply launch this script
on the command line as follows:

$ R --vanilla inputfile < plotPosteriors.r

where inputfile corresponds to the name of the
ABCestimator .input–file used in Step 6. A de-
tailed description on the use of this script is given
in Section 4.5 “Plotting Posteriors” on page 43.

Step 8: Validation: Unfortunately, ABC al-
ways leads to posterior distributions, whether
the underlaying assumptions are met or not.
It is therefore important to perform some ad-
ditional analysis to gain confidence in the re-
sults obtained. While all recommended vali-
dation steps are described in detail in Section
5.3 “Validation” on page 47, we show here how
to perform two of them. If performing the
post–sampling adjustment, ABCestimator com-
putes a p–value describing the fit of the esti-
mated general linear model to the observed data
(see Section 3.8 “Testing Model Fit” on page
35). The p–value is reported in the output of
ABCestimator on the same line as the marginal
density. If this p–value is very low, it is likely
that model used to generate the simulations is
inadequate. The second validation step intro-
duced here is to check for biased posteriors us-
ing pseudo–observed data sets (summary statis-
tics generated under the model with known pa-
rameter values). If the parameter values for
these pseudo–observed were randomly chosen
from the prior distribution we expect the pos-
terior quantiles (the position of the true values
within the posterior distribution) to be uniformly
distributed (see Section 5.3.2 “Checking for bi-
ased posteriors” on page 48). ABCestimator
computes posterior quantiles if a file with true
values is provided. The subfolder exampleFiles
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contains files with pseudoobserved data sets gen-
erated under our simple model with parame-
ter values drawn from the prior distribution
defined in example.est: pseudoObserved.obs
and pseudoObserved.true. This folder also
contains an .input–file for ABCestimator
pre–configured to use these pseudo–observed
data sets (pseudoObs.input). Simply launch
ABCestimator as follows:

$ ABCestimator pseudoObs.input

ABCestimator will generate a file named
ABC GLM quantilesOfTrueParameters.txt
containing the posterior quantiles for each model
parameter and for each pseudo–observed data
set. The subfolder exampleFiles also contains
a simple R script generating a pdf file with his-
tograms and p–values based on a Kolmogorov–
Smirnov test for each model parameter. Simply
launch the script as follows (given that R is in-
stalled):

$ R -- --vanilla < analyzeQuantiles.r

See Section 5.3.2 “Interpreting the Distribution
of Posterior Quantiles” on page 49 for explana-
tions on how to interpret these histograms. But
basically, everything is fine if all parameters pass
the test (note that a Bonferroni–correction may
be applied).

1.5 How to cite

We recommend users of ABCtoolbox to cite the
publication of this package as well as the papers
where the implemented methodology was pub-

lished originally:
D. Wegmann et al. (2009). “ABCbox1.0: A
Toolkit to perform various ABC Algorithms”.
In: Bioinformatics

When using an MCMC without likelihoods,
please cite additionally:
P. Marjoram et al. (2003). “Markov chain
Monte Carlo without likelihoods”. In: Pro-
ceedings Of The National Academy Of Sci-
ences Of The United States Of America 100.26.
Pp. 15324–15328
D. Wegmann and L. Excoffier (2008). “Efficient
Approximate Bayesian Computation coupled
with Markov Chain Monte Carlo without likeli-
hood”. In: Genetics

When using the PMC sampler, please cite addi-
tionally:
S. A. Sisson et al. (2007). “Sequential Monte
Carlo without likelihoods”. In: Proceedings of
the National Academy of Sciences of the United
States of America 104.6. Pp. 1760–1765
M Beaumont et al. (2009). “Adaptivity for ap-
proximate Bayesian computation algorithms:
a population Monte Carlo approach”. In:
Biometrika

When using any ABC–GLM regression adjust-
ment:
Christoph Leuenberger and Daniel Wegmann
(2009). “Bayesian Computation and Model Se-
lection in Population Genetics”. In: genetics
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2 Using ABCsampler

As mentioned above, the program ABCsampler
is designed to interact with two other programs,
one to perform simulations and one to calculate
summary statistics. The principle cycle, which
is repeated many times, proceeds as follows:
1) Parameter values for the model in question

are drawn from the appropriate prior distri-
butions.

2) These parameter values are then passed to the
simulation program resulting in a simulated
data set.

3) Then, the program calculating the summary
statistics is launched to calculate the desired
statistics on the simulated data set.

4) Finally, the resulting summary statistics are
stored in a convenient format.

Note that this cycle may be within an MCMC
framework or not, specified by the parameter
samplerType (see Section 2.11 “Sampler Types”
on page 22).

2.1 Launching ABCsampler

ABCsampler is a command line program
launched with one mandatory argument, the
name of the .input file. All necessary param-
eters are specified in the .input file (see Section
2.2 “.input File” on page 11). Suppose the in-
putfile is named name.input, the program has
to be launched as follows:

$ ABCsampler name.input

Additionally, parameters may be passed on the
command line. In that case, parameters given in
the .input file will be overwritten. The required
syntax is as follows:

$ ABCsampler name.input parameter=value

where parameter is the name of a parameter and
value is the corresponding value. For instance,

$ ABCsampler name.input nbSims=10000

launches ABCsampler to produce 10,000 simula-
tions.

There is no restriction for the number of pa-
rameters to be passed that way. Note, however,
that the program always requires the name of
an existing .input file as the first parameter.
ABCsampler writes a .log file specifying all the
parameters used, indicating the progress of the

simulations and printing important messages in
case of an error (see Section 2.13 “Possible error
Messages” on page 27).

2.2 .input File

An .input file is the most convenient way to
specify parameters for ABCsampler. One rea-
son is that the parameters used are stored in a
reusable fashion. Basically, an .input file is a
simple collection of pairs of parameter tags and
corresponding values, enriched with comments.
While each parameter–value pair has to be at the
beginning of a new line, the order is of no impor-
tance. Comments may either be added after a
parameter–value pair or given on a line on their
own. Note that all comments must be proceeded
with a double slash “//”. Empty lines may be
present anywhere within the file. A minimal
.input file is given in Figure 3. A complete list
of all available parameter tags is given in Section
2.12 “All Available Parameters for ABCsampler”
on page 25.

2.3 Defining prior distributions - .est File

The .est file is the key file where model pa-
rameters and corresponding priors are defined.
It consists of three sections, each of them is
started by one of the following identification
tags: [PARAMETERS], [RULES] and [Complex
PARAMETERS]. An example of a simple .est file
is given in Figure 4. The name of the .est file
is a mandatory parameter for ABCsampler and is
passed with the estName tag in the .input file
or via the command line (see above).

2.3.1 [PARAMETERS]

The section [PARAMETERS] is the only mandatory
section in an .est file. It defines the parame-
ters of the model and the corresponding priors.
Each line starts by indicating whether a param-
eter has to be treated as an integer (1) or not
(0). Then the parameter name follows. It may
contain any character except spaces, tabs and a
few characters with special meaning (see Section
2.4.1 “Hyper Priors” on page 14). The param-
eter’s name is followed by the definition of the
prior, starting by the distribution tag and two to
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//a simple inputfile for ABCsampler
samplerType standard
//only uniform priors
estName test_uniform.est
obsName test.obs
outName test_output
nbSims 100
writeHeader 1
//settings regarding the simulation program
simulationProgram simcoal2
simInputName test.par
simParam FILENAME#1#1#0 //see simcoal2 manual for details
//program to calculate summary statistics
sumStatProgram arlsumstat
simParam SIMINPUTNAME 0.arp#SSFILENAME#0#1 //see arlsumstat manual for details

Figure 3. An input file This is an example of a very simple .input file for the program ABCsampler. Each
line represents a pair of a parameter and a corresponding value. A complete list of all possible parameters is
given in Section 2.12 “All Available Parameters for ABCsampler” on page 25. Note that comments, indicated
with //, are possible on whole lines or after the declaration of a parameter.

four specific parameters. Currently, four differ-
ent distributions are available:

unif An uniform distribution X ∼ [a, b]. This
distribution is invoked with unif a b.

logunif A log-uniform distribution, correspond-
ing to the uniform distribution log(X) ∼
[log(a), log(b)]. This distribution is invoked
with logunif a b

norm A truncated normal distribution with
X ∼ N (µ, σ) truncated such that
a ≤ X ≤ b. Such a distribution is spec-
ified with norm µ σ a b.

lognorm A log-normal distribution such that
log(X) ∼ N (µ̂, σ̂) with µ̂ and σ̂ chosen
such that the resulting distribution has
mean µ and standard deviation σ in the
natural scale. The distribution is truncated
at a ≤ X ≤ b. Such a prior distribution is
specified with lognorm µ σ a b.

2.3.2 [RULES]

In some cases it may be desirable to limit the
prior distribution of a parameter by the value
of another parameter. For instance, the sim-
ple model implied in the example .est file in
Figure 4 corresponds to a model where a pop-
ulation suffered from a reduction in size (N NOW

< N ANCESTRAL). In such cases it is possible to
specify a rule in the section [RULES] of the
.est file. Possible signs for rules are > or <.
On the left side of the relation sign, a name
of a model parameter specified in the section
“[PARAMETERS]” is required. This model param-
eter will be updated if the rule is not matched 1.
On the right hand side of the relation sign ei-
ther a model parameter or an equation including
numbers and model parameters are allowed. A
detailed description on equations will be given in
Section 2.3.3 “[COMPLEX PARAMETERS]” on page
12. Note, however, that only model parameters
from the section [PARAMETERS] may be used. Be
aware that ABCsampler will only accept param-
eter vectors satisfying all rules. If a rule is vi-
olated, the whole parameter vector will be dis-
carded and a new one generated form the prior
distribution.

2.3.3 [COMPLEX PARAMETERS]

The last section, specified with the tag [COMPLEX
PARAMETERS], allows the declaration of model
parameters, which are calculated from other
model parameters. In our example, for instance,
the ancestral population size N ANCESTRAL has to
be passed relative to the current population size
N NOW to simcoal2. Since it was preferred in this

1Basically, new values are drawn from the prior distribution of this parameter, until the rule is matched.
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//Priors for the test model
[PARAMETERS]
1 N_NOW unif 100 10000
1 N_ANCESTRAL unif 100 10000
1 T_SHRINK unif 10 100
0 MUTATION norm 0.0001 0.0010 0.0005 0.0002

[RULES]
N_NOW < N_ANCESTRAL

[COMPLEX PARAMETERS]
0 N_ANCESTRAL_RELATIVE = N_ANCESTRAL / N_NOW

Figure 4. An .est – file This is an example of a very simple .est– file for the program ABCsampler. Among
the three sections, all embraced with squared brackets, only “[PARAMETERS]” is mandatory. For a detailed
description see Section 2.3 “Defining prior distributions - .est File” on page 11.

case to define the prior distribution in absolute
values, we need to define a new model parameter
as an equation of others. Each line in this sec-
tion defines a new model parameter and starts
by indicating whether the parameter has to be
treated as an integer (1) or not (0), followed by
the desired name of the model parameter. After
that, a “=” sign is followed by an equation.

Equations may contain numbers and model
parameters specified earlier in the .est file, that
is, in the section [RULES] or in the same section,
but above. Brackets may be used as well as the
four standard operators +, -, * and /. Addition-
ally, four functions are currently defined:

log(x) calculates the natural logarithm of x.
log10(x) calculates the logarithm of x to the

base of 10.
exp(x) raises e to the power of x.
pow10(x) raises 10 to the power of x.
abs(x) returns the absolute value of x.

Each function has to be associated with
brackets. An example of a more com-
plex equation, based on the model pa-
rameters defined in Figure 4, is the fol-
lowing: LOG_THETA=log(4*N_NOW*MUTATION).
Since all equations are interpreted from left
to right, be careful to use necessary brack-
ets. For instance, 1+T_SHRINK/N_NOW 6=
1+(T_SHRINK/N_NOW). Note that any string
which does not match a model parameter’s name
will be converted into a floating point number.
Therefore, misspelled model parameters will be
treated as 0.0. Also, ABCsampler does not report

an error if an equation contains a model param-
eter not specified earlier. But ABCsampler will
always use the value of the previous iteration to
calculate the equation. Note that the function
abs can be used to produce an if–like structure
since

1
2

(
1 +

A−B
abs(A−B)

)
(2)

is 1 if A > B and 0 otherwise.

2.4 Using different Simulation Programs

The simulation program to use is a mandatory
parameter for ABCsampler and is passed with
the simulationProgram tag in the .input file or
via the command line (see Section 2.1 “Launch-
ing ABCsampler” on page 11). In principle,
any simulation program can be coupled with
ABCsampler, given that the program can receive
model parameters from ABCsampler. This is cru-
cial since ABCsampler draws the parameters of
the model from the prior distributions and passes
them to the simulation program. There are two
ways how ABCsampler can pass model parame-
ter values to a simulation program: 1) via files
or 2) via the command line. Many simulation
programs require an input file where parame-
ters are specified. For instance, simcoal2 re-
quires a .par file where the parameters and the
model to simulate are specified (see online docu-
mentation for simcoal2 at www.cmpg.unibe.ch).
If the name of an input file for the simulation
program is given (with the tag simInputName),
then ABCsampler parses this file and replaces
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all occurrences of prior or complex prior names
with its current value. In the .par file
shown in Figure 5, in the line “T SHRINK 0 0 1
N ANCESTRAL RELATIVE 0 0”, for instance, the
two tags T SHRINK and N ANCESTRAL RELATIVE
are replaced by the current value of these two
model parameters. Remember that all model
parameters and their associated prior distribu-
tions are defined in the .est file (see Section 2.3
“Defining prior distributions - .est File” on page
11). Some simulation programs require several
files to be parsed. In order to have ABCsampler
parsing several files, simply specify several file
names with the parameter simInputName, delim-
ited with a “#”.

The arguments to pass to the simulation pro-
gram are specified with the parameter simParam,
either in the .input file or on the command
line. Different arguments are separated by “#”.
The individual arguments may be any charac-
ter string, but may not contain a “#” nor a “;”.
There are two tags with special meaning:

SIMINPUTNAME Instead of this tag, the name
of the input file defined with simInputName
will be passed. Since the .input file for
the simulation program will be parsed, the
name passed is the name of the parsed file,
which is similar to the one specified with
simInputName, but with a -temp added
before the extension. If several files are
specified, use the tags SIMINPUTNAME0,
SIMINPUTNAM1 etc. Actually, SIMIN-
PUTNAME is a synonym for SIMINPUT-
NAME0.

SIMNUM Instead of this tag, the number of the
current simulation is passed.

As mentioned above, model parameters may
also be passed via the command line. This
is done simply by putting the name of the
model parameter as an argument. For in-
stance, simParam SIMINPUTNAME#N NOW will tell
ABCsampler to launch the simulation program
with two arguments: firstly, the name of the
input file for the simulation program and sec-
ondly, the current value of the prior N NOW. If
a model parameter is constant for all simula-
tions, its value may be passed via a file or via
the command line as a character. For instance,
simcoal2 requires beside the name of a .par file
three additional arguments: the number of sim-
ulations to perform, whether genotypic or hap-

lotypic data is generated and whether the ga-
metic phase is known. Of course, simcoal2
is requested to perform a single simulation per
iteration. Also, whether haplotypic or geno-
typic data is produced does in most cases not
change between iterations. The gametic phase
is most likely either known or unknown for all
simulations aswell. For simcoal2 the parame-
ter simParam may therefore be specified like this:
simParam SIMINPUTNAME#1#1#0.

2.4.1 Hyper Priors

ABCsampler also allows for different types of hy-
per priors to be used. In such cases, the cur-
rent value of one model parameter specified in
the .est file is used to shape the prior distri-
bution from which individual values are then
drawn. For instance, a prior on the average
mutation rate could be defined as a model pa-
rameter in the .est file, but individual muta-
tion rates for different loci might follow a nor-
mal distribution. The distribution of individual
mutation rates corresponds to the prior distribu-
tion, the distribution of the mean of the muta-
tion rate thus to the hyper prior. In order to
use a model parameter from the .est file as a
hyper prior, the tag of this model parameter is
preceded by an additional parameter enclosed by
a specific character identifying the type of prior
to be used for individual values. An example:
while parsing the input file for the simulation
program, the phrase $0.0001$MUTATION will be
replaced by ABCsampler by a random value from
a normal distribution with mean equal to the cur-
rent value of the model parameter MUTATION and
standard deviation 0.0001 (see Figure 5). There-
fore, the prior distribution on the model param-
eter MUTATION is in fact a hyper prior. Note that
the parameter between the special character may
also be a tag of a model parameter specified in
the .est file. As an example, one might specify
an additional hyper prior on the standard devi-
ation of the normal distribution for individual
mutation rates by defining a model parameter
in the .est file and using its tag as parame-
ter for the normal distribution (between the two
“$”). When using model parameters as hyper
priors, the following prior distributions are cur-
rently available:

Gamma (%) The phrase %ARG%PARAMETER will
be replaced by a value drawn from a
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//Parameters for simcoal2
1 samples to simulate
//Deme sizes
N_NOW
//Sample sizes
20
//Growth rates
0
//Number of migration matrix
0
//Historical events
1
T_SHRINK 0 0 1 N_ANCESTRAL_RELATIVE 0 0
//Number of independent chromosome
3 1
//Number of contiguous linkage blocks
1
//Data type, No. loci, Recomb. rate, optional parameters
MICROSAT 1 0.000 $0.0001$MUTATION 0 0
//Number of contiguous linkage blocks
1
//Data type, No. loci, Recomb. rate, optional parameters
MICROSAT 1 0.000 $0.0001$MUTATION 0 0
//Number of contiguous linkage blocks
1
//Data type, No. loci, Recomb. rate, optional parameters
MICROSAT 1 0.000 $0.0001$MUTATION 0 0

Figure 5. A par file This is an example of a .par file for the program simcoal2 specifying the simple popula-
tion genetics model described in the text. ABCsampler parses this file prior to launching simcoal2Ẇhile parsing,
ABCsampler replaces all occurrences of prior tags specified in the .est file by the current value of this parameter.
Also, hyperpriors may be used as is done here for the individual mutation rate of the different loci. See text for
more explanations.

gamma distribution Γ(ARG, ARGCUR), where
CUR is the current value of the parameter
PARAMETER specified in the .est file. If ARG
is the name of another model parameter,
its current value will be used. Otherwise,
it will be converted into double. Note that
this leads to zero if ARG is a character string
different from any model parameter spec-
ified in the .est file. Such a setting was
introduced with ARG = 20 in Excoffier et
al. (2005) for individual mutation rates.

Beta (&) The phrase &PARAMETER will be re-
placed by a value drawn from a beta distri-
bution β(a, b), where a = 0.5 + 199×CUR
and b = a×(1−CUR)

CUR and CUR is the current
value of the parameter PARAMETER specified
in the .est file. Note that there is no addi-

tional parameter to pass for the Beta dis-
tribution. This type was used in Excoffier
et al. (2005).

Normal ($) The phrase $ARG$PARAMETER will be
replaced by a value drawn from a normal
distribution N (CUR, ARG) with mean CUR,
which is the current value of the param-
eter PARAMETER specified in the .est file,
and standard deviation ARG. If ARG is the
name of another model parameter, its cur-
rent value will be used as the standard de-
viation. Otherwise, it will be converted
into double. Note that this leads to zero
if ARG is a character string different from
any model parameter specified in the .est
file.

Truncated Normal (!) Different to the normal
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hyperprior mentioned above, this distribu-
tion is truncated at zero and therefore only
returning positive values (≥ 1 if integers
are requested). To be specific, the phrase
!ARG!PARAMETER will be replaced by a
value drawn from a normal distribution
N (CUR, ARG) with mean CUR, which is the
current value of the parameter PARAMETER
specified in the .est file, and standard de-
viation ARG. If ARG is the name of another
model parameter, its current value will be
used as the standard deviation. Otherwise,
it will be converted into double. Note that
this leads to zero if ARG is a character string
different from any model parameter speci-
fied in the .est file.

Lognormal (#) The phrase #ARG#PARAMETER
will be replaced by the value 10x, where x is
drawn from a normal distribution N (CUR,
ARG) with mean CUR, which is the current
value of the parameter PARAMETER speci-
fied in the .est file and standard deviation
ARG. Note that both, CUR and ARG are
in log scale. If ARG is the name of another
model parameter, its current value will be
used as the standard deviation. Otherwise,
it will be converted into double. Note that
this leads to zero if ARG is a character string
different from any model parameter speci-
fied in the .est file.

Note that hyper priors are currently not sup-
ported when prior values are passed to the sim-
ulation program on the command line.

2.4.2 INTERNALGLM

ABCtoolbox includes a small simulation pro-
gram, termed glm, designed to play around with
the different sampler types (see Section 4.4 “Us-
ing glm” on page 42). Actually, ABCsampler
features an internal version of the same pro-
gram, which can speed up the usage of this
tool massively. INTERNALGLM behaves like
a true simulation program and has also to be
specified in ABCsampler as such. In order to
use it, simply set the argument of the parame-
ter simulationProgram to “INTERNALGLM”
and specify the arguments to pass to it with
simParam, just as for any other simulation pro-
grams. INTERNALGLM takes exactly the same
arguments as the program glm (see Section 4.4
“Using glm” on page 42).

2.5 Using different Summary Statistics
Programs

The simulation program used must either write a
file with summary statistics directly (see Section
2.5.2 “Running ABCsampler without a program
to calculate summary statistics” on page 17) or a
file which can be analyzed by another program to
calculate summary statistics. In our simple ex-
ample we use simcoal2 to simulate genetic data
under a given set of parameters. The output
of simcoal2 serves directly as an input file for
arlsumstat, which calculates then the summary
statistics from the simulated data. The pro-
gram to calculate summary statistics is indicated
with the parameter sumStatProgram. Note that
this is an optional parameter. If not defined,
ABCsampler will assume that there is no need to
launch a specific program to calculate summary
statistics. This may either be the case if the sim-
ulation program writes a file with the summary
statistics itself or if a bash script is called to do
so (see Section 2.6 “Modifying files at every iter-
ation with bash scripts or programs (optional)”
on page 17).

If a program to calculate summary statistics
is defined, most likely some arguments have to
be passed to this program. These parameters
are specified with the parameter sumStatParam,
which has a similar syntax as the tag simParam
defined above. Different arguments are sepa-
rated by “#” and the individual arguments may
be any character string but may not contain a
“#” nor a “;”. There exist three tags with spe-
cial meaning:

SIMDATANAME Instead of this tag, the name
of the file with the simulated data will
be passed. This name is defined with
simDataName (see below).

SSFILENAME Instead of this tag, the name of
the file to which the program is requested
to write the summary statistics is passed.
This name is defined with sumStatFile
(see below).

SIMNUM Instead of this tag, the number of the
current simulation is passed.

The name of the file with the simulated data
written by the simulation program has to be
specified with the parameter simDataName. In
many cases the name is a derivate of the input file
name for the simulation program, that is, if only
prefixes and suffixes are added. In such cases it
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is advisable to use the tag SIMINPUTNAME as an
identifier for the part of the filename identical
to the name of the input file of the simulation
program (without extension). For instance, the
name of the output file written by simcoal2 is
identical to the input file, except the suffix “ 0”
and the new extension .arp. This may be coded
like this: simDataName SIMINPUTNAME 0.arp.
Of course, the file name of the simulated data
may also be given in full. If several simula-
tions are performed per iteration, however, the
tag SIMINPUTNAME becomes especially handy (see
Section 2.7 “Several simulations per iteration” on
page 18).

2.5.1 File with computed summary statistics

The name of the resulting file, from which
ABCsampler will read the calculated sum-
mary statistics, can be specified with the
parameter sumStatFile. If the parameter
sumStatFile is not provided, the default value
summary stats temp.txt is assumed. This
file name may be passed to the program
calculating the summary statistics with the
tag “SSFILENAME” (see above). Note that
ABCsampler requires that the file of summary
statistics consists of two lines: a first line with
the names of the summary statistics and a second
line with the corresponding values. The different
columns have to be separated either by a tab or a
whitespace. If the program computing summary
statistics does not provide a file with these spec-
ification, a script may be launched at the end of
every iteration, bringing the summary statistics
in the right form (see Section 2.6 “Modifying files
at every iteration with bash scripts or programs
(optional)” on page 17).

2.5.2 Running ABCsampler without a program
to calculate summary statistics

If no program to calculate summary statistics is
specified with the parameter sumStatProgram,
ABCsampler assumes that the simulation pro-
gram (or a script / program launched after the
simulation were performed, see below) provides
a file with the computed summary statistics. If
the computed summary statistics are not avail-
able in the requested form, ABCsampler is not
able to read them correctly (see above). In or-
der to deal with this, a script may be launched at

the end of every iteration, bringing the summary
statistics in the right form.

2.6 Modifying files at every iteration with
bash scripts or programs (optional)

ABCsampler allows for bash scripts or programs
to be launched before and after each simulation
and before and after the computation of sum-
mary statistics. This provides a possibility to:

1) change the input file of the simulation pro-
gram before it is parsed by ABCsampler,

2) modify the output of the simulation program
before passing it to the program computing
summary statistics, and

3) modify the output of the program comput-
ing summary statistics before it is read by
ABCsampler.

Note that this feature is only available on a
Unix platform and if ABCsampler was compiled
with the “ GCC ” compiler variable (see Section
2.14 “Compilation” on page 31). The scripts or
programs to be launched are given with the pa-
rameters launchBeforeSim, launchAfterSim,
launchBeforeSS and launchAfterSS. The
arguments for the scripts / programs
are defined with launchBeforeSimParam,
launchAfterSimParam, launchBeforeSSParam
and launchAfterSSParam. Individual argu-
ments are separated by “#” and the arguments
may be any character string but may not con-
tain a “#” nor a “;”. Just as for the simu-
lation program, for the scripts indicated with
launchBeforeSim and launchAfterSim, the
same tags with special meaning exist and prior
values may be passed by putting their name
as arguments (see Section 2.4 “Using different
Simulation Programs” on page 13). For the
scripts indicated with launchBeforeSSParam
and launchAfterSSParam, the same tags with
special meaning exist as for the program calcu-
lating the summary statistics (see Section 2.5
“Using different Summary Statistics Programs”
on page 16).

The script or program indicated with
launchBeforeSim will be launched after the up-
date of parameter values from the priors but be-
fore the input file for the simulation program is
parsed. This allows to change the input file of the
simulation program, according to priors. Sup-
pose we aim at simulating an island model with
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a prior on the number of islands with simcoal2.
The number of islands can not be passed simply
to simcoal2, since it requires each population
to be specified explicitly. We could, however,
write a small script generating input files for
simcoal2, tell ABCsampler to launch this script
in each iteration and to pass the number of is-
lands drawn from a prior distribution to this
script as an argument.

The script or program specified with
launchAfterSim will be executed just after the
simulation program. This allows to change the
output of the simulation program before calcu-
lating summary statistics. Suppose there are
some parts of the data missing in the observed
data set. Unfortunately simcoal2 does not al-
low to simulate missing data. A workaround
may be to write a script modifying the output
of simcoal2 and to set some parts of the data
as missing data before calculating the summary
statistics.

The script or program specified with
launchBeforeSS will be executed just be-
fore the program to calculate summary statis-
tics is launched. The scripts specified with
launchAfterSim and launchBeforeSS differ
mainly in the possible arguments (tags with spe-
cial meaning). A striking difference between
these scripts exists only if several simulations
are performed per iteration (see below).

The script or program specified with
launchAfterSS will be executed after the termi-
nation of the program calculating the summary
statistics, but before ABCsampler attempts to
read the computed summary statistics. This is
especially handy if the output of the program cal-
culating summary statistics does not match the
required specifications (see Section 2.5.1 “File
with computed summary statistics” on page 17).

Before launching the loop of simulations,
ABCsampler performs a single simulation for
testing purposes. That way ABCsampler tests
for the existence of all necessary files and ad-
justs internally the data storage system. This
behavior is of importance if scripts are used to
extract some data, since the script will be called
once more than there are simulations outputted
by ABCsampler. Suppose you use a script to
extract some parts of the simulated data ev-
ery iteration and store this data as an addi-
tional line in a file. This file will consist of one
simulation more than is specified with the pa-

rameter nbSims, since the script will also be
launched on the first simulation used for testing
and adjusting. To get rid of the first line of a
text file is easy under a Unix system, just use
$ tail -n+2 filename > new filename

2.7 Several simulations per iteration

It is possible to tell ABCsampler to launch sev-
eral simulation per iteration. The parameter
runsPerParameterVector controls the number
of repeats with exactly the same parameter vec-
tor. If runsPerParameterVector > 1, several
simulations with the same model parameter val-
ues will be launched per iteration. The simulated
summary statistics of all these simulations are
outputted. In many cases, however, it may be de-
sirable to launch several simulations per iteration
with different simulation programs or different
ways to compute summary statistics. This may
be required, for instance, if the simulation pro-
gram or the program computing summary statis-
tics are not able to deal with the whole data set.
As a population genetics example, suppose the
observed data consists of DNA sequences and mi-
cro satellites (STRs). While simcoal2 can sim-
ulate both marker types at once, arlsumstat is
not capable of analyzing them in one run. There-
fore we request ABCsampler to run two indepen-
dent simulations, one with DNA sequences and
one with STRs. For a detailed description on
how to achieve this, see Section 5.7 “Using dif-
ferent Marker Types with simcoal2” on page 52.
ABCsampler may be ask to 1) call the simu-

lation program several times or to 2) call the
program computing summary statistics several
times independently (see below for a detailed de-
scription on how to chieve this). In each iteration
ABCsampler performs the following steps:

1) New values for all model parameters are
drawn from their respective prior distribu-
tions.

2) The following steps are repeated for all files
given by the parameter simInputName:
2.1) If requested, the script or program

defined with launchBeforeSim is
launched.

2.2) The input file for the simulation program
is parsed.

3) Then, the following steps are repeated for all
files given by the parameter simInputName:
3.1) The simulation program, specified with
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simulationProgram, is launched.
3.2) If requested, the script or program de-

fined with launchAfterSim is launched.
4) Then, the following steps are repeated for all

files given by the parameter simDataName:
4.1) If requested, the script or program de-

fined with launchBeforeSS is launched.
4.2) If requested, the program to compute

summary statistics is called.
4.3) If requested, the script or program de-

fined with launchAfterSS is launched.
4.4) ABCsampler reads the computed sum-

mary statistics

Note the difference between the scripts
indicated with launchAfterSim and
launchBeforeSS: while the first is launched for
each simulation step, the second is launch for
each step where summary statistics are com-
puted. Also be aware that the two modes of gen-
erating several simulations per iteration, namely
using the parameter runsPerParameterVector
or one of the modes described below, are by no
means exclusive. ABCsampler repeats the whole
loop depicted above runsPerParameterVector
times.

2.7.1 Several calls of the simulation program
per iteration

It is possible to tell ABCsampler to launch sev-
eral simulations per iteration. This is specified
by giving several filenames with the parameter
simInputName, delimited by a “;”. For instance,
simInputName name1.par;name2.par will tell
ABCsampler to launch the simulation program
twice, once for each file specified.

Be aware that in every iteration, all data will
be simulated first, before any attempt to calcu-
late summary statistics. Therefore, ensure that
the program generating simulated data sets does
not override previous results in the iteration.
This can be achieved in two different ways:

� If possible, the name of the resulting data
file may be passed to the program perform-
ing the simulation (see Section 2.4 “Us-
ing different Simulation Programs” on page
13).

� A script may be called after each simula-
tion to change the name of the file with the
generated data (see Section 2.6 “Modifying
files at every iteration with bash scripts or
programs (optional)” on page 17).

It is not necessary to use the same simu-
lation program for the different files, simply
specify several programs with the parameter
simulationProgram by delimiting them with a
“;”. If only one simulation program is given, the
same one will be used for all files. If you spec-
ify several simulation programs, however, their
number has to match the number of files speci-
fied with simInputName. Also, you have to spec-
ify the arguments to pass with the parameter
simParam for each simulation program, even if
the arguments are the same for the different pro-
grams.

Similar, also the arguments passed to the sim-
ulation program(s) may be specified differently
for the different files, again by giving several ar-
gument lists by the parameter simParam, sepa-
rated by a “;”. Again, if only one argument list
is given, the same arguments will be passed to
all simulations. Note that in this case, the pre-
defined tags may be of special significance (see
Section 2.5 “Using different Summary Statistics
Programs” on page 16).

Finally, if no input file for the simulation
program is used, several simulations per it-
eration are still feasible by specifying sev-
eral simulation programs with the parameter
simulationProgram or several argument lists
with simParam, or both. Note that the same
simulation program or argument list may also
be given several times.

While it is possible to specify a single script to
be launched before the simulation program (de-
fined by launchBeforeSim), several argument
lists may be given for this script with the pa-
rameter launchBeforeSimParam. Again indi-
vidual argument lists are delimited by a “;”.
The same is true for the script specified with
launchAfterSim and the corresponding argu-
ment lists given by launchAfterSimParam.

2.7.2 Several summary statistics
computations per iteration

It is also possible to call the program computing
summary statistics several times per iteration. In
fact, this is in most cases intended, if several sim-
ulations are performed per iteration (see above).
However, it may also be beneficial, if only one
simulation is performed. In a population genet-
ics setting, ABC AMERICAS PAPER, for in-
stance, computed summary statistics for differ-
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ent groups of populations. They used a script af-
ter each simulation (see Section 2.6 “Modifying
files at every iteration with bash scripts or pro-
grams (optional)” on page 17) to produce several
files with the same simulated data, but differing
in the ways populations were grouped. Summary
statistics were then computed on each of these
files.

In order to tell ABCsampler to launch the pro-
gram computing summary statistics on several
simulate data files, just provide the names of all
these files with the parameter simDataName, de-
limited by a “;”. Also, different programs com-
puting summary statistics may be used for dif-
ferent simulated data files. This can be spec-
ified by providing the name of the program
for each simulated data file by the parameter
sumStatProgram, again delimited by a “;”. Dif-
ferent arguments for these programs can be given
by the parameter sumStatParam in a similar way
(see also Section 2.7.1 “Several calls of the sim-
ulation program per iteration” on page 19). If
only one program is given, it will be used for all
simulated data files. Different arguments may
still be specified for each file containing simulated
data. Of course, if several programs or argument
lists are specified, their number has to match the
number of files with simulated data sets. Note
that ABCsampler requires a file with the observed
data for each simulated data file. These files are
specified with the parameter obsName and de-
limited by a “;” (see Section 2.9 “Passing the
observed data: the .obs file” on page 21).

A script or program defined with the param-
eter launchAfterSS will be called immediately
after the program computing summary statistics
finished. It will also be called for each simulated
data file, if sumStatProgram is not defined.

As shown in the outline of an iteration (see
Section 2.7 “Several simulations per iteration”
on page 18), ABCsampler attempts to read
a file with the computed summary statistics
for each file given by simDataName indepen-
dently. This requires the program calculating
summary statistics (or the program / script
given by launchAfterSS) to replace the file
specified with the parameter sumStatFile ev-
erytime it is called. It is currently not possi-
ble to specify several names with sumStatFile.
The parameter separateOutputFiles controls,
if all calculated statistics from different files
given by simDataName are written into a

single file (separateOutputFiles 0) or not
(separateOutputFiles 1). If separate output
files are requested, each will contain the columns
with the parameters used.

While it is possible to specify a sin-
gle script to be launched before the pro-
gram calculating summary statistics (defined by
launchBeforeSS), several argument lists may
be given for this script with the parameter
launchBeforeSSParam. Again, individual argu-
ment lists are delimited by a “;”. The same is
true for the script specified with launchAfterSS
and the corresponding argument lists given by
launchAfterSSParam.

2.8 Linear transformed statistics

The choice of summary statistics is a difficult
one. Wegmann and Excoffier (2008) proposed
to transform the computed summary statistics
into PLS components. While a detailed discus-
sion on different ways to choose summary statis-
tics is given in Section 5.2 “Choosing Summary
Statistics” on page 44, we outline here the possi-
bilities to use linear transformations of statistics
during an MCMC chain. Note that this is cur-
rently not possible if several output files are writ-
ten as controlled by separateOutputFiles (see
Section 2.7.2 “Several summary statistics com-
putations per iteration” on page 19).

The linear combinations of statistics to use are
defined in an additional file, the name of which
is specified by the parameter linearCombName.
This file contains, besides the mean and stan-
dard deviation of the statistics, the transforma-
tion matrix. Each line specifies the values for one
statistics, starting by the name of the statistics,
the mean and the standard deviation followed
by the contribution of the statistics to the dif-
ferent linear combinations. In each iteration, be-
fore calculating the distance, ABCsampler stan-
dardizes each statistics using the provided mo-
ments, and the linear combinations are computed
by summing the values of each statistics mul-
tiplied by its provided weight. The parameter
stdLinearCombForDist controls whether (1) or
not (0) the resulting linear combinations should
be standardized before calculating the distance.
See Section 5.2 “Choosing Summary Statistics”
on page 44 for a discussion on this subject.
stdLinearCombForDist is an optional parame-
ter with default value 0.
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//Name mean SD PCA1 PCA2 PCA3
STAT_A 0.456 1.234 0.4556 -0.1272 0.5542
STAT_B 5.825 0.199 0.5745 0.l397 0.9147
STAT_C 0.745 0.524 -0.4656 0.1332 0.0125
STAT_D 6.112 4.433 -0.8224 -0.7172 -0.4552

Figure 6. A file specifying a linear transformation This is an example of a file specifying linear combinations
(here PCA’s) of statistics that are used to calculate the distance between observed and simulated data sets. Lines
starting with a double slash are ignored.

The mean and standard deviation is not cal-
culated from the calibrating simulations because
the statistics should be standardized the same
way they were when defining the linear combi-
nations. Note that this also offers the possibility
not to standardize that statistics at all. Simply
set the mean to 0 and the standard deviation to
1. Neither The statistics provided in the .obs file
nor in the calibration file should be transformed,
this will be done by ABCsampler automatically.
A simple file with linear combinations is given in
Figure 6. Note that lines starting with a double
slash are ignored by ABCsampler.

It may be desirable in some cases to lin-
earize the relationship between model parame-
ters and statistics before transforming them lin-
early. ABCsampler offers the possibility of apply-
ing a Box–Cox transformation to the statistics:

sBoxCox =
sλ − 1

λ(GM(s))λ−1
, (3)

where λ is the power parameter and GM(s)
the geometric mean of the statistics. Since
this transformation is only possible if s > 0,
ABCsampler forces the statistics to be in the in-
terval [1, 2] by the following transformation:

s′ =
s−min(s)

max(s)−min(s)
+ 1. (4)

If the optional parameter doBoxCox is set to
1, ABCsampler will perform the Box-Cox trans-
formation prior to the linear transformation on
the statistics. The values for min(s), max(s), λ
and GM(s) have to be specified in the file defin-
ing the linear combinations. In fact, each line of
this file contains these four additional columns
in the same order, just after the name of the
statistics, followed by the mean and standard de-
viation used to standardize the Box-Cox trans-
formed statistics prior to the linear transforma-

tion. Again, if no standardization is required,
just set the mean to 0 and the standard devia-
tion to 1. If you specify a name of a file contain-
ing all values to use the Box-Cox transformation
but set doBoxCox to 0 or do not specify doBoxCox
at all, ABCsampler will interpret the columns in
the file as if no Box-Cox transformation is per-
formed, leading to strange results including four
additional linear components.

2.9 Passing the observed data: the .obs

file

Some sampling types require to evaluate the dis-
tance between the simulated and the observed
data. ABCsampler requires the observed data to
be passed via a special file called .obs file in the
following. The name of this file is given in the
.input file or via the command line with the
parameter tag obsName. The file itself consists
of two lines, the first containing the names of
the summary statistics, and the second the cor-
responding values. The different columns have
to be separated either by a tab or a whitespace.
It has therefore exactly the same form as the file
with summary statistics read by ABCsampler in
each iteration (see Section 2.5.1 “File with com-
puted summary statistics” on page 17).

Note that obsName is a mandatory parame-
ter for any sampler type. The reason is that
ABCsampler evaluates the simulated data and
compares it to the observed data in the first itera-
tion. That way, ABCsampler assures that all nec-
essary summary statistics are calculated before
launching many iterations. Also, ABCsampler
only stores those summary statistics presented in
the .obs file. If a standard sampling approach
is launched, the actual values from the different
summary statistics in the .obs file have no influ-
ence on the sampling process. Several files may
be specified by delimiting them with a “;” (see
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Section 2.7.2 “Several summary statistics com-
putations per iteration” on page 19).

2.10 Output files

Despite writing a detailed .log file contain-
ing useful runtime information and potential
error messages, ABCsampler writes a huge file
containing all parameter values used to per-
form simulations, along with the correspond-
ing summary statistics. The first column will
give the iteration number. If present and set
to 1, the parameter addDistanceToOutputfile
controls, if the distance to the observed data
is computed and added to the output file
as the last column. If several simulations
per iteration are performed (see Section 2.7
“Several simulations per iteration” on page
18), the parameter separateOutputFiles con-
trols, if all calculated statistics from different
files given by simDataName are written into
a single file (separateOutputFiles 0) or not
(separateOutputFiles 1). If separate output
files are requested, each will contain the columns
with the parameters used. If the all statistics
are written to the same file, their names bear a
prefix of the form “Obsn ”, where n is a num-
ber corresponding to the simulation number in
an iteration. Note that separate output files can
not be written, if linear combinations of sum-
mary statistics are used (see Section 2.8 “Linear
transformed statistics” on page 20). The reason
is that the linear combinations include summary
statistics from all simulations per iteration.

2.11 Sampler Types

So far we just focused on setting up a simple re-
jection algorithm. ABCsampler, however, offers
currently three different sampler types:

STANDARD A standard sampling approach
used to perform rejection sampling. With
this sampling type, algorithms AO through
DO from Figure 15 are possible. The min-
imal .input file given in Figure 3 will
launch ABCsampler in standard sampling
mode.

MCMC The MCMC without likelihood ap-
proach proposed by Marjoram et al. (2003),
allowing for algorithms AO through DO from
Figure 15.

PMC The population Monte Carlo approach

proposed by Beaumont et al. (2009). This
approach can be used just as the MCMC
without likelihood approach, therefore al-
lowing for algorithms AO through DO from
Figure 15.

The preferred sampler type to use is specified
with the parameter samplerType in the .input
file or on the command line. The next sections
will give a detailed descriptions on the specific
algorithm implemented and on how to control
them.

2.11.1 Launching an MCMC without
Likelihoods

An introduction to the MCMC without likeli-
hood algorithm and a detailed description of the
implemented algorithm is given in Section 6.2.3
“MCMC without likelihoods” on page 55. We
strongly recommend to read these sections when
using this approach. Here we only outline the
parameters with which an MCMC without like-
lihood run can be configured in ABCsampler:

nbSims controls the number of simulations to
perform. Note that this number includes
all simulations performed in the start-up
phase (see below).

numCaliSims controls the number of simulations
to perform as the initial calibration set.
This is a mandatory parameter even if a
calibration file is provided (see below). We
recommend to use at least 5,000 simula-
tions for calibration.

tolerance controls the tolerance level ε used to
define δε. Note that 0 < ε ≤ 1. This is a
mandatory parameter.

rangeProp The transition kernel implemented
in ABCsampler is defined uniform with
width ϕ expressed in units of standard de-
viations for each parameter (Wegmann and
Excoffier (2008) recommended ϕ = 0.5).
The fraction ϕ of the standard deviation
is specified with the parameter rangeProp.
Note that all parameters are updated in
every iteration. rangeProp is a mandatory
parameter.

mcmcSampling controls the interval between it-
erations that are printed into output
files. With a mcmcSampling value of 1,
ABCsampler prints every iteration, with a
value of 2 every second, and so forth. It
is possible to request different sampling
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schemes during one run by providing sev-
eral values delimited by a “;”. A value
“1;5”, for instance, requests ABCsampler
two write two output files, one with ev-
ery iteration and one with every fifth.
mcmcSampling is a mandatory parame-
ter. Wegmann and Excoffier (2008) used
a value of 1.

startupLength controls the amount of itera-
tions from the beginning, after which the
chain is restarted if it did not move. This
is an optional parameter, the default value
is 20.

startupAttempts specifies the number of at-
tempts to restart the chain. In each
attempt, if the chain did not move af-
ter startupAttempts iterations, the chain
is restarted from a new random posi-
tions among the nε positions accepted
from the initial calibration simulations.
startupAttempts is an optional parame-
ter, the default value is 100.

stopIfStartupFailed changes the behavior of
ABCsampler after startupAttempts failed.
If it is set to 1, the program is aborted.
If it is set to 0, the chain will pro-
ceed until the amount of simulations spec-
ified with the parameter nbSims, including
those in the burn in phase, are performed.
stopIfStartupFailed is an optional pa-
rameter, the default value is 0.

runsPerParameterVector sets the num-
ber of simulations per iteration. If
runsPerParameterVector > 1, several
simulations with the same model param-
eter values will be launched per iteration.
The simulated summary statistics of all
these simulations are outputted in the case
of a STANDARD sampling. In case of
an MCMC without likelihoods (or PMC)
run, the decision to accept or reject the
values of the model parameters is based
on the average distance of the different
simulations. The summary statistics of
the last run will be outputted only. Note
that if runsPerParameterVector > 1 the
chain will converge to a distribution which
is different from π(θ|dist(s, sobs) < δε).
runsPerParameterVector is an optional
parameter and the default (and recom-
mended) value is 1.

Calibration File The simulations used to ini-
tially calibrate an MCMC without likelihood
chain may also be provided to ABCsampler via
a file. The name of this file is specified in the
.input file or via the command line using the
parameter calName. The file itself has a simi-
lar structure like the output file of ABCsampler:
each line contains the values of the model pa-
rameters and the values of the statistics com-
puted on the output of a simulation with these
model parameter values. The first line contains
the names of the model parameters and statis-
tics. Note that the names have to correspond
to those defined either in the .est file (see Sec-
tion 2.3 “Defining prior distributions - .est File”
on page 11) or in the .obs file (see Section 2.9
“Passing the observed data: the .obs file” on
page 21). Of course the calibration file may con-
tain additional columns which will be ignored by
ABCsampler.

The number of simulations to read and use
for the calibration is defined by the parameter
numCaliSims. Note that an error will be thrown,
if the provided file contains less simulations than
indicated by numCaliSims.

2.11.2 Launching a Population Monte Carlo
algorithm

An introduction to population Monte Carlo
(PMC) and a detailed description of the imple-
mented algorithm is given in Section 6.2.4 “Pop-
ulation Monte Carlo” on page 57. We recom-
mend to study this section when using a PMC
approach. Here we only outline the parameters
with which the PMC algorithm implemented in
ABCsampler is controlled:

numInterations controls the number of itera-
tions to be performed.

sampleSize controls the number of simulations
that are performed in one iteration.

lastSampleSize specifies the number of simu-
lations that are performed in the last it-
eration. In most cases this is the pool of
simulations used for further analysis. This
is an optional parameter. If it is not given,
ABCsampler will generate the same num-
ber of simulations in the last as in previous
iterations.

tolerance controls the tolerance level εt used
to define δεt in each iteration. The number
of parameter vectors used to generate the
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next iteration t + 1 are the εtN parame-
ter vectors with the closest associated dis-
tances of the N parameter vectors of the
current iteration t, therefore all θi,t with
dist(s, sobs) < δεt . Note that 0 < ε ≤ 1.
This is a mandatory parameter.

rangeProp The transition kernel proposed by
Beaumont et al. (2009) and implemented
in ABCsampler is defined as a multivariate
normal with width τ2

t expressed in units
of the variance-covariance matrix σ2

t of the
accepted parameter vectors. The τ2

t used
by ABCsampler is simply σ2

t multiplied by
the parameter rangeProp. Since Beau-
mont et al. (2009) showed that τ2

t = 2σ2
t

is an optimal choice, the default value of
rangeProp is 2.

numCaliSims controls the number of simulations
to perform in the first iteration and is a
mandatory parameter. It may be desired
to use a different number of simulations
in the first iteration, since these simula-
tions are also used to find the mean and
standard deviation of the statistics under
the prior to calibrate the distance calcu-
lation. Note that the number of accepted
parameter vectors in the first iteration does
not differ from the following generations, it
will be εtN (see above). ABCsampler will
throw an error if numCaliSims is smaller
than εtN . The simulations of the first it-
erations, the calibration simulations, may
also be provided as a file with the calName
(see below).

calName specifies that ABCsampler will at-
tempt to read the simulations of the
first iteration from a file named calName.
ABCsampler will read as many simulations
from the file as indicated by the parameter
numCaliSims and throw an error if the file
contains less simulations. Note that this
also offers the possibility to prolong a pre-
vious PMC run since an output file of any
iteration can be used as a calibration file for
a new run. The reason is that any iteration
of a PMC run generates a sample of param-

eter vectors that corresponds to a sample
acquired with a rejection sampling algo-
rithm with the associated distance thresh-
old δεt . Note, however, that if no linear
transformations are used, ABCsampler will
standardize the statistics using the infor-
mation contained in this file, which will po-
tentially change the contribution of some
statistics to the distance, if the output of
a previous iteration is used as a new cali-
bration file. The parameter calName is an
optional parameter.

Note that there are a couple of parameters
available for a PMC run that work just as for
an MCMC without likelihood run. Check the
table in Section 2.12 “All Available Parameters
for ABCsampler” on page 25 for a complete list.

Output of a Population Monte Carlo run Dif-
ferent to other sampler types (see Section 2.11
“Sampler Types” on page 22) a PMC run does
not output a single result file but a file for
every iteration. Any of these files is a valid
output of the PMC algorithm and corresponds
to a sample of a simple rejection algorithm
with the same threshold distance and may be
used for further analysis such as using a post–
sampling adjustment (see Section 6.3 “Post–
sampling Adjustment” on page 58). The thresh-
old distances δεt of the different iterations are
given in the .log file (see Section 2.10 “Out-
put files” on page 22). Note that these thresh-
old distances may converge very quickly such
that sometimes slightly larger distances are used
than in the previous iteration. This indicates
that the algorithm is not able to generate sam-
ples closer to sobs without additional effort (more
simulations per iteration). This may, however,
not be very economic. We rather suggest in this
case to generate more simulations in the last it-
eration and use a simple rejection approach in
the end, just as proposed by Wegmann and Ex-
coffier (2008) for the MCMC without likelihood
approach. ABCsampler offers the possibility to
generate a larger sample in the last iteration with
the parameter lastSampleSize (see above).

24



2.12 All Available Parameters for ABCsampler

The following table lists all available parameters for ABCsampler. The last two columns indicate
whether a parameter is required (R) or optional (O) for the two sampler types, standard (S) and
MCMC (M). Note that the indicated default values are used if the parameter is not passed to
ABCestimator.

Parameter Description and possible values see. . . SMP
addDistanceToOutputfile Controls if the distance to the observed data is

computed and added to the output file for every
simulation. 0 (default) or 1

2.10, p. 22 OOO

addToSeed When initializing the random generator, this
value is added to the seed obtained from the cur-
rent time. If a large set of jobs is launched on
a grid, all jobs might have the same seed. By
adding a value such as the job number, this can
be circumvented. Any Integer (default is 0)

5.5, p. 51 OOO

calName The name of the calibration file. Filename1 2.11.1, p. 23 – OO
doBoxCox Controls if the statistics are transformed via

Box–Cox when using linear transformations. 0
(default) or 1

2.8, p. 20 OOO

estName Name of the .est-file, the file with the prior def-
initions. Filename1

2.3, p. 11 RRR

lastSampleSize The number of simulations to perform in the last
iteration of a PMC run. Integer

2.11.2, p. 23 – – O

launchAfterSim Name of the script or program launched just
after the simulation program was called. Exe-
cutable3

2.6, p. 17 OOO

launchAfterSimParam The parameters passed to the scripted or pro-
gram launched just after the simulation program
was called. parameter string2

2.6, p. 17 OOO

launchAfterSS Name of the script or program launched just af-
ter the program calculating summary statistics
has been called. Executable3

2.6, p. 17 OOO

launchAfterSSParam The parameters passed to the scripted or pro-
gram launched just after the program calculating
summary statistics has been called. Parameter
string2

2.6, p. 17 OOO

launchBeforeSim Name of the script or program launched just be-
fore the simulation program will be called. Exe-
cutable3

2.6, p. 17 OOO

launchBeforeSimParam The parameters passed to the scripted or pro-
gram launched just before the simulation pro-
gram will be called. Parameter string2

2.6, p. 17 OOO

1The name of an existing file.
2The different values to pass are delimited by a “#”. Example: “1#a string#0.5”. See individual explanations.
3An executable file, may be a program or a script. On a Unix system, remember to grant executing permissions of the

file to ABCsampler.
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Parameter Description and possible values see. . . SMP
launchBeforeSS Name of the script or program launched just af-

ter the simulation program has been called. Ex-
ecutable3

2.6, p. 17 OOO

launchBeforeSSParam The parameters passed to the scripted or pro-
gram launched just after simulation program has
been called. Parameter string2

2.6, p. 17 OOO

linearCombName The name of the file where linear combinations
of the summary statistics are defined. Filename1

2.8, p. 20 OOO

mcmcSampling Specifies the sampling interval of an MCMC
chain. Integer, default is 1

2.11.1, p. 22 – O –

nbSims Number of Simulations to perform, includes
start-up in the case of an MCMC. Integer

2.11.1, p. 22 RR –

numCaliSims Number of simulations used to calibrate an
MCMC Chain. This parameter is also required
if a calibration file is specified. Integer

2.11.1, p. 22 – RR

numInterations The number of iterations in a PMC run. Integer 2.11.2, p. 23 – – R
obsName Name of the file with the observed statistics.

Filename1
2.9, p. 21 RRR

rangeProp A Parameter controlling the width of the pro-
posal kernel in an MCMC chain. Float

2.11.1, p. 22 – RR

runsPerParameterVector Controls the amount of iterations per parameter
vector. Integer, default is 1

2.11.1, p. 22 OOO

samplerType Controls which type of sampler to be launched.
“standard” or “MCMC”

2.11, p. 22 RRR

sampleSize The number of simulations to perform per itera-
tion in a PMC run. Integer

2.11.2, p. 23 – – R

separateOutputFiles If several simulations are performed per itera-
tion, this parameter controls if the output is writ-
ten to individual files. 0 (default) or 1

2.7, p. 18 OOO

simDataName Name of the file with simulated data. Filename1 2.5, p. 16 RRR
simInputName Name of the input file for the simulation pro-

gram. Filename1
2.4, p. 13 OOO

simParam Parameters to be passed to the simulation pro-
gram. parameter string2

2.4, p. 13 RRR

simulationProgram Name of the simulation program. Executable3 2.4, p. 13 RRR
startupAttempts Number times an MCMC chain is restarted if it

did not move within startupLength steps. In-
teger, default is 100

2.11.1, p. 22 – O –

startupLength Number of steps an MCMC chain is given time
to move before it is restarted. Integer, default is
20

2.11.1, p. 22 – O –

stdLinearCombForDist Controls if the linear combinations are standard-
ized to calculate the distance in an MCMC chain
or a PMC run. 0 (default) or 1

2.11.1, p. 22 – OO

26



Parameter Description and possible values see. . . SMP
stopIfSartupFailed Controls if the sampler proceeds if the chain did

not not move after an MCMC chain has been
restarted startupAttempts times. 0 (default)
or 1

2.11.1, p. 22 – R –

sumStatFile name of the file with the computed sum-
mary statistics. The default value is “sum-
mary stats temp.txt“.Filename1

2.5.1, p. 17 OOO

sumStatParam Parameters to be passed to the program calcu-
lating summary statistics. Parameter string2

2.5, p. 16 OOO

sumStatProgram Name of the program calculating summary
statistics. Executable3

2.5, p. 16 OOO

tolerance The tolerance level to be used in an MCMC chain
or a PMC run. Float

2.11.1, p. 22 – RR

2.13 Possible error Messages

Error messages are written to the command line
and to the .log file. Here you find a hopefully
complete list of possible error messages and some
suggestions on what could be changed to make
ABCsampler work.

Error when executing ’. . . ’ !
An error occurred when the specified program or
script was launched. Note that ABCsampler was
able to locate the file before its first execution.
Most likely ABCsampler does not have the per-
mission to execute the script or program. If the
operating system reports an error of the script or
program, this error message may also occur. It is
sometimes useful to run the desired program or
script with an already parsed input file (see Sec-
tion 2.4 “Using different Simulation Programs”
on page 13) to see what the exact error is. Note
that ABCsampler can not report errors of called
programs.

Calibration file ’. . . ’ could not be opened!
The calibration file specified with the parameter
calName was not found by ABCsampler. Most
likely, the file is not present in the working di-
rectory of ABCsampler. See Section 2.11.1 “Cal-
ibration File” on page 23.

Calling program ’. . . ’: not able to create
fork!
The operating system did not allow ABCsampler
to launch the specified program. This may be the
case, if there are not enough available resources
on the machine.

Column name ’. . . ’ in the file contain-
ing the computed summary statistics ’. . . ’

missing!
A summary statistics specified in the .obs file is
missing in the file containing the computed sum-
mary statistics. Often the program or script cal-
culating the summary statistics is launched with
missing arguments. If the program or script com-
puting the summary statistics fails and just cre-
ates an empty file this may also result in this
error. Note that the names in the .obs file
should not bear prefixes. So remove them if you
use pseudo observed data sets generated with
ABCsampler. See Section 2.10 “Output files” on
page 22.

Hyperprior ’. . . ’: stdev of the log normal
distribution ≤ 0!
If you use the prior of a model parameter as hy-
per prior for a log normal distribution, make sure
the value used as the standard deviation is larger
than zero. See Section 2.4.1 “Hyper Priors” on
page 14.

Hyperprior ’. . . ’: stdev of the log normal
distribution with parameters in log scale
≤ 0!
If you use the prior of a model parameter as hy-
per prior for a log normal distribution with pa-
rameters in log scale, make sure the value used
as the standard deviation is larger than zero. See
Section 2.4.1 “Hyper Priors” on page 14.

Hyperprior: mean of the beta distribution
> 1!
If you use the prior of a model parameter as hy-
per prior for a beta distribution, make sure its
value, which is used as the mean of the beta dis-
tribution, does not exceed one. See Section 2.4.1
“Hyper Priors” on page 14.
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File with simulations ’. . . ’ is too short!
The calibration file, specified with calName con-
tains less lines than is required by the parameter
numCaliSims. See Section 2.11.1 “Calibration
File” on page 23.

Given the defined threshold, no simula-
tions is retained!
The product of the sampleSize and the
tolerance specified for a PMC run is smaller
than one. Either increase the sampleSize or
the tolerance. See Section 2.11.2 “Launching
a Population Monte Carlo algorithm” on page
23.

Given the defined threshold, all simula-
tions are retained!
The product of the sampleSize and the
tolerance specified for a PMC run is larger
than the sampleSize. You should decrease the
tolerance. See Section 2.11.2 “Launching a
Population Monte Carlo algorithm” on page 23.

Less calibration simulations than simula-
tions to retain in the first iteration!
The product of the sampleSize and the
tolerance set the number of parameter vectors
(simulations) to accept in each iteration. You
specified a smaller number of simulations to be
used in the first iteration. Increase the parame-
ter numCaliSims. See Section 2.11.2 “Launching
a Population Monte Carlo algorithm” on page
23.

Linear transformation can not be used, if
several output files are written!
Most likely you forgot to remove the request
to write separate output files. See Section 2.10
“Output files” on page 22.

Log normal prior ’. . . ’ initialized with min
< 0!
Log normal prior distributions are only defined
above zero. See Section 2.3 “Defining prior dis-
tributions - .est File” on page 11.

Log normal prior ’. . . ’ initialized with
stdev ≤ 0!
The standard deviation of a log normal distri-
butions has to be larger than zero. See Section
2.3 “Defining prior distributions - .est File” on
page 11.

Normal prior ’. . . ’ initialized with stdev
≤ 0!
The standard deviation of a normal distribu-
tions has to be larger than zero. See Section
2.3 “Defining prior distributions - .est File” on
page 11.

Prior ’. . . ’ initialized with min > max!
The minimum indicated for any prior distribu-
tion may not exceed the indicated maximum. See
Section 2.3 “Defining prior distributions - .est
File” on page 11.

Problems reading complex parameter
(Line: ’. . . ’)!
ABCsampler was unable to interpret this line of
the [COMPLEX PARAMETERS] section of the .est
file. See Section 2.3.3 “[COMPLEX PARAMETERS]”
on page 12.

Problems reading prior (Line: ’. . . ’)!
ABCsampler was unable to interpret this line of
the [PARAMETERS] section of the .est file. See
Section 2.3.1 “[PARAMETERS]” on page 11.

Problems reading rule (Line: ’. . . ’)!
ABCsampler was unable to interpret this line of
the [RULES] section of the .est file. See Section
2.3.2 “[RULES]” on page 12.

Problems reading rule: parameter ’. . . ’
does not exist!
A parameter used in the [RULES] was defined in
the [PARAMETERS] section of the .est file. See
Section 2.3.2 “[RULES]” on page 12.

Problems solving equation ’. . . ’ (closing
bracket missing)!
ABCsampler was unable to calculate this equa-
tion defined in the .est file. Most likely, a
bracket is missing. See Section 2.3 “Defining
prior distributions - .est File” on page 11.

Problems solving equation ’. . . ’: devision
by zero!
Solving this equation (defined in the .est–file),
a division by zero was attempted. See Section
2.3.3 “[COMPLEX PARAMETERS]” on page 12.

Problems solving equation ’. . . ’: function
’. . . ’ not known)!
The used function in this equation defined in the
.est file is unknown to ABCsampler. See Section
2.3.3 “[COMPLEX PARAMETERS]” on page 12 for a
complete list of available functions.
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Problems solving equation ’. . . ’: no known
sign used!
Either there is an operator missing in this equa-
tion defined in the .est, or the used sign is un-
known to ABCsampler. See Section 2.3 “Defining
prior distributions - .est File” on page 11.

Problems solving the Cholesky decompo-
sition of Sigma!
In a PMC run, the variance–covariance matrix
of the retained parameters (Sigma) has to be
Cholesky–decomposed in order to generate the
multivariate normal transition kernel. This de-
composition is only possible if Sigma is a sym-
metric, positive-definite matrix. The latter con-
dition is hard to hold, if the number of re-
tained simulations is very small. Try to retain
more simulations in your PMC run (see Section
2.11.2 “Launching a Population Monte Carlo
algorithm” on page 23). See Section 2.3 “Defin-
ing prior distributions - .est File” on page 11.

Section [PARAMETERS] is missing in the .est
file ’. . . ’ !
The section [PARAMETERS] is the only mandatory
section of the .est file. See Section 2.3 “Defin-
ing prior distributions - .est File” on page 11.

The .est file ’. . . ’ could not be opened!
The file with the prior definitions, the .est file,
was not found by ABCsampler. Most likely, the
file is not present in the working directory of
ABCsampler. See Section 2.3 “Defining prior dis-
tributions - .est File” on page 11.

The .obs file ’. . . ’ could not be opened!
The file containing the observed data and speci-
fied by obsName can not be read by ABCsampler.
Most likely, the file is not present in the working
directory of ABCsampler. See Section 2.9 “Pass-
ing the observed data: the .obs file” on page 21.

The data column ’. . . ’ is missing in the
calibration File!
Values for all parameters and complex parame-
ters specified in the .est file and for all statistics
defined in the .obs file have to be present in the
calibration file. Apparently, a summary statistics
used in the .obs file is missing in the provided
calibration file. See Section 2.11.1 “Calibration
File” on page 23.

The file containing the computed sum-
mary statistics ’. . . ’ could not be opened!
ABCsampler requires a file from which the com-
puted summary statistics are read. This file is
written by the program calculating the summary
statistics or a script. Most likely this program or
script failed to write the file or wrote the sum-
mary statistics to a file with a different filename
from the one specified with sumStatFile. If you
run the program calculating summary statistics
several times per iteration, check the .log file
to see in which iteration the error occurred. The
.log also informs you, if the error occurred while
initializing ABCsampler or during the run. The
latter would most likely correspond to a case
where the simulated data cannot be handled by
the program or script calculating the summary
statistics. This may be, if the simulation pro-
gram fails to simulate data under the current
values of the model parameters. Some simula-
tion programs, including simcoal2, return zero
or “false” in such a case2, which is handled by
ABCsampler by printing the used model parame-
ter values to the .log file. See Section 2.5.1 “File
with computed summary statistics” on page 17.

The file containing the simulated data ’. . . ’
has not been found!
One of the files indicated by simDataName was
not found by ABCsampler. Apparently the simu-
lation program did not write this file. Either the
simulation program failed or the resulting data
is written to a file with a different name. See
Section 2.5 “Using different Summary Statistics
Programs” on page 16.

The .input file ’. . . ’ could not be opened!
ABCsampler requires a valid .input file as its
first argument. Most likely, the file is not present
in the working directory of ABCsampler. See Sec-
tion 2.2 “.input File” on page 11.

The Linear–Combination file ’. . . ’ can not
be read!
The file with the definitions of the linear com-
binations of summary statistics to be used, de-
fined by linearCombName, can not be read. Most
likely, the file is not present in the working di-
rectory of ABCsampler. See Section 2.8 “Linear
transformed statistics” on page 20.

2Note that simcoal2 does not report any error in the .par file. It is very often useful to run simcoal2 with the .par

file generated by sampler by hand to check if everything is fine.
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The number of .obs files and files with sim-
ulated data are unequal!
If several simulations per iteration are per-
formed, for each file with simulated data,
specified by simDataName, a corresponding file
with observed summary statistics, specified by
obsName, has to be defined. See Section 2.7.2
“Several summary statistics computations per
iteration” on page 19.

The number of simulation programs and
the number of argument lists for the sim-
ulation program do not match!
The number of simulation programs given by
simulationProgram has to match the number
of argument lists provided by simParam for these
programs. Only exception: A single simulation
program may be given, but the number of ar-
gument lists matches the number of simulation
program inputfiles given by simInputName See
Section 2.7.1 “Several calls of the simulation pro-
gram per iteration” on page 19.

The parameter ’. . . ’ is not defined in the
.input file!
A mandatory parameter for this sampling type
was not specified in the .input file nor passed via
the command line. See Section 2.1 “Launching
ABCsampler” on page 11 for a description on how
to pass parameters to ABCsampler and Section
2.12 “All Available Parameters for ABCsampler”
on page 25 for a complete list of all parameters.

The parameter column ’. . . ’ is missing in
the calibration file!
Values for all parameters and complex parame-
ters specified in the .est file and for all statistics
defined in the .obs file have to be present in the
calibration file. Apparently, a parameter or com-
plex parameter form the .est file is missing in
the provided calibration file. See Section 2.11.1
“Calibration File” on page 23.

The simulation program input file ’. . . ’
could not be read!
One of the files specified with simInputName
was not found by ABCsampler. Most likely, the
file is not present in the working directory of
ABCsampler. See Section 2.4 “Using different
Simulation Programs” on page 13.

The summary statistics ’. . . ’ is missing
in the simulated file, but required by the

Linear–Combination file ’. . . ’ !
A summary statistics used to compute linear
combinations as specified in the file given by
linearCombName was not simulated. Most likely
you did not include this statistics in the .obs
file. Note that this error will also occur if you in-
cluded a model parameter as a summary statis-
tics in the file defining the Linear–Combinations.
See Section 2.9 “Passing the observed data: the
.obs file” on page 21.

Unequal number of columns among the
lines in the Linear-Combination-File ’. . . ’ !
Please check the format of the file with
the definitions of the linear combinations of
summary statistics to be used, defined by
linearCombName. See Section 2.8 “Linear trans-
formed statistics” on page 20.

Unequal number of files with simulated
data sets and parameter specifications for
the script/program to launch after the cal-
culation of summary statistics!
If several simulations per iteration are per-
formed, the number of argument lists for the
script launched before the calculation of the
summary statistics has to match the number
of files containing simulated data (given by
simDataName). Only exception: a single argu-
ment list is provided and used for all files with
simulate data. See Section 2.7.2 “Several sum-
mary statistics computations per iteration” on
page 19.

Unequal number of files with simulated
data sets and parameter specifications for
the script/program to launch before the
calculation of summary statistics!
If several simulations per iteration are per-
formed, the number of argument lists for the
script launched before the calculation of the
summary statistics has to match the number
of files containing simulated data (given by
simDataName). Only exception: a single argu-
ment list is provided and used for all files with
simulate data. See Section 2.7.2 “Several sum-
mary statistics computations per iteration” on
page 19.

Unequal number of input files and argu-
ment lists for the simulation program!
The number of simulation programs given by
simulationProgram and the number of argu-

30



ment lists provided by simParam have to match
the number of simulation program inputfiles
given by simInputName. Only exception: a sin-
gle simulation program may be given, but the
number of argument lists has to match the num-
ber of simulation program inputfiles given by
simInputName. See Section 2.7.1 “Several calls
of the simulation program per iteration” on page
19.

Unequal number of input files and param-
eter specifications for the script/program
to launch after the calculation of summary
statistics!
The number argument lists for the
script/program to be launched after the cal-
culation of summary statistics (given by
launchAfterSSParam) has to match the num-
ber of files containing simulated data (given by
simDataName). Only exception: a single argu-
ment list may be given, which is then used for
all files containing simulated data. See Section
2.7.2 “Several summary statistics computations
per iteration” on page 19.

Unequal number of input files and param-
eter specifications for the script/program
to launch before the calculation of sum-
mary statistics!
The number argument lists for the
script/program to be launched before the
calculation of summary statistics (given by
launchBeforeSSParam) have to match the num-
ber of files containing simulated data (given by
simDataName). Only exception: a single argu-
ment list may be given, which is then used for
all files containing simulated data. See Section
2.7.2 “Several summary statistics computations
per iteration” on page 19.

Unknown prior type (line: ’. . . ’)!
The prior type specified on this line of the .est
file is unknown. Make sure to have a single
whitespace OR tab between the name of the
model parameter and the prior type tag. See
Section 2.3.1 “[PARAMETERS]” on page 11.

Unknown samplerType ’. . . ’ !
You specified an unknown samplerType. See
Section 2.11 “Sampler Types” on page 22.

Missing first argument, the name of an .in-
put file!
ABCsampler was launched without any argu-
ments. Note that ABCsampler requires at least
the name of a valid .input file as its first argu-
ment. See Section 2.1 “Launching ABCsampler”
on page 11.

Wrong number of programs to calculate
summary statistics or defined argument
lists for these programs!
If several simulations per iteration are per-
formed, the number of programs to calculate
summary statistics has to match the num-
ber of files with simulated data defined by
simDataName. Only exception: a single program
is used for all files with simulated data. Also,
the number of programs to calculate summary
statistics has to match the number of argument
lists provided! If only one program is provided,
still several argument lists are possible, as long
as they match the number of files with simulated
data. See Section 2.7.2 “Several summary statis-
tics computations per iteration” on page 19.

2.14 Compilation

ABCsampler was compiled and tested with the
GCC 4.3 compiler on a Linux system using a
standard makefile. It was also successfully com-
piled with GCC on Windows using the MinGW
package. Since file handling and program ex-
ecution is different between the two operating
systems, not all functionalities are available if
compiled with Borland. This is namely the
use of scripts / programs as described in Sec-
tion 2.6 “Modifying files at every iteration with
bash scripts or programs (optional)” on page 17.
To use the whole functionality use the compi-
lation variable GCC with the GCC compiler on
a Linux system. We were not able to compile
ABCsampler sucessfully under windows using thsi
compilation variable.
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3 Using ABCestimator

The program ABCestimator is used to perform
a post–sampling regression adjustment on a data
set. Currently, two estimation types exist: the
ABC-GLM approach introduced by Leuenberger
and Wegmann (2009), and a slightly modified
approach, where the independence of individual
measures of a single model are explicitly taken
into account (Thalmann et al. 2009). Under the
assumption of a good fit of the GLM to the data
within the ε ball, both approaches should lead
to the true posterior distribution, as was shown
by Leuenberger and Wegmann (2009) and is de-
scribed in Section 6.3.2 “ABC-GLM” on page 60.
See below for a detailed description on how to
use ABCestimator to perform these regression
adjustments.

3.1 Launching ABCestimator

Just as ABCsampler, ABCestimator is a com-
mand line program launched with one manda-
tory argument, the name of the .input file.
All necessary parameters are specified in the
.input–file (see below). Suppose the inputfile
is named name.input, the program has to be
launched as follows:

$ ABCestimator name.input

Additional parameters may be passed on the
command line. In that case, parameters given in
the .input file will be overwritten. The required
syntax is as follows:

$ ABCestimator name.input parameter=value

where parameter is the name of a parameter and
value is the corresponding value. For instance,

$ ABCestimator name.input threshold=0.1

launches ABCestimator with a threshold of 0.1
to be used.

There is no restriction for the number of pa-
rameters to be passed that way. Note, however,
that the program always requires the name of
an existing .input file as the first parameter.
ABCestimator writes all parameters used, the
progress of the estimation and important mes-
sages directly to the standard output. The main
output of ABCestimator is a file with the poster
estimates, along with some additional files con-
taining additional information. See Section 3.10

“Output” on page 36 for e detailed description
of the output of ABCestimator.

3.2 .input File

An .input file is the most convenient way to
specify parameters for ABCestimator. One rea-
son is that the parameters used are stored in a
reusable fashion. Basically, an .input file is a
simple collection of pairs of parameter tags and
corresponding values, enriched with comments.
It has exactly the same format as the .input file
of ABCsampler (see Section 2.2 “.input File” on
page 11): each parameter–value pair has to be
at the beginning of a new line but the order is of
no importance. Comments may either be added
after a parameter–value pair or given on a line
on their own. Note, however, that all comments
must be proceeded with a double slash “//”.
Empty lines may be present anywhere within the
file. A minimal .input file for ABCestimator is
given in Figure 7. A complete list of all avail-
able parameter tags is given in Section 3.11 “All
available Parameter for ABCestimator” on page
37.

3.3 Observed Data

The observed data, that is, the summary statis-
tics calculated on the observed data sets, is
passed to ABCestimator in a text file, the name
of which is specified by obsName in the .input
file or via the command line. The file itself con-
tains a header line with the names of the sum-
mary statistics delimited by a tab or a whites-
pace, followed by individual data sets, each on
a single line. Each data set must consist of all
summary statistics in the same order, delimited
by the same character as the names given in the
header line. The file has thefore exactly the same
format as the .obs–file passed to ABCsampler
(see Section 2.9 “Passing the observed data: the
.obs file” on page 21), except that several data
sets may be provided. The handling of the dif-
ferent data sets depends on the estimation type
used (see below).
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//inputfile for the program ABCestimator
estimationType standard simFile allsimulations.txt
obsFile observedData.obs
params 1-22
//rejection
numRetained 5000
//parameters for posterior estimation
diracPeakWidth 0.01
posteriorDensityPoints 200
stadardizeStats 1
writeRetained 1

Figure 7. A ABCestimator input file This is an example of a very simple .input file for the program
ABCestimator. Each line represents a pair of a parameter and a corresponding value. A complete list of
all parameters is given in Section 3.11 “All available Parameter for ABCestimator” on page 37. Note that
comments, indicated with //, are possible on whole lines or after the declaration of a parameter.

3.4 Simulated Data

As explained in detail in Section 6.3.2 “ABC-
GLM” on page 60, any ABC estimations relies
on a huge set of simulated data sets with param-
eter values drawn by an ABC sampler and cor-
responding summary statistics. ABCestimator
performs a post–sampling regression adjustment
on such a data matrix, which is provided to
ABCestimator as a huge text file. The name of
the file is specified with the parameter simName,
either in the .input file or via the command
line. Each individual line of this file contains
a single simulated data set consting of model pa-
rameters of the model and corresponding sum-
mary statistics obtained through simulations.
Model parameters and statistics are organized
in columns delimited by a tab or a whitespace.
While the order of the columns may be arbi-
trary, all lines have to follow this order strictly.
The first line of the file is a header line con-
taining the names of the columns. These names
must not contain spaces nor tabs. The length of
the file is unlimited, however, the actual number
of lines that can be handled by ABCestimator
depends on available memory3. Several mil-
lions of simulations should not be a problem.
If only a sub set of the simulation should be
used, this can be specified with the parameter
maxReadSims. ABCestimator will then only use
the first maxReadSims simulations of the file. If

the file is shorter, this parameter is ignored.
ABCestimator matches the names given in the

header line of the .obs file with the names pro-
vided in the file with the simulated data set.
Missing columns in the file with the simulated
data set is reported by ABCestimator. Unused
columns with summary statistics are ignored.
Columns are interpreted as model parameters ac-
cording to the definition given by the parameter
params. The value of the parameter params is
a string giving the numbers of the columns to
be read as model parameters and for which esti-
mation are performed. The string may contain
numbers of single columns or ranges, delimited
by “,”. Example: params 1-4,8,10-12,14. If
the indicated column is also used as a summary
statistics ABCestimator reports an error; unused
columns are ignored.

3.5 Estimation Types

The preferred estimation type to use is speci-
fied with the parameter estimationType in the
.input file or on the command line. Cur-
rently a single estimation type is implemented in
ABCsampler and chosen by the following tag:

standard performs a post–sampling regression
adjustment just as described in Leuen-
berger and Wegmann (2009) and intro-
duced in Section 6.3.2 “ABC-GLM” on
page 60.

3The implementation chosen reads the whole file in the memory. While this method may not be appropriate if extremely
large data sets are considered (only the distances could be stored in memory), it speeds up the estimation process if
several estimations are performed at once.
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3.5.1 Standard Estimation

As mentioned in Section 6.3 “Post–sampling
Adjustment” on page 58 and described in detail
in Leuenberger and Wegmann (2009), the aim
of the post sampling regression adjustment per-
formed by ABCestimator is to describe the re-
lationship between model parameters and sum-
mary statistics with a simple statistical model.
While this model may not be realistic on the
whole prior distribution, it may fit quite well lo-
cally around the observed data. ABCestimator
proceeds therefore by a first rejection step and
then fitting a statistical model to the retained
values, which is basically an estimate of the like-
lihood of the truncated model Mε(sobs), where
sobs is the vector of observed summary statis-
tics. As was shown recently (Leuenberger and
Wegmann 2009), the true posterior of the ini-
tial model M is exactly equal to the posterior
distribution of the truncated model Mε(sobs)
given the truncated prior πε(θ) (see Section 6.3
“Post–sampling Adjustment” on page 58 for a
detailed description). If a standard estimation is
launched, ABCestimator repeats the estimation
steps for each data set provided in the .obs–
file (see Section 3.3 “Observed Data” on page
32). Since the statistical model is (in most cases)
at best a good approximation of the truncated
model Mε(sobs), the posterior remains approxi-
mative.

The details of the different estimations steps
are given in Section 6.3.2 “ABC-GLM” on page
60 and Leuenberger and Wegmann (2009). Here
we just describe how to configure a standard es-
timation approach.

Rejection The hope is that the statistical
model fits better to the data, if rejection is
stringent. On the other hand, the accuracy of
the estimation of the truncated prior πε(θ) re-
quires a larger sample of simulations, such that
a tradeoff has to be found. The rejection step
is regulated by the two parameters numRetained
and tolerance. The two parameters stand for
a different rejection philosophy: while the ex-
act distance below which simulations are ac-
cepted is given with tolerance, the parame-
ter numRetained sets the tolerance indirectly by
specifying the number of closest simulations to
retain. If both are defined, the more stringent
will be effective. If none is defined, all simula-

tions will be used for model parameter estima-
tion. If the parameter writeRetained is defined
and set to 1, ABCestimator writes two files: one
containing the parameter and statistics of the re-
tained simulations and one with the smoothed
parameter distribution of the retained simula-
tions (see Section 3.10 “Output” on page 36).

The rejection step as implemented in
ABCestimator depends on the Euclidean dis-
tance between the simulated and observed data.
As will be discussed in detail in Section 5.2
“Choosing Summary Statistics” on page 44, the
choice of summary statistics is an important is-
sue with a large influence on the distance. The
parameter standardizeStats specifies whether
(1) or not (0) the statistics are standardized
before the distance is calculated.

Posterior estimation A standard estimation
follows exactly the formulation of Leuenberger
and Wegmann (2009), which is outlined in Sec-
tion 6.3.2 “Details of the Posterior Estimation”
on page 60. ABCestimator only estimates and
reports the marginal posterior density of the pa-
rameter θk defined by

π(θk|s) =
∫

Rm−1

π(θ|s)dθ−k, (5)

where integration is performed along all pa-
rameters except θk. ABCestimator calcu-
lates the density of the marginal posteriors
on a number of equally spaced points along
the range of every parameter. The number
of such points is specified with the parame-
ter posteriorDensityPoints with default value
100.

The posterior estimation depends on the
smoothed estimate of the truncated prior from
the retained samples (see Section 6.3.2 “De-
tails of the Posterior Estimation” on page 60
for details). The smoothing is regulated by
the parameter diracPeakWidth (corresponds to
Σθ in the formulation of Leuenberger and Weg-
mann (2009)). Since ABCestimator stamndard-
izes the parameters internally to the range [0, 1]
diracPeakWidth, the same diracPeakWidth
value is used for all parameters. Too small
values of diracPeakWidth will result in wig-
gly posterior curves, too large values might un-
duly smear out the curves. The best advice is
to run the calculations with several choices for
diracPeakWidth.
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The choice of diracPeakWidth depends on
the number of retained simulations: the larger
the number of retained parameter values, the
sharper the smaller diracPeakWidth can be cho-
sen in order to still get a rather smooth result.
If the parameter diracPeakWidth is not defined,
ABCestimator uses as value of 0.001, unless the
parameter numRetained is defined. In this case
ABCestimator sets σk = 1/N , where N is the
number of simulations to retain, as proposed by
Leuenberger and Wegmann (2009).

3.6 Distances from different statistics

ABCestimator offers the possibility to use dif-
ferent statistics for the distance calculation and
the estimation itself. Simply provide another
file with the simulated data by the parameter
distSimFile. This file has exactly the same
structure as the file given by simName (see Sec-
tion 3.4 “Simulated Data” on page 33) except
that it contains those statistics to be used for the
distance calculation. ABCestimator also needs a
file with the observed values of these summary
statistics, the name of which is provided with
the parameter distObsFile.

3.7 Model Choice

ABCestimator allows to perform model selection
via Bayes factors. For two modelsMA andMB

with prior probabilities πA and πB = 1 − πA,
the Bayes factor BAB in favor of modelMA over
model MB is

BAB =
fMA

(sobs)
fMB

(sobs)
, (6)

where fMA
and fMB

are the marginal densities
of model A and B, respectively. ABCestimator
prints marginal density to the standard out-
put with the tag “marginal density”. A file
(“marginal density.txt”) containing the marginal
densities of all observed data sets is also writ-
ten. In order to calculate Bayes factors, run
ABCestimator twice with the same observed
data set, but different files with simulated data.
These have to be generated under different mod-
els, but contain the same set of summary statis-
tics. Then, the Bayes factor is calculated accord-
ing to (6) by simply calculating the quotient of
the two marginal densities obtained through the
independent run of ABCestimator.

3.8 Testing Model Fit

If requested by the parameter obsPValue, a p-
value for the observed data set under the esti-
mated GLM is reported by ABCestimator. This
p-value can be used to judge, if the observed data
is in agreement with the retained data. Basically,
ABCestimator computes the likelihood of the ob-
served data under the GLM and compares it to
the likelihood of a number of retained data sets.
The reported p-value is simply the fraction of the
retained simulations with a smaller or equal like-
lihood. If the p-value is small, it suggests that
the estimated GLM does not fit the observed
data well, and in turn, that the model used to
generate the simulated data sets may not fit well
with the observed data. Sometimes it is worth
relaxing the rejection constraints to get more
simulations on which the GLM is estimated. If
the computations are based on many data sets
the p–value is more accurately estimated, but at
some computational costs. The number of re-
tained data sets to consider is specified with the
parameter obsPValue. ABCestimator will use
the number of retained simulations at most. If
obsPValue is chosen smaller than the number
of retained simulations, ABCestimator chooses
them in the same order as in the file contain-
ing all simulations (as specified by simName, see
Section 3.4 “Simulated Data” on page 33).

3.9 Quantile of the true Parameter values
within the Posterior Distribution

It is possible to pass the true model pa-
rameter values for the observed data sets to
ABCestimator. In order to validate the chosen
estimation procedure and summary statistics it is
worth checking for a potential bias in the poste-
rior distributions. A way to do this is to check for
uniformity of the posterior quantiles of the true
model parameter values using pseudo–observed
data sets (see Section 5.3.2 “Checking for biased
posteriors” on page 48). ABCestimator calcu-
lates these posterior quantiles, if a file with the
true model parameter values is passed via the
parameter trueParamName. The true parame-
ter values are, for instance, the values used to
generate the pseudo–observed data sets. The
passed file has to be organized in columns, where
each column reports the true value of one model
parameter. ABCestimator will throw an error
if one of these model parameters is missing in
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the file containing the simulations or if one of
these model parameters is not requested to be
estimated (see Section 3.4 “Simulated Data” on
page 33). The file with the true model pa-
rameter values, on the other hand, may con-
tain less columns than model parameters are es-
timated. ABCestimator does simply not com-
pute the quantiles for these model parameters.
The file with the true model parameters must
contain as many lines as observed data sets are
passed to ABCestimator (see Section 3.3 “Ob-
served Data” on page 32). ABCestimator will
then write the quantiles of the true model param-
eters to a file named “quantilesOfTrueParam-
eters.txt” (see Section 3.10 “Output” on page
36).

3.10 Output

While all parameters used, the progress of the
estimation and important messages are written
directly to the standard output, ABCestimator
writes several output files containing the poste-
rior estimations or the retained simulations. All
files bear a common prefix, which can be set with
the parameter outputPrefix and which default
value is “ABC GLM ”. If a standard estimation
is performed and if several data sets are provided
in the .obs file, all files written for each data set
independently bear a suffix consiting of the tag
“ Obs” and the number of the data set.

The file “PosteriorEstimates.txt” contains the
estimates of the posterior distributions of all
model parameters. It is organized in columns
with two columns for each model parameter. The
first, baring the name of the parameter, gives
the coordinates at which the posterior density
has been estimated (see Section 3.5.1 “Posterior
estimation” on page 34). The second reports the
posterior density at these points.

The file “PosteriorCharacteristics.txt” sum-
marizes some important features of the poste-
rior distributions such as mode, mean, median,
several quantiles and several highest posterior
density intervals. Note that the mode reported
is simply the position with the highest density

among the sampled positions of the smoothed
posterior distribution. Quantiles are real quan-
tiles distributed around the median. Highest
posterior density intervals (HPD) are the short-
est continuous interval with an integrated poste-
rior density of a certain value. It is similar to the
Bayesian credible interval.

The file “BestSimsParamStats.txt” contains
the model parameters and statistics of the re-
tained simulations, along with the computed dis-
tance of these simulations to the observed data
set and the line number of the simulation in
the file with the simulated data sets. This file
is only written if requested with the parameter
writeRetained.

The file “TruncatedPrior.txt” contains the
smoothed parameter distribution among the re-
tained simulations. The format of the file is sim-
ilar to the file containing the posterior estimates
(see above). This file is only written if requested
with the parameter writeRetained.

The file “marginalDensity.txt” contains the
marginal densities of all observed data sets.

The file “L1DistancePriorPosterior.txt” con-
tains, for each parameter, the L1-distance be-
tween the inferred posterior and the prior distri-
bution. Recall that the L1-distance of two (con-
tinuous) densities f(θ) and g(θ)

‖f − g‖1 =
∫
|f(θ)− g(θ)|dθ (7)

measures the area between the function curves.
It is equal to 2 when f and g have disjoint sup-
ports and it vanishes when the functions are
identical.

The file “quantilesOfTrueParameters.txt” con-
tains the quantiles of the true model parame-
ters within the marginal posterior distributions
(see Section 3.8 “Testing Model Fit” on page 35).
The first column contains the number of the ob-
served data set, the following columns the quan-
tiles of the different model parameters. This file
is only written if the true model parameters are
passed with the parameter trueParamName and
only if a standard estimation is performed.
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3.11 All available Parameter for ABCestimator

The following table lists all available parameters for ABCestimator. The last column indicates whether
a parameter is required (R) or optional (O). Note that the indicated default values are used if the
parameter is not passed to ABCestimator.

Parameter Description and possible values see. . . SI
diracPeakWidth Specifies the width of the Dirac peaks used for

smoothing the marginal posterior distributions.
The values are on the parameter scaled to fit within
[0,1]. Large values imply smoother curves. Float,
default value is 0.001 0 (default) or 1

3.5.1, p. 34 O

distObsFile A file containing the observed summary statistics
used to calculate the distances, if those are different
from the summary statistics used to perform the
regression analysis. If this parameter is defined, the
parameter distSimFile has to be defined as well.
Filename1

3.6, p. 35 O

distSimFile A file containing the simulated summary statistics
used to calculate the distances, if those are different
from the summary statistics used to perform the
regression analysis. If this parameter is defined, the
parameter distObsFile has to be defined as well.
Filename1

3.6, p. 35 O

estimationType Controls the required estimation type. “standard” 3.5, p. 33 R
maxReadSims Puts a limit on the maximum simulations to read

from the simName and the
distSimFile. Integer, default is as many simula-
tions as present in the file.

3.4, p. 33 O

numRetained The number of closest simulations to retain for the
posterior estimation. Integer larger than 10, default
is the total number of simulations.

3.5.1, p. 34 O

obsName The name of the file containing the observed sum-
mary statistics. Filename1

3.3, p. 32 R

obsPValue Controls whether (1) or not (0) p-values of the ob-
served data sets are computed. 0 (default) or 1

3.10, p. 36 O

outputPrefix A tag that is added before each output file written
by ABCestimator. String, default is “ABC GLM ”

3.10, p. 36 O

params The columns in the containing model parameters
for which estimates are requested. A string of the
format “1,3,5-7,9”

3.4, p. 33 RR

posteriorDensityPoints The number of points along the parameter axis at
which the marginal posterior density is calculated.
Integer, default is 100

3.5.1, p. 34 O

1The name of an existing file.
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Parameter Description and possible values see. . . SI
simName The name of the file containing the model param-

eters and corresponding summary statistics of the
performed simulations. These simulations are the
basis on which estimates are performed. Filename1

3.4, p. 33 R

stadardizeStats Controls whether (1) or not (0) the summary statis-
tics are standardized before the calculation of the
distances. 0 (default) or 1

3.5.1, p. 34 O

tolerance The fraction of closest simulations to retain for pos-
terior estimation. Float between 0 and 10

3.5.1, p. 34 O

trueParamName The name of a file containing the true parameters
used to generate the observed summary statistics.
Filename1

3.10, p. 36 O

writeRetained Whether (1) or not (0) the smoothed marginal den-
sities of the retained simulation is computed and
written to a file. 0 (default) or 1

3.10, p. 36 O

3.12 Possible error Messages

ABCestimator writes error messages directly to
the command line. Here you find a hopefully
complete list of possible error messages and some
suggestions on what could be changed to make
ABCestimator work.

Column ’. . . ’ is requested as parameter
and statistics!
The name of a column in the file containing the
simulations is also present in the file with the
observed data sets and therefore regarded as a
summary statistics by ABCestimator. But this
column is also marked as a model parameter to
be estimated with the parameter params. You
probably don’t want this column to be estimated.
See Section 3.4 “Simulated Data” on page 33.

File with observed statistics ’. . . ’ could
not be opened!
The name of the file containing the ob-
served data sets is specified with the obsName.
ABCestimator was unable to read this file. Most
likely, the file is not present in the working di-
rectory of ABCestimator. See Section 3.3 “Ob-
served Data” on page 32.

File with simulations ’. . . ’ could not be
opened!
The name of the file containing the ob-
served data sets is specified with the simName.
ABCestimator was unable to read this file. Most
likely, the file is not present in the working di-
rectory of ABCestimator. See Section 3.4 “Sim-
ulated Data” on page 33.

File with true parameters ’. . . ’ could not
be opened!”
The name of the file containing the observed
data sets is specified with the trueParamName.
ABCestimator was unable to read this file. Most
likely, the file is not present in the working direc-
tory of ABCestimator. See Section 3.9 “Quantile
of the true Parameter values within the Posterior
Distribution” on page 35.

Given the current specified tolerance /
numRetained, less than 10 (only . . . ) sim-
ulation are retained!
ABCestimator requires at least 10 simulations
on which any posterior estimation can be per-
formed. In most cases it is recommended to ac-
tually use much more simulations (several hun-
dreds up to several thousands). Consider chang-
ing the tolerance or the number of retained sim-
ulations with the parameters tolerance and
numRetained, respectively. See Section 3.5.1
“Rejection” on page 34.

Input file ’. . . ’ could not be opened!
ABCestimator requires one mandatory argument
when launched, which is the name of the file con-
taining the specifications for the estimation run.
ABCestimator was unable to read the .input
file which name was passed. Most likely, the
file is not present in the working directory of
ABCestimator. See Section 3.2 “.input File”
on page 32.

38



Less lines in the file with true parame-
ters’. . . ’ than observed data set!
If a file with the true model parameters is passed,
it has to contain as many lines as observed data
sets are passed to ABCestimator. Compare the
number of lines of this file with the number of
lines in the file containing the observed data sets
(passed with the parameter obsName). See Sec-
tion 3.9 “Quantile of the true Parameter values
within the Posterior Distribution” on page 35.

More names than values in the .obs-file
’. . . ’ !
At least one line of the file containing the ob-
served summary statistics contains more values
than names are present in the header line. Check
the content of this file. See Section 3.3 “Observed
Data” on page 32.

More names than values in the file with
true parameters ’. . . ’ !
At least one line of the file containing the true
model parameters contains more values than
names are present in the header line. Check the
content of this file. See Section 3.9 “Quantile of
the true Parameter values within the Posterior
Distribution” on page 35.

More values than names in the .obs-file
’. . . ’ !
At least one line of the file containing the ob-
served summary statistics contains less values
than names are present in the header line. Check
the content of this file. See Section 3.3 “Observed
Data” on page 32.

More values than names in the file with
true parameters’. . . ’ !
At least one line of the file containing the
true model parameters contains less values than
names are present in the header line. Check the
content of this file. See Section 3.9 “Quantile of
the true Parameter values within the Posterior
Distribution” on page 35.

Problem calculating the standard devia-
tion of the simulated statistic ’. . . ’ !
ABCestimator is not able to compute the stan-
dard deviation of this statistic among the simu-
lations. Check the distribution of this statistic
(for instance in R). See Section 3.4 “Simulated
Data” on page 33.

Problem reading the parameter string!
The columns of the file containing the simu-
lated data, for which ABCestimator calculates
marginal posterior densities, are defined with
the parameter params in a specific format. The
value of this parameter does not follow the for-
mat, please check it. See Section 3.4 “Simulated
Data” on page 33.

Some statistics is/are missing in the sim-
ulation file!
There is at least one summary statistics present
in the file with the observed data set, but miss-
ing in the file containing the simulations. See
Section 3.4 “Simulated Data” on page 33.

The number of observed data sets differs
between the file used for estimation and
the one used to calculate distances!
You specified a file with observed summary
statistics to be used to calculate the distances.
This file, however, does not contain the same
number of lines as the file with the observed data
sets passed with the parameter obsName. Check
the content of these files. See Section 3.6 “Dis-
tances from different statistics” on page 35.

The number of simulations to retain is set
to a value <10!
ABCestimator requires at least 10 simulations
on which any posterior estimation can be per-
formed. In most cases it is recommended to ac-
tually use much more simulations (several hun-
dreds up to several thousands). Consider chang-
ing the number of retained simulations with
the parameter numRetained. See Section 3.5.1
“Rejection” on page 34.

The parameter ’. . . ’ is not defined in the
inputfile!
A required parameter for ABCestimator is miss-
ing in the .input file. Please add this parameter.
See Section 3.2 “.input File” on page 32.

The parameter ’. . . ’ is not estimated, but
requested from the file with true parame-
ter values!
The file containing the true model parameters
contains a column, which is either absent in the
file containing the simulations or this model pa-
rameter is not requested to be estimated with the
parameter params. See Section 3.9 “Quantile of
the true Parameter values within the Posterior
Distribution” on page 35.
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The statistics ’. . . ’ is monomorphic among
the retained simulations!
ABCestimator can not perform the regression
adjustment, if some statistics are monomorphic,
which means that all retained simulations have
the same value for this statistics. Consider ei-
ther removing this statistics (simply drop it from
the file with the observed data sets) or to retain
more simulations. See Section 3.5.1 “Rejection”
on page 34.

Too many lines in the file with true param-
eters ’. . . ’, more than observed data set!
If a file with the true model parameters is passed

it has to contain as many lines as observed data
sets are passed to ABCestimator. Compare the
number of lines of this file with the number of
lines in the file containing the observed data sets
passed with the parameter obsName. See Sec-
tion 3.9 “Quantile of the true Parameter values
within the Posterior Distribution” on page 35.

Wrong number of arguments!
ABCestimator was launched with the wrong
number of arguments, most likely without the
name of a valid .input–file. See Section 3.1
“Launching ABCestimator” on page 32.
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4 Additional Tools

ABCtoolbox includes a set of small programs
or scripts that can be useful when performing
some ABC estimates. Here we provide a com-
plete list of all additional tools and give some
explanations on how to use them.

4.1 Using transformer

This small command line program is designed to
perform the linear transformations of summary
statistics, just as ABCsampler does them on a
file containing the original summary statistics.
transformer needs a file with the definitions of
the linear transformation as its first argument.
This file has exactly the same specifications as
the one for ABCsampler (see Section 2.8 “Linear
transformed statistics” on page 20). The second
argument is the file with the original summary
statistics. This file must contain a header line,
where the names of the summary statistics corre-
spond to those in the file with the definitions of
the linear transformations. This file may also
contain additional columns such as model pa-
rameters. In this case transformer does the
following: all columns prior to the first sum-
mary statistics column are printed without any
change. Columns after the first summary statis-
tics column, but with a name not listed in the
file with the definitions of the linear transforma-
tions, will be ignored. This offers the possibility
to transform an output file of ABCsampler con-
taining first the model parameters and then the
summary statistics at once and even to choose
linear combinations of a subset of the summary
statistics calculated. Note that on a Unix en-
vironment there is also a simple way to remove
some columns from a file in general:

$ cut -f1-4,6-10 old.txt > new.txt

for instance, copies the columns 1 to 4 and 6
to 10 form the file “old.txt” to a new file
named “new.txt” in this example. This is a
simple way to remove, for instance, some extra
model parameter columns. The last argument of
transformer is the desired filename of the trans-
formed file. All together, on a Unix environment,
simply call transformer like this:

$ transformer def.txt sims.txt new sims.txt

where “def.txt” is the file with the defini-

tions of the linear combinations, “sims.txt”
the file with the original summary statistics and
“new sims.txt” the desired filename of the out-
put file. Just as ABCsampler, transformer offers
the possibility of applying a Box–Cox transfor-
mation to the statistics prior to the computation
of the linear combinations. To achieve this, sim-
ply call transformer with the additional tag
“boxcox”:

$ transformer def.txt sims.txt new sims.txt boxcox

Be careful that the file “def.txt” has the right
format (see Section 2.8 “Linear transformed
statistics” on page 20).

4.2 Using cumuldens

This small command line program calculates the
positions of some locations of interest within the
cumulative density distribution of a sample. This
may be useful to check for a potential poste-
rior bias (see Section 5.3.2 “Checking for biased
posteriors” on page 48). cumuldens requires
two obligatory arguments: a file with samples
from which the density distribution has to be
estimated and a file containing the locations at
which the density of the cumulative distribution
is of interest. Both files require a header line with
the names of the different columns. cumuldens
will output the density of the cumulative den-
sity distribution of all columns which are present
in both files. If a column is missing in the file
with the samples, cumuldens will throw an er-
ror. On the other hand, additional columns may
be present in the file with the samples. This is es-
pecially handy, since the output of ABCsampler
contains not only the parameters, but also the
summary statistics. To check for a potential pos-
terior bias (see Section 5.3.2 “Checking for biased
posteriors” on page 48), however, only the model
parameter columns are important. On a Unix
environment, simply call cumuldens like this:

$ cumuldens samples.txt locations.txt

where “samples.txt” is the file with the sam-
ples from the distribution (e.g. output file of
ABCsampler) and “locations.txt” the name of
the file containing the locations of interest (e.g.
the true model parameter values). Different to
transformer, cumuldens writes the results di-
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rectly to the standard output. cumuldens can
be told to print the names of the columns used
as a first row. Simply call cumuldens with the
additional tag “header”:

$ cumuldens samples.txt locations.txt header

4.3 Using strStats

strStats is a small command line program that
calculates some very basic summary statistics
when using micro satellites (STRs). It requires
a valid Arlequin 3.1 input file to read the sam-
pled micro satellites. The outputted summary
statistics are the variation in repeat length per
population and the differences in the average
repeat length between all pairs of populations.
Be careful to transform the micro satellites al-
leles into repeat length when using strStats.
simcoal2 writes Arlequin 3.1 files with repeat
length automatically. In total, strStats re-
quires 5 arguments:

1st The name of an Arlequin 3.1 file.
2nd The name of the output file to which

strStats writes the calculated summary
statistics.

3rd An indication whether (1) or not (0) to
write a header line with the names of the
summary statistics.

4th An indication whether to append to (1) or
to overwrite (0) the output file.

5th An indication whether to output the sum-
mary statistics for each locus individually
(1) or the mean over all loci (0).

A valid program call looks therefore somewhat
like this:

$ strStats humans.arp sumstats.txt 1 1 0

Note that the arguments are almost identical to
those required by arlsumstat. Be also aware
that strStats may produce unpredictable re-
sults if used with DNA sequences or a wrong data
format. Please check the manual of Arlequin
3.1 at www.cmpg.unibe.ch for a definition of the
data format.

4.4 Using glm

R-script————————- —
glm is a small command line program gener-

ating summary statistics under a general linear

model GLM. It is intended to be used for test-
ing purposes since it is very fast in generating
summary statistics using a GLM and second, the
degree of complexity can be arbitrarily chosen.
Basically, glm generates summary statistics un-
der the GLM

s|θ = Cθ + c0 + ε, (8)

where s is an n–dimensional column vector of
summary statistics, θis an m–dimensional col-
umn vector of parameter values, C is an n×m-
matrix of constants, c0 a n × 1-vector and ε a
random vector with a multivariate normal distri-
bution of zero mean and covariance matrix Σs:

ε ∼ N (0,Σs). (9)

The covariance matrix Σs may encapsulate cor-
relations between the summary statistics, as are
normally observed in many population genetics
models and likely in others as well. glm takes the
following arguments:

1st The name of a file with the definitions of
C, c0 and Σs (see below).

2nd The name of the output file to which glm
writes the calculated summary statistics.

3rd The value of the first parameter compo-
nent θ1.

... The values of the remaining parameter
components θk, k = (2, . . . ,m).

A valid program call may look as follows:

$ glm matrices.txt sumstats.txt 0.34 0.984 1.35

The file containing the definitions of C, c0 and
Σs has the following format: each of the three
matrices begins with the tag “C”, “c0” and
“Sigma”, respectively, followed by lines contain-
ing the rows of these matrices. Note that c0,
despite being a column vector, has to be coded
as a row vector. An example of such a file is
given in Figure 8. Note that Σs must be a
symmetric matrix. If no correlations between
the summary statistics are assumed, the Σs is
a diagonal matrix containing only the variances
of the different summary statistics. The out-
put file of glm contains a header row with the
names of the statistics (“Stat 1”, “Stat 2”, . . . ,
“Stat n”) and a second line with the values of
the different statistics. glm can easily be used
with ABCsampler: simply use glm as the simu-
lation program and do not use any program to
calculate summary statistics. The arguments to
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C
0.2565644169 0.3998737261 0.6191035043 0.0881405491 0.5812833798
0.8341390323 0.8417301406 0.5533106020 0.4275868451 0.3839495266
0.1004940239 0.1214807089 0.9599180175 0.5112989354 0.6948176981
0.3804506403 0.7428206834 0.9395745955 0.2937300280 0.7716452195
0.8394088270 0.4887209875 0.5011698930 0.1772321309 0.6622808776
c0
1 1 1 1 1 1
Sigma
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Figure 8. A Matrix definition file for glm This is an example of a file containing the definitions of the matrices
used by the program glm. Note that it may not contain any comments. See text for explanations.

pass to glm can be specified with the parame-
ter simParam of ABCsampler. The parameters
defined in the .est–file can be used as argu-
ments directly (see Section 2.4 “Using different
Simulation Programs” on page 13). The name
of the output file of glm has to be specified to
ABCsampler with the parameter simDataName.
Since glm is a very quick way to generate sum-
mary statistics from an arbitrary complex model,
it is very well suited to test several runs of
ABCsampler under various conditions. For in-
stance, the convergence of MCMC without like-
lihoods or Population Monte Carlo may be tested
that way. Note that ABCsampler offers an inter-
nal version of this program which is much faster
to run, since the file with the matrix definitions
is only read once. To use this internal version,
simply set the parameter simulationProgram
to the tag “INTERNALGLM”, but use the ar-
guments to pass as described above (see Section
2.4.2 “INTERNALGLM” on page 16).

4.5 Plotting Posteriors

ABCtoolbox features also an R script, named
plotPosteriors.r, to plot posteriors from the
output of ABCestimator. This script reads an
.input–file of ABCestimator and produces pdf
plots for each data set for which estimates ex-
ist. It needs the original simulation file (the
file containing all simulations), the file with
the observed statistics and the output files of
ABCestimator containing the posteriors esti-

mates to be located in the same directory as the
ABCestimator .input–file. To launch this script
on the command line on a Unix platform simply
type

$ R --vanilla inputfile < plotPosteriors.r

where inputfile corresponds to the name of the
ABCestimator .input–file to be used. The de-
fault is a file names “abc glm.input” located in
the same directory as the script. To use the
script under Windows, simply copy it into the
same directory as the ABCestimator .input–file
and change the default name in the script.

The provided R script plots the prior distribu-
tion (estimated from the first 50,000 simulations
in the simulation file) in black and the obtained
posterior distributions in red. If the file with the
retained simulations is written by ABCestimator
(requested with the parameter writeRetained),
an additional blue line with the marginal param-
eter distribution among the retained simulations
is plotted.

4.6 Defining PLS components

if the dimensionality of the summary statistics
space is large, a reduction using linear combina-
tions may be advantageous. Wegmann and Ex-
coffier (2008) proposed to use PLS components.
The definition and use of PLS components is de-
scribed in detail in Section 5.2 “Choosing Sum-
mary Statistics” on page 44, as is the use of
findPLS.r, a simple R script distributed with
ABCtoolbox and given in Figure 9.
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5 Pitfalls, Hints, and Suggestions

5.1 Defining Priors

As described in Section 6.1 “Bayesian statistics”
on page 54, prior distributions are essential when
performing Bayesian inference. They do and
should have an influence on the outcome of the
inference and are recommended to be chosen
wisely. In general, the prior distribution are sum-
marizing the a priori knowledge on the model
parameters in question. Their choice may, how-
ever, also have a large impact on the perfor-
mance of the ABC algorithm. While standard
MCMC approaches accept new steps based on
likelihood rations, ABC algorithms accept pa-
rameter vectors based on the absolute likelihood.
This has some severe impact on the acceptance
rate which is generally much lower for ABC ap-
proaches. Choosing complex models, too many
summary statistics or very wide priors may re-
duce the absolute likelihood and in consequence
the acceptance rate of ABC algorithms.

When prior distributions are covering several
orders of magnitude, it might be advisable to
choose them on a logarithmic scale or otherwise
the sampling effort of ABC approaches may con-
centrate on large values. In such cases the main
interest is usually anyway in the order of magni-
tude of the parameter. In most such cases also
the summary statistics depend on the parame-
ter rather on a logarithmic scale than a natural
one. It might therefore be wise to parameterize
the model with a parameter on the logarithmic
scale and to estimate the parameter also on this
scale, especially when using a post–sampling ad-
justment.

5.2 Choosing Summary Statistics

An important approximation is the replacement
of the full data by a set of summary statistics
(see Section 1.1.3 “Summary Statistics” on page
5). The hope is to capture the whole informa-
tion contained in the data about the model pa-
rameters, while being able to compute a distance
between two data sets. That is, we aim at find-
ing a set of sufficient summary statistics for the
model in question. While increasing the number
of summary statistics may indeed increase the
amount of information available for an ABC al-
gorithm, other issues may arise. Basically, the

larger the number of summary statistics, the
larger the statistical noise included in the poste-
rior estimation (Joyce and Marjoram 2008). The
reason is twofold: firstly, many statistics may
carry only very limited amount of information
about the model parameters and can therefore
be considered as just adding a random number.
Secondly, in a large summary statistics space, it
becomes very difficult to obtain simulations close
to the observation and all simulations will have
very similar distances to the observed data set, a
phenomenon known as “the curse of dimension-
ality”. Which in turn makes it very difficult to
choose the right simulations in the rejection step.
Wegmann and Excoffier (2008) indeed showed
that when too many summary statistics are in-
cluded, the obtained posteriors may be biased.

Joyce and Marjoram (2008) proposed to solve
this trade-off between the information added
by additional summary statistics and the corre-
sponding additional stochastic noise by scoring
the different summary statistics based on their
impact on the inference. That way they find
a minimal set of summary statistics having the
largest impact on the inference, which is thought
to be an optimal set of summary statistics. Weg-
mann and Excoffier (2008) proposed a different
solution to the problem by aiming at defining
a set of orthogonal linear-combinations of sum-
mary statistics explaining best the variance in
the model parameter space. This is achieved by
transforming the summary statistics via Partial
Least Squares PLS (Boulesteix and Strimmer
2007). Like principal component analysis (PCA),
PLS extracts orthogonal components from a high
dimensional data set X of predictor variables,
but in addition, these components are chosen
such as to appropriately explain the variability
of a matrix of response variables by maximiz-
ing the covariance matrix of predictor and re-
sponse variables (see e.g. Tenehaus et al. 1995).
As noted by Wegmann and Excoffier (2008) it
might be desirable to linearize the relationship
between model parameters and statistics before
transforming them linearly in some cases. They
propose to use a Box–Cox transformation to the
statistics:

sBoxCox =
sλ − 1

λ(GM(s))λ−1
, (10)
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library("pls"); library("MASS");
#read file with simulations
numComp<-20;
directory<-’/home/me/ABC’; filename<-’someSims.txt’;
a<-read.table(paste(directory, filename, sep=’’), header=T, nrows=10000, skip=0);
print(names(a));
stat<-a[,16:61]; param<-a[,1:15]; rm(a);
#standardize the params
for(i in 1:length(param)){param[,i]<-(param[,i]-mean(param[,i]))/sd(param[,i]);}
#force stat in [1,2]
myMax<-c(); myMin<-c(); lambda<-c(); myGM<-c();
for(i in 1:length(stat)){

myMax<-c(myMax, max(stat[,i])); myMin<-c(myMin, min(stat[,i]));
stat[,i]<-1+(stat[,i] -myMin[i])/(myMax[i]-myMin[ i]);

}
#transform statistics via boxcox
for(i in 1:length(stat)){

d<-cbind(stat[,i], param);
mylm<-lm(as.formula(d), data=d);
myboxcox<-boxcox(mylm, lambda=seq(-20,100,1/10), interp=T, eps=1/50);
lambda<-c(lambda, myboxcox$x[myboxcox$y==max(myboxcox$y)]);
myGM<-c(myGM, mean(exp(log(stat[,i]))));

}
#standardize the BC-stat
myBCMeans<-c(); myBCSDs<-c();
for(i in 1:length(stat)){

stat[,i]<-(stat[,i] ^lambda[i] - 1)/(lambda[i]∗myGM[i] ^(lambda[i]-1));
myBCSDs<-c(myBCSDs, sd(stat[,i]));
myBCMeans<-c(myBCMeans, mean(stat[,i]));
stat[,i]<-(stat[,i] -myBCMeans[i])/myBCSDs[i];

}
#perform pls
myPlsr<-plsr(as.matrix(param) as.matrix(stat), scale=F, ncomp=numComp,
validation=’LOO’);
#write pls to a file
myPlsrDataFrame<-data.frame(comp1=myPlsr$loadings[,1]);
for(i in 2:numComp){myPlsrDataFrame<-cbind(myPlsrDataFrame, myPlsr$loadings[,i]);}
write.table(cbind(names(stats), myMax, myMin, lambda, myGM, myBCMeans, myBCSDs,
myPlsrDataFrame), file=paste(directory, ’PLSfile_’, filename, sep=’’), col.names=F,
row.names=F, sep=’�’, quote=F);
#make RMSEP plot
pdf(paste(directory, ’RMSEP_’, filename, ’.pdf’, sep=’’));
plot(RMSEP(myPlsr));
dev.off();

Figure 9. An R script to find PLS components This is an example of an R–script to find appropriate PLS
components. The scripts writes the definition of the components to a file which has the appropriate format for
ABCsampler. It also writes the RMSEP plots to a pdf (see text). Note that an RMSEP plot can also be generated
if no validation is done (removing validation=’LOO’ from the plsr call). In this case the prediction error is
approximated, which is much faster.
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Figure 10. RMEP plot The script findPLS.r writes a file containing RMSEP (root mean squared error) plots
for all model parameters (see text). Based on these plots the number of PLS components to use is defined. The
figure shows four RMSE plots from a real situation. As can bee seen, the summary statistics do not provide the
sam eamount of information for the different parameters. For parameter 3, for instance, even the inclusion of
20 PLS components reduces the predication error by only 6%. The first four PLS components, on the other hand,
seem to contain all the information contained in the summary statistics about parameter 2. In this situation it
is recommended to work with 5 to 7 PLS components.

where λ is the power parameter and GM(s) the
geometric mean of the statistics. ABCsampler
offers the possibility to use linear transformed
statistics with or without Box–Cox transforma-
tion.

5.2.1 Defining PLS Components

findPLS.r, a simple R script to define PLS
components, is distributed with ABCtoolbox and
given in Figure 9. It uses the freely available li-
brary “PLS” (Mevik and Wehrens 2007). In or-
der to use it for your pourposes, simply change
the variables directory and filename to match
a file containing several thousand simulations in
the format of an ABCsampler output file. Spec-
ify the appropriate columns as parameters and
statistics in line 7. You may exclude some pa-
rameters and statistics at this stage, but we rec-
ommend to start with the full set. Be aware that
numComp has to be smaller or equal to the number
of summary statistics.
findPLS.r will write two output files: the first

is a file that can be used to transform the sum-
mary statistics (see below). The second one is
a pdf used to define the number of PLS compo-
nents to use. It contains plots of the prediction
error (root mean squared error, RMSEP) when
using a given number of PLS components relative
to the prediction error without any PLS compo-
nent. This plot allows to decide on the number of
PLS components to use: the optimal set of PLS
components is the smallest set carrying a large

amount of information about the model param-
eters. Don’t use too many components (around
10 PLS components are generally fine). Exam-
ples of RMSEP plots and some interpretations
are given in Figure 10 It is also recommended
to check if the estimates depend heavily on the
number of components used. The RMSEP plot
gives also information about the relationship be-
tween model parameters and statistics: if any
number of PLS components reduces the predic-
tion error of a given model parameter only very
little, there is not much hope in estimating this
model parameter precisely.

5.2.2 Using Linear Transformed Statistics

In the case of a standard sampling run the eas-
iest way to use linearly transformed summary
statistics is to use some of the simulations of
the final set and then to transform the large
file with all simulations using transformer (see
Section 4.1 “Using transformer” on page 41).
In the case of an MCMC without likelihoods
or a PMC run this is impossible, since the lin-
ear combinations should already be used during
the run. Wegmann and Excoffier (2008) pro-
posed to use the calibration simulations of an
MCMC without likelihoods run to define PLS
components. This is a clever way since these
simulations are indeed drawn randomly from the
prior and do not require the computation of a
distance. Basically, it is advisable to perform a
standard sampling run with ABCsampler to gen-
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Figure 11. Wrong model Here we show the difficulty to realize if it is impossible to generate the observed data
under a given model. The empty dots represent simulations performed under the model, the black dot represents
the observed data sobs. While sobs falls well within the marginal distributions of the two summary statistics,
it is far away from them in a multivariate space. Sometimes it is beneficial to rotate the coordinate system in
order to see this problem. For instance, by performing a principal component analysis (PCA, dashed lines), the
discrepancy between sobs and the simulated data becomes visible in the marginals.

erate the calibration simulations and to define
the linear combinations based on these simula-
tions, and finally to pass the calibration simu-
lations as a file to ABCsampler for the MCMC
without likelihoods run, together with the file
containing the definitions of the linear combina-
tions (see Section 2.11.1 “Calibration File” on
page 23). Note that the same procedure may
also be used when performing a PMC run (see
Section 2.11.2 “Launching a Population Monte
Carlo algorithm” on page 23).

5.3 Validation

A main difficulty of an ABC analysis is to gain
confidence in the obtained results. As was shown
by Leuenberger and Wegmann (2009) and others,
ABC does indeed lead to an approximation of the
true posterior distribution and the assumptions
under which it does so, are known. But ABC
always leads to posterior distributions, whether
the assumptions underlaying it are met or not.
It is therefore an absolute necessity to perform
some additional analysis to gain confidence in the
results obtained. Here we discuss several of these
issues and propose ways to validate the results.

5.3.1 Using a Wrong Model

“All models are wrong, but some are usefull.”
A famous yet true quote from George Box. It
is important to note that all Bayesian estimates
require an underlying model and this model is at
best a good approximation of the truth. This has
an important implication: the obtained posteri-
ors reflect the probability of the model param-
eters given the observed data and the assumed
model. If the assumed model is very far from the
truth the estimates are meaningless. A problem
of ABC is that a likelihood of zero does not ex-
ist. Imagine an observed data set and model with
which it is impossible to generate the observed
data. The likelihood of the observed data under
this model is therefore zero. However, it is al-
ways possible to select simulated data sets that
are closer to the observed data set than others.
And it is also possible to perform a post sampling
regression adjustment such as ABC-GLM in this
case. The danger is, however, that the linear re-
lationship between the model parameters θ and
the statistics s is estimated in a region that does
not encompass the observed data set. To obtain
an approximate likelihood at sobs requires an ex-
trapolation of this relationship, which may give
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very wrong results. Note that the ABC-REG
approach suffers from a similar problem.

To see if an extrapolation happens, it is a
good idea to plot the density distribution of the
statistics of the retained simulations and to see if
the observed statistics fall well within this range.
A problem arising in higher dimensions of sum-
mary statistics is that the observed data may fall
within the marginal distribution of the retained
summary statistics, but not in the multivariate
distribution. In Figure 11 this is shown in two
dimensions. While it is impossible to plot a high
dimensional space, it might be useful to plot all
combinations of parameters to check if the ob-
served data falls within the obtained clouds. Per-
forming a coordinate rotation, such as a principal
component analysis (PCA), is sometime helpful
to see a discrapency between the observed and
simulated data even in the marginals (see Cor-
nuet et al. 2008 and Figure 11). ABCestimator
reports a p-value for the observed data set under
the estimated GLM, which can also be used to
judge, if the observed data is in agreement with
the simulated data (see Section 3.10 “Output” on
page 36). A way to check if the observed data is
plausible under the estimated model, is to sim-
ulate data sets under the estimated model (for
instance by taking the mode of all parameter es-
timates) and to check if the observed summary
statistics can be reproduced.

If the observed data is not reproduceable with
the model used, consider changing the model. Be
aware that the priors on the model parameters
are part of the model and do have an influence
on the posterior estimates, as they should. So
choosing the priors wisely is an important aspect
of running an ABC estimation.

5.3.2 Checking for biased posteriors

Since there is no general setting for any ABC set-
ting, it is advisable to test if the obtained pos-
teriors of an ABC estimation are biased or not.
There is a simple property of any real posterior
distribution, obtained with ABC or not: the pos-
terior distribution π(θ|s) denotes the probability
of a given model parameter vector θ to have pro-
duced the data set s under the assumed model
f(s|θ) and under the assumed prior distribution.
This property can easily be checked by generat-
ing a set of pseudo–observed data sets under the
model with parameters drawn from the poste-

rior distributions. The positions of the true pa-
rameters within the posterior distributions have
to reflect the probability denoted by the poste-
rior distributions. Basically, their position in the
marginal cumulative posterior distribution has to
be uniformly distributed, as we proof in the fol-
lowing (see also Cook et al. 2006):

Let f(s|θ) be a continuous model with p-
dimensional parameter vectors θ = (θ1, . . . , θp)
(defined on some domain Π ⊆ Rp) yielding n-
dimensional summary statistics s ∈ Rn. For a
prior distribution π(θ) we denote by π(θ|s) the
posterior and by

πk(θk|s) =
∫
π(θ|s)dθ−k (11)

the marginal posterior of the k-th parameter
component θk (integration is over all parameter
components but θk).

Theorem. If a parameter θ is drawn ∼ π(θ)
and s is a summary statistics produced by the
model f(s|θ) for the chosen parameter then the
random values

ak =

θk∫
−∞

πk(θk|s)dθk, k = 1, . . . , p, (12)

are uniformly (but not in general independently)
distributed on the interval [0, 1].

Proof. The joint distribution of θ and s is
f(s|θ)π(θ). Given some fixed value s = s ∈ Rn

for which
∫
f(s|θ)π(θ)dθ > 0, the conditional

density of θk is

πk(θk|s = s) =
∫
f(s|θ)π(θ)dθ−k∫
f(s|θ)π(θ)dθ

. (13)

Hence

ak(θk|s = s) =

θk∫
−∞

πk(θk|s = s)dθk (14)

has a uniform distribution as follows from the
well–known fact that F (X) is uniformly dis-
tributed on [0, 1], whenever X is an absolutely
continuous random variable with cumulative dis-
tribution function F (·). Since the distribution of
ak(θk|s = s) does in fact not depend on s, the
claim follows. �

ABCestimator outputs the positions in the
marginal cumulative posterior distribution ak
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Figure 12. Posterior Quantiles The figure shows the distribution of the posterior quantiles for a model with
four parameters. The p–values reported above the histograms was computed with a Kolmogorov–Smirnov test
against an uniform distribution. While parameter 1 seems to be unbiased, the other three parameters show some
severe departure from uniformity. Parameter 2 is biased toowards too large values. The posterior distributions
of parameter 2 are too narrow as too many times the true values lie within the tails (or even outside) of the
distribution. Estimates of parameter 4, on the other hand, are too broad with too many true values falling in
the middle of the posterior distribution.

(posterior quantiles) directly if the true model
parameter values are provided (see Section 3.10
“Output” on page 36). If no post–sampling re-
gression adjustment is performed, the program
cumuldens may be used (see Section 4.2 “Us-
ing cumuldens” on page 41). To test for unifor-
mity we recommend to perform a Kolmogorov–
Smirnov test against a uniform distribution. The
corresponding command in R is ks.test(q,
‘‘punif’’)‘, where q is a vector with the pos-
terior quantiles.

Interpreting the Distribution of Posterior
Quantiles In Figure 12 we report the distribu-
tion of the posterior quantiles of a model with
four parameters. For each parameter the p–value
computed using a Kolmogorov–Smirnov test is
reported. While the first parameter is most likely
unbiased, the other three parameter show depar-
ture from uniformity. Parameter 2 is an example
of a biased parameter, since the true value was
found too many times in the left half of the poste-
rior distribution. This suggests that this param-
eter is usually overestimated. Parameter 3 and 4
exhibited often too narrow and too wide posteri-
ors, respectively. The true value of parameter 3
was found too often in the tails of the posterior
distribution. The true value of parameter 4, on
the other hand, was found too many times in the
center of the distribution.

Once posterior biases have been found, there
are two ways of dealing with them: If the bi-
ased parameter is not of any interest itself (e.g.

a nuisance parameter), it is possible to ignore its
biased. But an interpretation of biased param-
eters should be avoided. In many case it might
however be better to try to change the model in
order to get unbiased results. Here we propose
three potential modifications:

� Reduce the complexity of the model
� Shrink prior ranges
� Reduce summary statistics space

To get unbiased estimates in complex mod-
els is very difficult. Note that a model with
more than five parameters can already be very
complex. We recommend to start with a really
simple model and to complexify if estimates are
feasible. A way to reduce the complexity of a
model is also to reduce the prior ranges. Keep
in mind that parameters ranging over several or-
ders of magnitude are recommended to be esti-
mated on a logarithmic scale. Some hints on how
to choose prior distributions are given in Section
5.1 “Defining Priors” on page 44. Some times a
reduction of the summary statistics space might
do the job. Actually, Wegmann and Excoffier
(2008) have shown that in population divergence
model with only four parameters, the inclusion of
too many summary statistics creates biased pos-
teriors. How to choose summary statistics wisely
is discussed in Section 5.2 “Choosing Summary
Statistics” on page 44.
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5.4 Using ABCtoolbox with simcoal2 and
arlsumstat

While the software package ABCtoolbox can be
used with almost any simulation program or pro-
gram to compute summary statistics, we used
the two programs simcoal2 and arlsumstat to
demonstrate the usage of ABCsampler. Both pro-
grams are freely available at www.cmpg.unibe.ch
and shiped with this package. In this section we
give some instructions on how to use ABCsampler
with these two programs. Note that the distri-
bution of ABCtoolbox contains the example files
used here.

The first step is to set up simcoal2 to simu-
late genetic data under the desired model (see
also www.cmpg.unibe.ch/software/ for details).
We will use here the same example used in
the Section 2 “Using ABCsampler” on page 11
and depicted in Figure 2. Consider a popu-
lation of size N NOW that was larger in the
past and changed its size T SHRINK genera-
tions ago. The ancestral population size is given
by N ANCESTRAL. simcoal2 reads the param-
eters of the model from a file. The manual of
simcoal2 contains detailed explanations on how
to set up different population genetic models (see
www.cmpg.unibe.ch/software). The file for the
simple example considered here is given in Fig-
ure 5. Note that instead of values, the input–file
for simcoal2 contains special tags at specific lo-
cations. This is because we will tell ABCsampler
to parse this file and thereby to replace these tags
with the values of the model parameters drawn
from their prior distributions. To achieve this,
we first need to define which tags correspond to
model parameters and to define their prior distri-
butions. This is done within a specific file termed
.est–file. A possible .est–file for the simple
model used here is given in Figure 4. See Section
2.3 “Defining prior distributions - .est File” on
page 11 for a detailed description on how to set
up an .est–file. The name of the .est–file used
is told ABCsampler with the parameter estName
in the .input–file of ABCsampler (see Section 2.3
“Defining prior distributions - .est File” on page
11). The name of the input–file for simcoal2 is
given by the parameter simInputName (see Sec-
tion 2.4 “Using different Simulation Programs”
on page 13).

We also need to explain ABCsampler how
to use the simulation program, simcoal2 in

this case. This is done with the two parame-
ters simulationProgram and simParam (see Sec-
tion 2.4 “Using different Simulation Programs”
on page 13). The first of them specifies the
name of the executable to use (simcoal2 in
this case), the second one the arguments that
have to be passed to the executable. simcoal2
takes four arguments: the name of its input–
file, the number of simulations to perform,
whether genotypic data is simulated (0/1) and
wether the gametic phase is known (0/1) . Of
course, simcoal2 is requested to perform a sin-
gle simulation per launch. Lets assume we
aim at genotypic data with unknown gametic
phase. For simcoal2 the parameter simParam
may therefore be specified like this: simParam
SIMINPUTNAME#1#1#0, where SIMINPUTNAME is a
special tag telling ABCsampler to pass the name
of the parsed input file name for simcoal2, speci-
fied by simInputName (see Section 2.4 “Using dif-
ferent Simulation Programs” on page 13). Note
that the parsed file will have a “-temp” added be-
fore the extension. using the tag SIMINPUTNAME
is therefore very convenient, since ABCsampler
handles this issue.

We then need to tell ABCsampler to use
arlsumstat to compute summary statistics from
the output of simcoal2. This is done with the
parameter sumStatProgram. We also have to tell
ABCsampler which arguments have to be passed
to arlsumstat. This is done with the param-
eter sumStatParam. arlsumstat takes four ar-
guments: the name of a valid Arlequin file, the
name of the file to which arlsumstat will write
the summary statistics, wether to append (1) or
overwrite the output file and wether to write
a header line with the names of the summary
statistics (0/1). simcoal2 writes directly a valid
Arlequin file with a name that is a derivate from
the input file used: simcoal2 replaces the ex-
tension with “ 0.arp”. The name is therefore
a construction using the simulation program in-
put filename, specified to ABCsampler with the
parameter simInputName (see above). Note that
we can use SIMINPUTNAME in this case as an iden-
tifier for the part of the filename identical to the
name of the input file of the simulation program
(without extension).

In order to compute the desired summary
statistics, arlsumstat requires two files to be
present in the same directory: arl run.ars and
ssdefs.txt. The first file is a configuration
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file telling arlsumstat which summary statis-
tics to compute. arlsumstat is basically a
command line version of Arlequin ans uses the
same configuration file (see the Arlequin manual
at www.cmpg.unibe.ch for explanations). Since
the structure of this file is not very obvious,
it is a good practice to use the graphical ver-
sion of Arlequin to produce it. The second file
(ssdefs.txt) is a file to tell arlsumstat which
summary statistics to print. It must contain
two header lines. The next two lines contain
two tags: POP LEVEL and GROUP LEVEL. They
indicate on which level the summary statistics
will be computed. To switch off a level, sim-
ply add a “#” sign in front of the tag. If
arlsumstat is requested to print the statistics on
the population level, the same summary statis-
tics are printed for each population. Similarly,
the same summary statistics will be printed for
each group, if requested. The numbering follows
the order in the input–file. Note that the groups
are defined in the input–file, which has to be a
valid Arlequin–file (see the Arlequin manual at
www.cmpg.unibe.ch for explanations). The next
lines of the ssdef file contain the names of the
summary statistics to be printed. Again, putting
a“#” in front of a tag will stop a given statistics
to be printed. For each statistics several tags
are available. The prefix ALL will print the given
statistics for each population or group. The pre-
fix ALLSD will print the standard deviation of
this statistics over loci for each population. The
next prefixes tell arlsumstat to print the mean
(MEAN) or the standard deviation (SD) of the sum-
mary statistics over populations / groups. The
prefix TOT finally will print the summary statis-
tics computed as if all samples were pooled to
a single population. Were applicable, the prefix
PAIRWISE will print the summary statistics com-
puted for all pairs of populations. An example
file, which can be modified easily, is found in the
subfolder exampleFiles.

The file, to which arlsumstat writes the
computed summary statistics, has also to be
known to ABCsampler and has to be spec-
ified with the parameter sumStatFile (the
default value is summary stats temp.txt, see
Section 2.5.1 “File with computed summary
statistics” on page 17). We may simply use
the tag SSFILENAME in the argument list of
arlsumstat. It is important to understand
that the output file of arlsumstat has to

be overwritten each time and has to con-
tain a header line (see Section 2.5.1 “File
with computed summary statistics” on page
17). To sum up, the parameter sumStatParam
has therefore be specified like this: simParam
SIMINPUTNAME 0.arp#SSFILENAME#0#1.

The complete .input file for ABCsampler, con-
taining all the above parameters, is given in
Figure 3 and included in the distribution of
ABCtoolbox among the example files.

5.5 Parallelizing ABCsampler

Most ABC estimations rely on a huge amount of
simulations, several hundred thousand or even
several millions. Due to the command line in-
terface of ABCsampler it is very easy to use a
grid to perform these simulations without having
to install any software on the individual nodes.
Simply chunk the total amount of simulations to
perform into small pieces and send each piece
onto an individual node, together with the com-
piled version of ABCsampler and the necessary
.input–file. A simple bash script that can be
used to do this on a grid using the “Sun Grid
Engine” is given in Figure 13. Such a script can
be launched on the master of the grid with the
following command:

$ qsub -t 1-100:1 ‘‘script.sh’’

which will launch an array job of 100 individual
jobs numbered form 1 to 100. Since the results
of any of these individual jobs is copied into
a unique folder (basically the “test run ” fol-
lowed by the job number, see Figure 13), the
results have to be concatenated before passing
to ABCestimator. This can be achieved for in-
stance as follows:

$ head -n1 testrun 1/*output*.txt > res.txt

> for fol in testrun *

> do tail -n+2 ${fol}/*output >> res.txt

$ done

Be aware that the random generator of
ABCsampler is initialized from the current time.
If several jobs submitted at the same time to a
grid, the random generator might be initialized
with the same seed. To circumvent this prob-
lem use the parameter addToSeed when launch-
ing sample and pass a value that depends on the
job submitted, such as the task ID. The provided
script uses this possibility.
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#!/bin/bash
#Settings for the Sun Grid Engine
#$-l s CPU=20:00:00
#$-l scratch=1,scratch size=500M,scratch files=1k
#$-A User
#$-N MCMC
#$-p 0
#create a unique folder and store folders
mkdir testrun ${SGE TASK ID}
scratchFolder="/scratch/local/${JOB ID}.${SGE TASK ID}.${QUEUE}"
homefolder=pwd
#copy files
cp test.input test.par test.est test.obs $scratchFolder/.
cp ABCsampler1.0 simulationProgram SSProgram $scratchFolder/.
#go on the node and launch ABCsampler1.0
cd $scratchFolder
chmod +x ABCsampler1.0 simulationProgram SSProgram
./ABCsampler1.0 test.input addToSeed=${SGE TASK ID}
#copy results back
cp *output*.txt *.log $homefolder/${SGE TASK ID}

Figure 13. Bash script to submit ABCsampler This is a minimal bash script to submit ABCsampler on a grid
running with the “Sun Grid Engine”. Specific setting for the grid have to be adjusted, especially the scratch
folder depends on the individual setup.

5.6 Parallelizing an MCMC without
likelihood run

So far we have only discussed on how
ABCsampler can be used to perform a single
MCMC without likelihoods chain. When intro-
ducing their recommendations on how to run an
MCMC without likelihoods efficiently, Wegmann
and Excoffier (2008) used a parallelized version
of their algorithm to demonstrate its applicabil-
ity. Here we outline briefly how to best achieve
this. The basic idea of running the parallelized
version is to spread the potentially computation
intensive task on several CPUs, for instance on
a grid. Therefore, the chain is basically chopped
into small parts, each of which can run on an in-
dividual CPU. The algorithm proposed by Weg-
mann and Excoffier (2008), however, involves a
calibration step which should not be repeated for
each part. The best way to run a parallelized
MCMC without likelihoods run seems therefore
to first use ABCsampler to produce a set of simu-
lations under standard sampling. The output of
this run can then be used as the calibration simu-
lations by passing the output file to ABCsampler
using the parameter calName. Of course, the

same file can be used for every chain that is
launched in parallel. Therefore, parallelizing an
MCMC without likelihoods chain is very similar
to parallelizing a standard sampling approach.
Since the start-up has to be repeated for every
individual chain and since the chain may have to
run sufficiently long to explore the whole param-
eter space, it is advisable to make the individual
chains too small. Note, however, that each of the
individual chains is potentially launched from a
different starting position, which may actually
help in exploring the parameter space.

5.7 Using different Marker Types with
simcoal2

The simulation program simcoal2, which was
used by Wegmann and Excoffier (2008) and oth-
ers, is only capable of performing DNA or STR
loci at once. In order to generate both types of
markers at once, simcoal2 has to be called twice
in each iteration. This approach was, for in-
stance, chosen by Wegmann et al. (2009). This is
easy to do, since ABCsampler provides all neces-
sary tools to perform several simulations with the
same model parameter values, but different sim-
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ulation program input files per iteration. Simply
specify two files simInputName and two files with
observed summary statistics with obsname. See

Section 2.7 “Several simulations per iteration” on
page 18 for a detailed description on this topic.
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6 ABC – the Methodological Reference

With the advent of ever more powerful com-
puters and the refinement of algorithms like
Markov Chain Monte Carlo (MCMC) or Gibbs
sampling, Bayesian statistics has become an im-
portant tool for scientific inference during the
past two decades. While this is true for virtually
any field of modern science, the rise of such meth-
ods was especially pronounced in the area of pop-
ulation genetics (Marjoram and Tavare 2006).
And since the authors are active in this disci-
pline, all examples and models used arise from
this field of research. Note, however, that the
methods are equally well applicable to any other
model or question.

While detailed description of the implemented
ABC algorithms are given, we refer the reader to
the original papers for a deep understanding of
the methodology.

6.1 Bayesian statistics

Consider a model M creating data D (DNA se-
quence data, for example) determined by param-
eters θ whose joint prior density we denote by
π(θ). The quantity of interest is the posterior
distribution of the parameters which can be cal-
culated by the Bayesian rule

π(θ|D) = c · fM(D|θ)π(θ), (15)

where f(D|θ) is the likelihood of the data and
c is a normalizing constant. Consider the fol-
lowing population genetic example: Imagine that
the size of a given population is of interest, but
unknown. A crude probability distribution of the
population size is available from “mark and re-
capture” data. This distribution is the a priori
information available and hence the prior for the
analysis. Assume that a new effort is done and
a collection of individuals from this population
are sampled and genetic data becomes available,
for instance the number of segregating sites at a
given locus. In a Bayesian framework, the first
step to do is to set up a model linking the popula-
tion size, the parameter of interest, with genetic
data, in this case the number of segregating sites.
Then, the likelihood function is derived for this
model. The best available estimate of the pop-
ulation size a posteriori of the genetic analysis
is then, given by the Bayesian rule in equation

15, proportional to the product of the prior and
the likelihood function given the observed data
D (the number of segregating sites in this exam-
ple). In other words, the probability distribution
of the parameters θ thought to be correct before
an experiment was conducted (our a priori be-
lief) is changed by the outcome of an experiment
(data D).

Direct use of the Bayesian rule (Equation 15),
however, is often thwarted by the fact that the
likelihood function cannot be calculated analyt-
ically for many realistic models. And even if the
likelihood function is traceable, it is often im-
possible to integrate it, which is need to get the
constant c. However, if likelihood ratios (the ra-
tio of the likelihood for two different parameter
values) can be computed analytically, one possi-
ble workaround is to sample from posterior dis-
tributions via a MCMC approach. A successfull
example is the program IMa (Hey and Nielsen
2007), which estimates demographic parameters
of the Isolation with Migration model (Hey and
Nielsen 2004) based on MCMC simulations of
gene genealogies.

6.2 Likelihood free samplers

In many cases, however, not even likelihood ra-
tios are analytically traceable. In these cases one
is obliged to have recourse to stochastic simula-
tion. In fact, the likelihood f(D|θ) for any given
parameter value θi is equal to the frequency of
observing D′ = D among a large sample of sim-
ulated data D′ with fixed parameter value θi.

6.2.1 Rejection sampling

Tavare et al. (1997) proposed the following rejec-
tion sampling method for simulating a posterior
random sample directly:

REJ1 Draw a parameter vector θi randomly
from the prior.

REJ2 Simulate D′ using θi.
REJ3 Accept θi if D′ = D. Go to 1.

The distribution of the accepted θi converges
exactly to the posterior distribution π(θ|D).
Tavare et al. (1997) propose to replace the full
data D by a summary statistics s (like the num-
ber of segregating sites in their setting). Even
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if the statistic is not sufficient for D – that is,
the statistic does not capture the full informa-
tion contained in the data about the parame-
ters – rejection sampling allows for the simula-
tion of approximate posterior distributions of the
parameters in question (the scaled mutation rate
in their model). This approach was extended to
multiple-parameter models θ = (θ1, . . . , θn) with
multivariate summary statistics s = (s1, . . . , sn)
by Weiss and Haeseler (1998). In their setting,
a candidate vector θi of parameters is simulated
from a prior distribution and is accepted if its
corresponding vector of summary statistics si is
sufficiently close to the observed summary statis-
tics sobs with respect to some metric in the space
of s, i.e. if dist(s, sobs) < δε for a fixed tolerance
δε.

6.2.2 Summary Statistics

In order to be able to calculate a distance be-
tween the simulated data D′ and the observed
data D, the data needs to be summarized in a
quantitative form. This is achieved by replacing
the full data D by a set of summary statistics
s = (s1, . . . , sn).

Common to all ABC algorithms is their de-
pendence on the absolute likelihood. Since some
parts of the data are usually not influenced by
the model parameters, replacing the full data by
summary statistics may actually increase the ab-
solute likelihood and therefor the acceptance rate
of any ABC algorithm. As an example imagine
a simple population genetics model of a single
population of constant size. A common way to
generate DNA sequences for samples from such a
population is to first generate a genealogy using
the coalescent theory (J. F. C. Kingman 1982;
J. Kingman 1982) and second, to sprinkle muta-
tions on that genealogy (Excoffier et al. 2000).
This is usually done by assuming a random se-
quence of DNA (since the true sequence is un-
known) at the most recent common ancestor of
all samples (the top of the genealogy) and then
changing some basepairs at random positions in
the genealogy. While the parameter of this sim-
ple model (namely θ = 2Nµ, where N is the
effective population size and µ the mutation pa-
rameter) has a strong influence on the genetic di-
versity of the sample, the exact basepairs are not
influenced. Therefore, by rejecting all simulated
data sets where D′ 6= D, we act to stringent.

Given a set of summary statistics that are suf-
ficient for D – that is, the statistics capture the
full information contained in the data about the
parameters –, a much higher acceptance rate can
be achieved. For instance, in our simple model,
the number of segregating sites s is sufficient for
the parameter θ.

Note, however, that in most cases the set of
summary statistics is not sufficient unless a large
set of summary statistics s = (s1, . . . , sn) is
used. Assume the summary statistics to be ran-
dom variables. The probability to have an exact
match between s and sobs is given by

P (s = sobs)n, (16)

a phenomenon known as “the curse of dimen-
sionality”. Therefore, when the dimension n of
summary statistics is high, the tolerance must
be chosen rather large or else the acceptance
rate becomes prohibitively low. This, however,
distorts the precision of the approximation of
the posterior distribution with large tolerance ε
values resulting in posterior distributions dom-
inated by the prior π(θ). A way to lower the
dimensionality was introduced by Wegmann and
Excoffier (2008) and is discussed in the Section
5.2 “Choosing Summary Statistics” on page 44.

6.2.3 MCMC without likelihoods

This situation can be partially alleviated by
speeding up the sampling process. Marjoram
et al. (2003) developed a variant of the classi-
cal Metropolis-Hastings algorithm, which allows
them to sample directly from the (approximate)
posterior distribution of θ. They showed that
a Markov chain where newly simulated data D′
would be accepted if they were equal to the ob-
served data D, and rejected otherwise, would
converge to the right posterior distribution. For
complex data sets where the acceptance rate is
too small, they proposed to replace the full data
by summary statistics and to accept new param-
eter values if sufficiently close to the data, like
proposed for the rejection algorithm by Weiss
and Haeseler (1998):

MCMC1 If now at θ, propose a move to
θ′ according to a transition kernel
q(θ → θ′).

MCMC2 Simulate D′ using θi.
MCMC3 Calculate summary statistics s′ on D′.
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MCMC4 If dist(s, sobs) < δε go to 5, otherwise
stay at θ and go back to 1.

MCMC5 Accept θ′ with probability

h(θ → θ′) = min
(

1,
π(θ′)q(θ′ → θ)
π(θ)q(θ → θ′)

)
,

otherwise remain at θ. Go to 1.

Marjoram et al. (2003) showed that this algo-
rithm converges to π(θ|dist(s, sobs) < δε), which
is a good approximation of π(θ|D) if δε is small
and s sufficient for θ.

As discussed earlier (see Section 5.2 “Choos-
ing Summary Statistics” on page 44), the choice
of the tolerance distance δε is crucial for the per-
formance of the algorithm and depends on the
model, the prior definitions and the observed
summary statistics sobs. Wegmann and Excoffier
(2008) proposed to use an initial calibration set
of n simulations (they proposed 10,000), where
parameter values are randomly drawn from the
prior distribution, such as to obtain an empir-
ical approximation of π(δ|sobs,θ), which is the
expected distribution of distances. With this dis-
tribution at hand, a tolerance level ε and a tol-
erance distance δε such that P (δ ≤ δε) = ε can
be defined conveniently. For instance, by setting
ε = 0.01, a tolerance distance δε can be defined,
such that a simulation with parameters θ drawn
randomly from the prior distribution will have a
distance δ ≤ δε in 1% of the cases. Note also,
that among the n simulations generated, all nε
simulations with δ ≤ δε are usable as starting
points for the MCMC chain. Therefore, no burn
in is required. Note that the n calibration simu-
lations are also used to get means and standard
deviations of all summary statistics. These mo-
ments are required to standardize the statistics
before the calculation of the Euclidean distance
between observed and simulated data sets.

Wegmann and Excoffier (2008) also propose to
use the nε simulations with δ ≤ δε to adjust the
transition kernel. The basic idea is that some
parameters have a relatively narrow distribution
among the simulations with δ ≤ δε, while oth-
ers cover a relatively broad range. By adjust-
ing the transition kernel of a given parameter
according to the standard deviation of this pa-
rameter among the nε simulations with δ ≤ δε,
the parameter space will be explored differently
for different parameters.

Since the chain always starts from a position
where a simulation resulted in δ ≤ δε (see above),

a burn in is not necessary. Nonetheless, not all
starting values are equally likely positions for
the chain and, as was shown by Sisson et al.
(2007), an MCMC without likelihood chain may
stick in regions with small likelihoods because
the acceptance rate is proportional to the likeli-
hood. Wegmann and Excoffier (2008) proposed
to restart the chain from a new position, again
randomly chosen among the nε positions from
the initial calibration step, if the chain does not
move within a number of iterations (they used
20 iterations).

Implemented MCMC without likelihood Algo-
rithm To sum up, the algorithm proposed by
Wegmann and Excoffier (2008) and implemented
in ABCsampler goes as follows:

1. Perform n simulations with parameters θ′

randomly drawn from their priors, and each
time compute their associated set of summary
statistics S′.

2. Compute PLS components from the n θ′ and
S′ vectors.

3. For all n simulations, transform their asso-
ciated summary statistics S′ into k retained
PLS components, as S′PLS . Transform the
observed summary statistics S as SPLS and
compute pn(δ|SPLS ,θ).

4. Fix ε, estimate δε from pn(δ|SPLS ,θ), and set
the proposal range of the parameters (for the
transition kernel q(θ → θ′) based on ϕ and
the variability of the parameters among the
nε retained simulations.

5. Start an MCMC chain of total length s from a
position θ randomly chosen from the nε sim-
ulations closest to D. Set i = 0.

6. If now at θ, propose a move to θ′ according
to a transition kernel q(θ → θ′). Increment i.

7. Simulate D′ based on θ′. Compute the sum-
mary statistics S′ and transform them into
S′PLS .

8. If δi = ‖S′PLS − SPLS‖ ≥ δε stay at θ and go
to 10.

9. Accept θ′ with probability

min
(

1,
π(θ′)q(θ′ → θ)
π(θ)q(θ → θ′)

)
, otherwise stay at

θ.
10. If i < s go to 6.

Note that the transformation of the statistics
into PLS components is an optional step and
other linear transformations may be used.
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6.2.4 Population Monte Carlo

Sisson et al. (2007) proposed a sequential Monte
Carlo sampler (PRC) claimed to require sub-
stantially less iterations than the MCMC with-
out likelihoods. Later, Beaumont et al. (2009)
showed that the original formulation leads to bi-
ased posteriors and proposed an alternative al-
gorithm termed Population Monte Carlo (PMC)
by introducing a weighting scheme based on im-
portance sampling arguments. The main idea
is to generate a set of simulations which are
closer to sobs than a threshold distance δε that
is, dist(s, sobs) < δε. Then, a new set of simula-
tions is performed with model parameters gen-
erated from the previous set of parameters ac-
cording to some transition kernel q(θ → θ′).
Beaumont et al. (2009) proposed to use a nor-
mal transition kernel. Therefore, the new set of
parameter vectors are not drawn randomly from
the prior distribution, but from the approximate
posterior distribution of the previous iteration
π(θ|dist(s, sobs) < δεt). This procedure is re-
peated with a decreasing series of tolerance val-
ues εt. It is important to realize that a weight-
ing scheme according to the prior distribution
is important, since the samples will otherwise
converge to the space associated with smallest
distances, thereby ignoring the prior distribution
(see Beaumont et al. (2009)). The proposed al-
gorithm by Beaumont et al. (2009) is as follows:

PMC1 Set t = 1.
PMC2 For i=1, . . . , N, repeat:

PMC2a Draw a parameters vector θi,t
randomly from the prior.

PMC2b Simulate D using θi,t.
PMC2c Calculate summary statistics s

on D.
PMC2d If dist(s, sobs) < δt accept θi,t,

otherwise go back to PMC2a.
PMC3 Set all weights ωi,t = 1/N .
PMC4 Set τ2

t as twice the empirical variance of
the accepted θi,t.

PMC5 Increment t.
PMC6 For i=1, . . . , N, repeat:

PMC6a Pick a parameters vector θ∗i
from the accepted θi,t−1 with
probabilities ωi,t−1.

PMC6b Generate a parameter vector
θi,t using a normal transition
kernel θi,t|θ∗i ∼ N(θ∗i , τ

2
t−1).

PMC6c Simulate D using θi,t.
PMC6d Calculate summary statistics s

on D.
PMC6e If dist(s, sobs) < δt accept θi,t,

otherwise go back to PMC6a.
PMC7 Set all weights

ωi,t ∝
π(θi,t)∑N

j=1 ωj,t−1ϕ(
1
τ2
t−1

(θi,t − θj,t−1))
.

PMC8 Set τ2
t as twice the weighted empirical

variance of the accepted θi,t.
PMC9 Go back to PMC5.

Note that ϕ() denotes the multivariate nor-
mal density function. The generated sample at
any iteration is a valid sample corresponding to
a sample obtained under a rejection algorithm
with the same tolerance ε, but with much less
effort.

Implemented Population Monte Carlo Algo-
rithm A main difficulty when using a PMC al-
gorithm is the choice of the decreasing threshold
values δt (see Section 6.2.4 “Population Monte
Carlo” on page 57 for the basic algorithm). The
PMC algorithm implemented in ABCsampler dif-
fers slightly from the one published by Beaumont
et al. (2009) in order to have some sort of an
adaptive scheme to set the threshold δεt to use.
the main idea is to adjust the threshold accord-
ing to the current distribution of distances. Simi-
lar to the calibration step proposed by Wegmann
and Excoffier (2008) for an MCMC without like-
lihood chain, Wegmann et al. (2009) proposed to
specify a tolerance value ε and to set the thresh-
old δt such that a fraction ε of the generated
samples is used to generate the next iteration.
The algorithm implemented in ABCsampler goes
as follows:

PMC1 Set t = 1.
PMC2 For i=1, . . . , Ncalibration, repeat:

PMC2a Draw a parameters vector θi,t
randomly from the prior.

PMC2b Simulate D using θi,t.
PMC2c Calculate summary statistics s

on D.
PMC3 Increment t.
PMC4 Calculate dist(s, sobs) for all parameter

vectors θi,t−1.
PMC5 Retain the nε parameter vectors θi,t−1

with the smallest associated distances.
PMC6 If t = 2 Set all weights of the retained
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parameter vectors ωi,t−1 = 1/N , else set
all weights

ωi,t ∝
π(θi,t)∑N

j=1 ωj,t−1ϕ(
1
τ2
t−1

(θi,t − θj,t−1))
.

PMC7 Set τ2
t as twice the weighted empirical

variance of the accepted θi,t−1.
PMC8 For i=1, . . . , N , repeat:

PMC8a Pick a parameters vector θ∗i
from the accepted θi,t−1 with
probabilities ωi,t−1.

PMC8b Generate a parameter vector
θi,t using a normal transition
kernel θi,t|θ∗i ∼ N(θ∗i , τ

2
t−1).

PMC8c Simulate D using θi,t.
PMC8d Calculate summary statistics s

on D.
PMC9 Go back to PMC3

Again, ϕ() denotes the multivariate normal
density function. Note also that the first iter-
ation may have a different sample size from the
following iterations (Ncalibration 6= N). The num-
ber of retained simulations, however, is kept con-
stant.

6.3 Post–sampling Adjustment

If we suppose that the likelihood fM(s|θ) of the
full model is continuous and non-zero around
sobs then the likelihood of a truncated model
Mε(sobs) obtained by any of the rejection sam-
pling methods mentioned above is given by

fε(s|θ) =
Ind(s ∈ Bε(sobs)) · fM(s|θ)∫

Bε fM(s|θ)ds
, (17)

where Bε = Bε(sobs) = {s ∈ Rn|dist(s, sobs) < ε}
is the ε-ball in the space of summary statistics
and Ind(·) is the indicator function. Observe
that fε(s|θ) degenerates to a (Dirac) point mea-
sure centered at sobs as ε → 0. If the param-
eters are generated from a prior π(θ), then the
distribution of the parameters retained after the
rejection process outlined above is given by

πε(θ) =
π(θ)

∫
Bε fM(s|θ)ds∫

Π π(θ)
∫
Bε fM(s|θ)dsdθ

. (18)

We shall call this density the truncated prior.

.It is not hard to check that

π(θ|sobs) =
fM(sobs|θ)π(θ)∫

Π fM(sobs|θ)π(θ)dθ

=
fε(sobs|θ)πε(θ)∫

Π fε(sobs|θ)πε(θ)dθ
. (19)

Thus the posterior distribution of the model M
for s = sobs given the prior π(θ) is exactly equal
to the posterior distribution of the truncated
modelMε(sobs) given the truncated prior πε(θ).

In a rejection sampling framework, the em-
pirical distribution of the accepted parameters
P = {θ1, . . . ,θN} yields an estimate of the trun-
cated prior πε(θ). To obtain an approximation
of the posterior π(θ|sobs) it is implicitly assumed
that the likelihood fM(s|θ) is close to some (un-
known) constant over the whole range of Bε(sobs).
Under that assumption, Equation (19) shows
that π(θ|sobs) ≈ πε(θ), which is a good approxi-
mation if the tolerance ε is small.

However, as mentioned above, when the di-
mension n of summary statistics is high, the
“curse of dimensionality” raises its ugly head:
The tolerance must be chosen rather large or
else the acceptance rate becomes prohibitively
low. Since the approximation of fM(s|θ) being
constant over the whole range of Bε(sobs) is un-
like in this case, the precision of the approxi-
mation of the posterior distribution is distorted
by the truncated prior (see Wegmann and Ex-
coffier 2008 and Section 5.2 “Choosing Summary
Statistics” on page 44). If we can make a more
educated guess for a parametric statistical model
of Mε(sobs), we arrive at more reasonable approx-
imation of the posterior π(θ|sobs) even if the like-
lihood of the full model M is unknown. It is to
be expected that due to the localization process
the truncated model will exhibit a simpler struc-
ture than the full model M and thus be easier
to estimate.

6.3.1 ABC–REG

As a first attempt to take the variation of
fM(s|θ) within the ε-ball into account, Beau-
mont et al. (2002) introduced a post–sampling
regression adjustment (ABC-REG) of the sample
P of retained parameters. Basically, they pos-
tulate a linear dependence between the param-
eters θ and their associated summary statistics
s. More precisely, their method is based on the
assumption that the sample of accepted values
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Figure 14. Post Sampling Adjustment We discuss two different types of post sampling adjustments: (A)
ABC–REG, the regression adjustment introduced by Beaumont et al. (2002) and (B), the ABC–GLM approach
as described in Leuenberger and Wegmann (2009). The dotted lines around sobs indicate the threshold used.
Note that the density shown in (A) corresponds to the posterior and has an arbitrary shape, while the shown
density in (B) corresponds to the likelihood at a given parameter value (dotted line) and is always normal. See
text for further explanations.

(θj , sj) is approximatively generated by a linear
model of the form

θ = Ms + m0 + ε, (20)

where M is a matrix of regression coefficients,
m0 a constant vector and ε a random vector of
zero mean. Beaumont et al. (2002) proposed to
use this linear relationship to estimate the pos-
terior distribution at sobs as the observed den-
sity of the expected parameters. The principle is
outlined in Figure 14A and described in the fol-
lowing: Suppose the relationship between a pa-
rameter and a statistic of an arbitrary model fol-
lows the distribution shown in Figure 14A, where
individual dots represent individual simulations.
In a first step we reject all simulations, which
are outside an arbitrary tolerance ε, as indicated
by the dotted lines. While the overall relation-
ship between the statistic and the parameter is
clearly non-linear, a linear approximation may
apply locally within the boundary of the toler-
ance. Beaumont et al. (2002) propose to use this
linear relationship in the following way: firstly,
the relationship is estimated via a local linear
regression within the tolerance boundaries. This
relationship is now used to estimate the expected
parameter value leading to sobs for each simu-
lation. Since the estimated regression assumes
homoscedacity, i.e. constant variance along the

regression, the expected parameter value lead-
ing to sobs for a given simulation can be esti-
mated by projecting the parameter / statistic
pair along the regression to sobs (indicated with
arrows in Figure 14A). The posterior distribution
is then obtained by a kernel density estimation
on these expected parameter values. Since the
fit of the regression may be better locally around
sobs than at the tolerance boundary, Beaumont
et al. (2002) further propose to weight the sam-
ples by a function of the distance of a simulation
to sobs using an Epanechnikov kernel.

Computer simulations suggest that for many
population genetic models this approach (termed
ABC-REG) yields posterior marginal densities
that have narrower HPD (highest posterior den-
sity) regions and are more closely centered
around the true parameter values than the em-
pirical posterior densities directly produced by
ABC-samplers (Beaumont et al. 2002; Wegmann
and Excoffier 2008). A further advantage of these
regression-based methods is their easy software
implementation and their numerical stability.
Note that more sophisticated regression mod-
els may be invoked. For instance, Blum and
Francois (2009) proposed to use a nonlinear, het-
eroscedastic regression where the parameters are
estimated via neuronal networks.
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6.3.2 ABC-GLM

As noted recently (Leuenberger and Wegmann
2009), it would however be more natural to take
the parameters θ as exogenous and the summary
statistics s as endogenous variables of the linear
model. As a consequence, ABC-REG does not
take the prior distribution into account; it can
lead to grossly misspecified posteriors, in partic-
ular, it often yields posteriors that are non-zero
in parameter regions, where the priors actually
vanish (see Leuenberger and Wegmann 2009 for
an illustration of this phenomenon).

As an alternative, a methodology (termed
ABC-GLM) similar in spirit to ABC-REG but
closer to the standard Bayesian setting has been
proposed (Leuenberger and Wegmann 2009). In
their setting, the accepted data is considered
as being produced by a General Linear Model
(abbreviated as GLM in the literature – not to
be confused with the Generalized Linear Mod-
els which unfortunately share the same abbre-
viation). The model MGLM is assumed to be
normal linear, i.e. the random vectors s satisfy

s|θ = Cθ + c0 + ε, (21)

where C is a n × m-matrix of constants, c0 a
n× 1-vector and ε a random vector with a mul-
tivariate normal distribution of zero mean and
covariance matrix Σs:

ε ∼ N (0,Σs). (22)

C, c0 and Σs are estimated by standard multi-
variate regression analysis from the sample P, S
created by an ABC sampler mentioned above,
similar to ABC-REG. The covariance matrix
encapsulates the strong correlations normally
present between the components of the summary
statistics, which is an advantage of GLMs.

The ABC-GLM approach is outlined in Figure
14B. Assume the same situation as for the ABC-
REG approach shown in Figure 14A. The first
step is, again, the rejection of simulations outside
an arbitrary tolerance ε. Then, the parameters
of the GLM are estimated on the retained sam-
ples. Note that the estimated likelihood func-
tion of the statistical model at a given parameter
value θi necessarily follows the normal distribu-
tion f(s|θi ∼ N (E(s|θi),Σs), where E(s|θi) is
the expected value of s at θi and Σs the co-
variance matrix of the error term ε, both esti-

mated by the standard multivariate regression
(see above). Under the assumption that the sta-
tistical model within the ε–ball is true, the true
posterior distribution is achieved when this like-
lihood function of the statistical model is mul-
tiplied with the truncated prior distribution, as
was shown by Leuenberger and Wegmann (2009).

Of course, the use of a post–sampling adjust-
ment is not limited to a particular ABC sam-
pler but can be applied to all sorts of samplers,
including MCMC without likelihoods (Marjo-
ram et al. 2003) and Population Monte Carlo
(Beaumont et al. 2009). The only requirement
is that an ABC sampler produces samples from
an empirical posterior distribution of the form
π(θ|dist(s, sobs) < ε). Also, more sophisticated
regression schemes may be implemented within
the ABC–GLM as well as within the ABC-REG
framework (e.g Blum and Francois 2009).

Details of the Posterior Estimation As men-
tioned above, the true posterior of the initial
model M is exactly equal to the posterior dis-
tribution of the truncated model cε(sobs), given
the truncated prior πε(θ) (see Section 6.3 “Post–
sampling Adjustment” on page 58). If we can
estimate the truncated prior and make an edu-
cated guess for a parametric statistical model of
Mε(sobs), we arrive at a reasonable approxima-
tion of the posterior π(θ|sobs), even if the likeli-
hood of the full model M is unknown. It is to
be expected that due to the localization process
the truncated model will exhibit a simpler struc-
ture than the full model M and thus be easier
to estimate.

To fix the notation, let P = {θ1, . . . ,θN} be
a sample of vector-valued parameters created by
some ABC-algorithm simulating from some prior
π(θ) and S = {s1, . . . , sN} the sample of associ-
ated summary statistics produced by the model
M. Each parameter θj is an m-dimensional col-
umn vector θj = (θj , . . . , θjm)T and each sum-
mary statistics an n-dimensional column vector
sj = (sj1, . . . , s

j
n)T ∈ Bε(sobs). The samples P

and S can thus be viewed as m×N - and n×N -
matrices P and S, respectively.

The empirical estimate of the truncated prior
πε(θ) is given by the discrete distribution that
puts a point mass of 1/N on each value θj ∈ P.
We smoothen out this empirical distribution by
placing a sharp Gaussian peak over each param-
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eter value θj . More precisely, we set

πε(θ) =
1
N

N∑
j=1

φ(θ − θj ,Σθ), (23)

where

φ(%,Σθ) =
1

|2πΣθ|
1
2

exp

(
−
%TΣ−1

θ %

2

)
(24)

with
% = (θ − θj) (25)

and
Σθ = diag(σ1, . . . , σm) (26)

is the covariance matrix of φ, which determines
the width of the Gaussian peaks. The larger
the number N of sampled parameter values, the
sharper the peaks can be chosen in order to still
get a rather smooth πε. Too small values of σk
will result in wiggly posterior curves, too large
values might unduly smear out the curves. The
best advice is to run the calculations with several
choices for Σθ.

Leuenberger and Wegmann (2009) assumed
the truncated model Mε(sobs) to be normal lin-
ear (i.e. to be a General Linear Model GLM).
To be precise, we assume the summary statistics
s, created by the truncated model’s likelihood
fε(s|θ), to satisfy

s|θ = Cθ + c0 + ε, (27)

where C is a n ×m-matrix of constants, c0 a
n× 1-vector and ε a random vector with a mul-
tivariate normal distribution of zero mean and
covariance matrix Σs:

ε ∼ N (0,Σs). (28)

The covariance matrix Σs encapsulates the
strong correlations normally present between
the components of the summary statistics.
ABCestimator estimates C, c0 and Σs by stan-
dard multivariate regression analysis from the
sample P, S45.

The likelihood for this model – dropping the
hats on the matrices to simplify the notation –

is given by

fε(s|θ) = |2πΣs|−
1
2 · exp

(
−γ

T Σ−1
s γ

2

)
(29)

with
γ = (s−Cθ − c0). (30)

Recall from (19) that for a prior π(θ) and an
observed summary statistics sobs, the parame-
ter’s posterior distribution for our full model M
is given by

π(θ|sobs) = c · fε(sobs|θ)πε(θ), (31)

where fε(sobs|θ) is the likelihood of the trun-
cated model Mε(sobs) given by (29) and πε(θ)
is the estimated (and smoothed) truncated prior
given by (23).

Leuenberger and Wegmann (2009) showed
that the posterior is – up to a multiplicative con-
stant – of the form

∑N
i=j exp(−1

2Qj), where

Qj = (θ − tj)TT−1(θ − tj) + . . .

. . .+ (sobs − c0)TΣ−1
s (sobs − c0) + . . .

. . .+ (θj)TΣ−1
θ θj − (vj)TTvj . (32)

Here T, tj and vj are given by

T =
(
CtΣ−1

s C + Σ−1
θ

)−1 (33)

and tj = Tvj , where

vj = CtΣ−1
s (sobs − c0) + Σ−1

θ θj . (34)

From this we get

π(θ|sobs) ∝
N∑
j=1

c(θj) exp
(
−(θ − tj)TT−1(θ − tj)

2

)
, (35)

where

c(θi) = exp

[
−

(θj)tΣ−1
θ θj − (vj)TTvj

2

]
. (36)

Marginal posterior density of the parameter θk
4We refer the reader to the original paper by Leuenberger and Wegmann (2009).
5Strictly speaking, one must redo an ABC-sample from uniform priors over Π in order to get an unbiased estimate of

the GLM if the prior π(θ) is not uniform already. On the other hand, ordinary least squares estimators are quite
insensitive to the prior’s influence. In practice one can as well use the sample P to the estimate.
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defined by

π(θk|s) =
∫

Rm−1

π(θ|s)dθ−k, (37)

where integration is performed along all pa-
rameters except θk.

Recall that the marginal distribution of a mul-
tivariate normal N (µ,Σ) with respect to the k-
th component is the univariate normal density
N (µk, σk,k). Using this fact, Leuenberger and
Wegmann (2009) showed that the marginal pos-
terior of parameter θk is given by

π(θk|sobs) ∝
N∑
j=1

c(θj) exp

(
−

(θk − tjk)
2

2τk,k

)
,

(38)
where τk,k is the k-th diagonal element of the ma-
trix T, tjk is the k-th component of the vector tj ,
and c(θj) is still determined according to (Equa-
tion 36). The normalizing constant is recovered
through a numerical integration.

6.4 Model Choice

For two models MA and MB with prior prob-
abilities πA and πB = 1 − πA, the Bayes factor
BAB in favor of model MA over model MB is

BAB =
fMA

(sobs)
fMB

(sobs)
, (39)

where the marginal densities fMA
and fMB

are
given by

fM(sobs) =
∫

Π
f(sobs|θ)π(θ)dθ. (40)

According to Leuenberger and Wegmann
(2009) the marginal density is also given by

fM(sobs) = Aε(sobs, π)
∫

Π
fε(sobs|θ)πε(θ)dθ,

(41)
where Aε(sobs, π) is the acceptance rate of the

rejection step. Using the parameters of the GLM
estimated in the posterior estimation step (see
above), the marginal density is given by:

fM(sobs) =
Aε(sobs, π)
N |2πD|1/2

· . . .

. . .
N∑
j=1

exp
(
−ζ

TD−1ζ

2

)
, (42)

where
ζ = (sobs −mj) (43)

and the sum runs over the parameter sample
P = {θ1, . . . ,θN},

D = Σs + CΣθCT (44)

and
mj = c0 + Cθj . (45)

6.5 Likelihood free without
approximations

Likelihood free samplers were introduced to al-
low Bayesian inference in situations where the
likelihood fM(D|θ) is analytically intracable
(Beaumont et al. 2002; Marjoram et al. 2003;
Sisson et al. 2007; Tavare et al. 1997). How-
ever, none of these samplers requires any ap-
proximation explicitly. All samplers have been
proven to converge to the desired posterior dis-
tribution π(θ|D), if run for long enough and if
tolerance ε = 0 (Marjoram et al. 2003; Sisson et
al. 2007; Tavare et al. 1997). The approximations
discussed above rather make the application of
the different samplers more general. While it is
in many cases possible to run these samplers with
a tolerance ε = 0 and with comparing D′ with D
directly, this is often not desirable. Firstly, as
portions of the data are usually not influenced
by the parameters in question (see Section 1.1.3
“Summary Statistics” on page 5), the acceptance
rate is too low. This may be circumvented by us-
ing sufficient summary statistics, which will by
itself not lead to an approximated posterior dis-
tribution. Secondly, the probability to observe
D′ = D is very low. In order to deal with that,
tolerance values ε > 0 are usually used, leading
to an obligatory approximation.

Thus, running likelihood free samplers on the
full data D or by using sufficient summary statis-
tics in combination with a tolerance ε = 0 is not
considered an approximate approach. Note that
even if tolerance values ε > 0 are used, but the
relationship between parameters θ and summary
statistics s of the model match the assumptions
of the post–sampling adjustment used exactly,
approximation free inferences are possible. This
is tough, unfortunately, a very unlikely situation.
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Figure 15. ABC wokflow The different ABC procedures proposed are shown as vertical arrows. Any ABC esti-
mation involves several steps outlines as boxes here, where grey boxes show steps for which this package provides
software. An ABC estimation always starts with the definition of a model and the priors of the parameters of
this model. While all ABC procedures share the goal of estimating the posterior densities, the involved steps to
get there may vary considerably. See text for a discussion of the different procedures.

6.6 An ABC Flowchart

In this section we outline the workflow of dif-
ferent ABC procedures (see Figure 15). While
the methodological details of these different al-
gorithms are given above, we aim at clarifying
the different steps involved in ABC estimations,
as well as highlighting the differences of the pro-
cedures proposed. Please refer to the original
publications (see below) for details on the differ-
ent algorithms.

In any case, the definition of a model of inter-
est, including all priors for the parameters of the
model, marks the first step. The simplest pro-
cedures are those, where the simulated data D′
is compared with the observed data D directly
( AO and HO in Figure 15). These have been pro-
posed by Tavare et al. (1997) and Marjoram et
al. (2003), respectively. However, due to rea-
sons discussed above, none of these algorithms
have been used in population genetics so far. In
order to run their algorithm successfully, both,

Tavare et al. (1997) and Marjoram et al. (2003),
approximated the full data with summary statis-
tics, which resulted in algorithms BO and GO, re-
spectively. Beaumont et al. (2002) proposed to
deal with the often relatively large threshold val-
ues needed in the rejection step 6O by applying a
post–sampling regression adjustment 7O, there-
fore proposing algorithm CO. Later, Wegmann
and Excoffier (2008) proposed to combine the
advantages of likelihood free MCMC inference
5O with the benefits of applying post–sampling

adjustments 6O. Additionally, they proposed to
perform calibration simulations 3O prior to the
launch of an MCMC chain, dealing that way with
difficulties of the likelihood free MCMC, which
is often prone to get stuck or to sit in the tails
of the distribution (Sisson et al. 2007). Addition-
ally, these calibration simulations may be used to
lower the dimensionality of the summary statis-
tics space, as proposed by Wegmann and Ex-
coffier (2008), who used a PLS transformation to
achieve this, resulting is algorithm EO. Another
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way to speed up the likelihood free MCMC is
to use a tempering scheme on the threshold, as
proposed by Ratmann et al. (2007), who used al-
gorithm GO. While only published very recently
(Beaumont et al. 2009), the PMC algorithm can
be used just as the likelihood free MCMC.

If a considered model is very fast to simulate
or if the same simulations are to be used for dif-
ferent observed data sets, it may be easier and

faster to stick to a pure rejection sampling algo-
rithm. Of course, the reduction of the summary
statistics space is also advisable in this case (see
Section 5.2 “Choosing Summary Statistics” on
page 44). In these cases, algorithm DO may be
applied. Note that the calibration simulations
may easily be used for posterior estimation in
this case.
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Appl. 43.1. P. 57.

Thalmann, O. et al. (2009). “A genetic perspective on the recent past and uncertain future of the
critically endangered Cross River Gorilla (Gorilla gorilla diehli)”. In: somewhere.

Wegmann, D. and L. Excoffier (2008). “Efficient Approximate Bayesian Computation coupled with
Markov Chain Monte Carlo without likelihood”. In: Genetics.

Wegmann, D., C. Leuenberger, S. Neuenschwander, and L. Excoffier (2009). “ABCbox1.0: A Toolkit
to perform various ABC Algorithms”. In: Bioinformatics.

Weiss, G. and A. von Haeseler (1998). “Inference of population history using a likelihood approach”.
In: Genetics 149.3. Pp. 1539–1546. ISSN: 0016-6731.

66



Index

ABCestimator, 6
ABCsampler, 6
cumuldens, 6
findPLS.r, 6
glm, 6
plotPosteriors.r, 6
strStats, 6
transformer, 6

ABC, 54, 62
ABC–REG, 58
ABC-REG, 59
abs, 13
acceptance rate, 55
addDistanceToOutputfile, 22, 25
addToSeed, 25, 51
approximate Bayesian computation, see ABC
argument, 14, 16

bayesian statistics, 4, 54

calName, 23–25, 27, 28, 52
citation, 10
coalescent theory, 55
command line, 11, 13, 16
compilation, 7
complex parameters, 12

diracPeakWidth, 34, 35, 37
distance, 5, 55
distObsFile, 35, 37
distSimFile, 35, 37
doBoxCox, 21, 25
download, 6

equation, 12, 13
estimationType, 33, 37
estName, 11, 25, 50
exp, 13

file types
.arp, 17
.dll, 7
.est, 1, 7, 11–16, 23, 25, 28–31, 43, 50
.input, 1, 2, 8–14, 21–23, 29–33, 38–40,

43, 50, 51
.log, 11, 22, 24, 27, 29
.obs, 1, 8, 20, 21, 23, 27, 29, 30, 32–34, 36
.par, 13–15, 29

GLM, 60

hyper prior, 14–16
beta (&), 15
gamma (%), 14
lognormal (#), 16
normal ($), 15
truncated normal (!), 15

input file, see file types
installation, 7
INTERNALGLM, 16

lastSampleSize, 23–25
launch, 11
launchAfterSim, 17–19, 25
launchAfterSimParam, 17, 19, 25
launchAfterSS, 17–20, 25
launchAfterSSParam, 17, 20, 25, 31
launchBeforeSim, 17–19, 25
launchBeforeSimParam, 17, 19, 25
launchBeforeSS, 17–20, 26
launchBeforeSSParam, 17, 20, 26, 31
licence, 6
likelihood, 4, 54, 60, 62

ratios, 54
truncated model, 58

linear regression, 59
linearCombName, 20, 26, 29, 30
log, 13
log10, 13
lognorm, 12
logunif, 12

Markov chain Monte Carlo, see MCMC
maxReadSims, 33, 37
MCMC, 54, 55

without likelihoods, 55
mcmcSampling, 22, 23, 26
Metropolis-Hastings algorithm, 55
model parameters, 11

nbSims, 11, 18, 22, 23, 26
newmat11, 6
norm, 12
numCaliSims, 22–24, 26, 28
numInterations, 23, 26
numRetained, 34, 35, 37–39

obsName, 20, 21, 26, 29, 30, 32, 37–40
obsname, 53
obsPValue, 35, 37
outputPrefix, 36, 37
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params, 33, 37–39
parsing, 13
PMC, 57
population Monte Carlo, see PMC
post–sampling adjustment, 5, 58–60

ABC–GLM, 60
ABC–REG, 58–59

posterior, 4, 54
posteriorDensityPoints, 34, 37
pow10, 13
prior, 4, 11, 54

hyper, 14–16
truncated, 58, 60

rangeProp, 22, 24, 26
regression adjustment, see post–sampling ad-

justment
rejection sampling, 54, 64
rule, 12
runsPerParameterVector, 18, 19, 23, 26

samplerType, 11, 22, 26, 31
sampleSize, 23, 26, 28
separateOutputFiles, 20, 22, 26
sequential Monte Carlo, 57
SIMDATANAME, 16
simDataName, 16, 17, 19, 20, 22, 26, 29–31, 43
SIMINPUTNAME, 14
simInputName, 13, 14, 18, 19, 26, 30, 31, 50, 53
simName, 33, 35, 37, 38
SIMNUM, 14, 16
simParam, 14, 16, 19, 26, 30, 31, 43, 50, 51
simulation program, 13–16
simulationProgram, 13, 16, 19, 26, 30, 43, 50
SSFILENAME, 16
stadardizeStats, 38
standardizeStats, 34
startupAttempts, 23, 26, 27
startupLength, 23, 26
stdLinearCombForDist, 20, 26
stopIfSartupFailed, 27
stopIfStartupFailed, 23
sufficient, 55
summary statistics, 5, 16, 44–47, 54, 55

sufficient, 55
summary statistics program, 17
sumStatFile, 16, 17, 20, 27, 29, 51
sumStatParam, 16, 20, 27, 50, 51
sumStatProgram, 16, 17, 20, 27, 50

the curse of dimensionality, 55
threshold, 32
tolerance, 55

tolerance, 22, 23, 27, 28, 34, 38
trueParamName, 35, 36, 38
truncated model, 58
truncated prior, 58

unif, 12

warranty, 6
writeRetained, 34, 36, 38, 43
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