
Elements of Itô calculus

1 Introduction

Some basic facts about probability theory and stochastic processes are recalled in chapter III of [4]. The purely
analytic introduction to Itô calculus given here is based on [1] (in French, english translation available as an appendix
in [5]). Another good reference is [3] in particular chapter I.

2 Finite dimensional distributions of a stochastic process

Definition 2.1 (Stochastic process). A collection of random variables {ξt|t ≥ 0}

ξ : Ω× R+ → Rd

is called a stochastic process.

Realizations of stochastic process are now paths rather than numbers:

Definition 2.2 (Sample path). For each ω ∈ Ω the mapping

t → ξt(ω)

is called the sample path of the stochastic process.

In most applications stochastic processes are characterized by means of the family of all finite dimensional joint
distributions associated to them. This means that for a stochastic process valued on R, for any discrete sequence
{ti}ni=1 we consider the Borel σ-algebra B(Rn) and B1 , . . . , Bn B and consider

Pξt(B1 , t1 , . . . , Bn , tn) ≡ P (ξt1 ∈ B1 , . . . , ξtn ∈ Bn)

The so defined families of joint probability yield a consistent description of a stochastic process

ξ : Ω× R+ → Rd

if the following Kolmogorov consistency conditions are satisfied

i P (Rd, t) = 1 for any t

ii Pξt(B1 , t1 , . . . , Bn , tn) ≥ 0

iii Pξt(B1 , t1 , . . . , Bn , tn) = Pξt(B1 , t1 , . . . , Bn , tn ,Rd, tm+1)

iv Pξt(Bπ(1) , tπ(1) , . . . , Bπ(n) , tπ(n)) = Pξt(B1 , t1 , . . . , Bn , tn ,Rd, t)
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3 Wiener process

The above definitions allow us to characterize the Wiener process as a stochastic process:

Definition 3.1 (Wiener Process aka Brownian motion). A real valued stochastic process

wt : Ω× R+ → R

is called a Wiener process or Brownian motion if

i w0 = 0

ii any increment wt − ws has Gaussian probability density

wt − ws
d
=

e
− x2

2 (t−s)√
2π (t− s)

(3.1)

for all t ≥ s ≥ 0.

iii For all times

t1 < t2 < . . . ≤ tn

the random variables

wt1 , wt2 − wt1 , . . . , wtn − wtn−1

are independent (the process has independent increments).

3.1 Consequences of the definition

Some observations are in order

• It is not restrictive to consider the one dimensional case. A d-dimensional Wiener process a vector valued
stochastic process whose components are each independent one-dimensional Wiener processes. More explicitly,
the probability density of Brownian motion on Rd is given by

pwt(x) =
d∏
i=1

pwit(xi)

• By i and ii we have that

pwt(x) =
e−

x2

2σ2 t

(2π σ2 t)
1
2

& pwt2−wt1 (x) =
e
− x2

2σ2 (t2−t1)

[2π σ2 (t2 − t1)]
1
2

t2 > t1 (3.2)

By iii The joint probability of wt1 and wt2 − wt1 is

pwt1 ,wt2−wt1 (x1, y) =
e
− x21

2σ2 t1

(2π σ2 t1)
1
2

e
− y2

2σ2 (t2−t1)

[2π σ2 (t2 − t1)]
1
2
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By definition of probability density we can also write

pwt1 ,wt2−wt1 (x1, y) = pwt1 ,wt2−x1(x1, y) = pwt1 ,wt2 (x1, y + x1)

since

wt2 = (wt2 − wt1) + wt1

Recalling the definition of conditional probability we must also have

pwt1 ,wt2 (x1, y + x1) = pwt2 |wt1 (x1 + y, t2 |x1, t1) pwt1 (x1) ∀x1 , x2 , t2 > t1

whence

pwt2 |wt1 (x1 + y, t2 |x1, t1) =
pwt1 ,wt2 (x1, y + x1)

pwt1 (x1)
=
pwt1 ,wt2−wt1 (x1, y)

pwt1 (x1)
=

e
− y2

2σ2 (t2−t1)

[2π σ2 (t2 − t1)]
1
2

Finally, upon setting x2 = y + x1 we get into:

pwt2 |wt1 (x2, t2 |x1, t1) =
e
− (x2−x1)

2

2σ2 (t2−t1)

[2π σ2 (t2 − t1)]
1
2

3.2 Continuity and non-differentiability of the Wiener process

We can ask what in the probability that realizations of the Wiener process are continuous. Since incrementswt−ws of
the Wiener process are stationary as their distribution depends only upon t− s, To answer the question it is sufficient
to estimate

P (|wt| ≥ ε) = 2

∫ ∞
ε

dx
e−

x2

2 t

√
2π t

≤ 2

∫ ∞
0

dx
x

ε

e−
x2

2 t

√
2π t

=
1

ε

√
2 t

π
(3.3)

We see that for any fixed ε the probability of having |wt| ≥ ε vanishes. A more refined analysis based on this
observation proves that the Wiener process wt ≡ w(t, ω) is:

1. continuous ∀ t ∈ R+, almost everywhere with respect to ω ∈ Ω (i.e. a part from a measure zero set);

2. non-differentiable ∀ t ∈ R+, almost everywhere with respect to ω ∈ Ω.

An indication of non-differentiability comes from the evaluation of the expected value of the absolute value of the
incremental ratio of the Wiener process:

E
|wt|
t

= 2

∫ ∞
0

dx
x

t

e−
x2

2 t

√
2π t

=

√
2

π t
(3.4)

which diverges as t tends to zero.
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4 Terminology: filtration and process adapted to a filtration

Let I an ordered set with respect to the ≤ binary operation. This means that all pair elements of in the set are satisfy

1. reflexivity: a ≤ a ∀ a ∈ I

2. antisymmetry: a ≤ b & b ≤ a ⇒ a = b ∀ a , b ∈ I

3. transitivity: a ≤ b & b ≤ c ⇒ a ≤ b ∀ a , b , c ∈ I

In practice this is technical jargon used in [4] to say “take I either I ⊂ N or I ⊂ R+”. We have then the following
definition

Definition 4.1 (Filtration). A family F I = {Ft : ∀ t ∈ I} of σ-algebras is called a filtration if

Ft1 ⊂ Ft2 if t1 ≤ t2 ∀ t1, t2 ∈ I (4.1)

Note that Ft1 ⊂ Ft2 means that any event which is in Ft1 is also in Ft2 . If we think of t as a “time” variable this
means that as t increases more and more detailed information becomes available about events occurring in the sample
space Ω. The description of this events calls for finer and finer partitions of Ω which is why the condition (4.1) must
hold. Let

ξt : Ω× I 7→ R (4.2)

be a stochastic process, we say that

Definition 4.2. ξt, t ∈ I is adapted to a filtration F I if for all t in I , ξt is Ft-measurable, that is, if for any t, Ft
contains all the information about ξt (and may contain extra information)

In other words, ξt is Ft-measurable if for any event {ξt ∈ A} there is a map φ such that A is the image of an event
B ∈ Ft. This also mean that {ξt ∈ A} does not depend upon events occurring at later “times” i.e. is independent of
the future. In this sense the process is said non-anticipating.

Example 4.1. Let wt a Wiener process for all t ≥ 0, the function

f(t) =


0 if max

0≤s≤t
ws ≤ 1

1 if max
0≤s≤t

> 1

is non-anticipative as it depends on the Wiener process up to the time t when the function is evaluated. On the other
hand for any T > t the function

g(t) =


0 if max

0≤s≤T
ws ≤ 1

1 if max
0≤s≤T

ws > 1

is anticipative as it depends on realizations of the Wiener process for times s posterior to the sampling time t.

4



5 Markov processes and Chapman-Kolmogorov equation

A special important class of non-anticipating stochastic processes are Markov processes

Definition 5.1. Let Fξ[0,t] the filtration generated by a stochastic process ξt. Then ξt is Markov if for any t ≥ s and
any event A

P
(
ξt ∈ A|Fξ

[0,s]

)
= P

(
ξt ∈ A|Fξs

)
= P (ξt ∈ A|ξs) (5.1)

This means that the state of the system at time s fully specify further evolution independently of what happened
before for times smaller s. The system has no “memory”. In particular if the transition probability p density of the
Markov process ξt : Ω× I 7→ R is available

P (ξt ∈ A|ξs = y) =

∫
A
dx p(x, t | y, s) (5.2)

then the definition of Markov process implies that the Chapman-Kolmogorov equation

p(x2, t2 |x0, t0) =

∫
R
dx1 p(x2, t2 |x1, t1) p(x1, t1 |x0, t0) (5.3)

must hold true for any (x2, x0) and for any ti, i = 0, 1, 2.

6 Functions of finite variation

Let I = [a, b] ∈ R and

f : I 7→ R (6.1)

a deterministic function.

Definition 6.1. We call the variation of f the quantity

V[f ](I) = sup
p

∑
ti∈p
|f(ti+1)− f(ti)| (6.2)

whether the sup is taken over the partitions {p} (see appendix A)) of I

By triangular inequality we also have

V[f ](I) = lim
|p|↓0

∑
ti∈p
|f(ti+1)− f(ti)| (6.3)

for p the mesh of the partition.

Proposition 6.1. If f ∈ C1(I) and ∫
I
dt

∣∣∣∣dfdt
∣∣∣∣ (t) <∞ (6.4)

then

V[f ](I) =

∫
I
dt

∣∣∣∣dfdt
∣∣∣∣ (t) (6.5)
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Proof. Let

ḟ =
df

dt
(6.6)

the chain of equalities holds

V[f ](I) = lim
|p|↓0

∑
ti∈p
|f(ti+1)− f(ti)| = lim

|p|↓0

∑
ti∈p
|ḟ(ti)|(ti+1 − ti)

= lim
|p|↓0

∑
ti∈p

∣∣∣∣∫ ti+1

ti

dt ḟ(t)

∣∣∣∣ = sup
p

∑
ti∈p

∣∣∣ḟ(ti)
∣∣∣ (ti+1 − ti) =

∫
I
dt

∣∣∣∣dfdt
∣∣∣∣ (t) (6.7)

thus proving the claim.

Thus, trajectories solutions of ordinary differential equations

ẋt = v(xt) (6.8)

with v sufficiently smooth as customary in applications are functions of finite variation. A larger class of functions
includes those with discontinuities.

Definition 6.2. A function f : I 7→ R continuous from the right

lim
t↓to

f(t) = f(to) (6.9)

with limit from the left

lim
t↑to

f(t) = f(to−) (6.10)

is called a CADLAG function (French: Countinue à Droite Limite à Gauche).

The difference

J[f ](t) = f(t)− f(t−) (6.11)

is called a jump. A theorem from analysis guarantees that a function defined on an interval [a, b] can have no more
than countably many jumps (see e.g. [3] and refs therein).

a CADLAG function:
circles denote the limit
dots continuity at jump locations.

If a cadlag function varies only at jump locations J ∈ I we have

f(t) =
∑

s∈J J[f ](s)

V[f ](I) =
∑

sJ |J[f ](s)|
(6.12)
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7 Quadratic (co)-variation

In section 3.2 we argued that the Wiener process wt is everywhere continuous and non-differentiable in t. This phe-
nomenon is not related to randomness but it may occur also for deterministic functions. An example is the Weierstrass
function Wt : R 7→ R

Wt :=
∞∑
n=0

an cos (bn t) for

0 < a < 1

b ∈ 2N + 1

a b > 1

(7.1)

G.H. Hardy [2] proved that the Weierstrass is everywhere continuous and non-differentiable. One can get an intuition
of the reason observing that

1. a sequence of continuous functions (i.e. approximations by finite sum) uniformly converging admits as a limit
a continuous function;

2. differentiating individual addends in the series one obtains

−
∞∑
n=0

an bn sin (bn t) (7.2)

which is a diverging series.

Hardy also showed that

|Wt+h −Wt| ≤ C hα α = − ln a

ln b
(7.3)

A further consequence is that the Weierstrass function is not of finite variation. It makes sense to consider functions
of finite second variation:

Definition 7.1 (Quadratic (co-)variation). Let ξt : I 7→ R and χt : I 7→ R the limit

V[ξ ,χ](I) = lim
|p(n)|↓ 0

∑
tk∈pn

(ξtk − ξtk−1
)(χtk − χtk−1

)

is called the quadratic co-variation of the processes. In particular

V[ξ ,ξ](I) = lim
|p(n)|↓ 0

∑
tk∈pn

(ξtk − ξtk−1
)2

is called the quadratic variation of ξt.

Finiteness of the quadratic variation is possible only if the (first) variation of a function diverges. Namely∑
k

[f(tk)− f(tk−1)]
2 ≤ max

k
|f(tk)− f(tk−1)|

∑
k

|f(tk)− f(tk−1)|

so that for a differentiable function∑
k

[f(tk)− f(tk−1)]
2 ≤ max

k
|f(tk)− f(tk−1)|

∫ t

0
dt |f ′(t)|

maxk(tk−tk−1)→0
→ 0

In the case of the Wiener process the finiteness of the right hand side implies∑
k

|f(tk)− f(tk−1)|
maxk(tk−tk−1)→0

↑ ∞
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7.1 Quadratic variation of the Wiener process

In the case of the Wiener process we have

Proposition 7.1 (Quadratic variation of the B.M.). The quadratic variation of the Brownian motion in [0, t] for any
t ∈ R+

V[w ,w](I) = t

in the sense of L2(Ω).

Proof. By direct calculation we know that

Ew2
t = t (7.4)

Let pn a partition paving [0, t] with n sub-intervals:

Qn :=
∑
pn

(wtk − wtk−1
)2

we have then

E (Qn − t)2 = E
∑
k l∈pn

[
(wtk − wtk−1

)2 − (tk − tk−1)
] [

(wtl − wtl−1
)2 − (tl − tl−1)

]
For non-overlapping intervals, the averaged quantities are independent random variables with zero average. The only
contributions to the sum come from overlapping intervals:

E(Qn − t)2 = E
∑
k∈pn

[
(wtk − wtk−1

)2 − (tk − tk−1)
]2

= 2
∑
k∈pn

(tk − tk−1)2

whence

E(Qn − t)2 ≤ 2 t max
k∈pn

(tk − tk−1)
maxk∈pn (tk−tk−1)↓0→ 0

The finite value of the quadratic variation motivates the estimate

dwt ∼ O(
√
dt)

for typical increments of the Wiener process.

8 Differential calculus for functions of finite quadratic variation

Suppose xt : I 7→ R is a CADLAG function of finite quadratic variation. Then we have

V[x ,x](I) = V c
[x ,x](I) +

∑
s∈J

J2
[x](s) (8.1)

where V c
[x ,x](I) is the quadratic variation of the continuous part of x and J denotes the set of the jump locations over

I . The following proposition shows that the jump component of the quadratic variation defines the atomic part of the
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measure defined by V[x ,x](I). In other words, V c
[x ,x](I) defines a measure absolutely continuous with respect to the

Lebsegue measure

dV c
[x ,x]((0, t]) = g(xt)dt (8.2)

for some positive definite

g : R 7→ R+ (8.3)

whilst

d
∑
s∈J

J2
[x](s) =

∑
s∈J

dt riδ(t− s) (8.4)

for some ri ∈ R+

Proposition 8.1. Let {pn}∞n=0 a sequence of partitions of the interval I . For any continuous function

f : I 7→ R (8.5)

the limit

lim
n↑∞

∑
t≥ti∈pn

f(xti) (xti+1 − xti)2 =

∫
(0,t)

dV[x ,x]((0, s]) f(xs−) (8.6)

Proof. Let C be the countable set of points in I where xt performs jumps of size strictly larger than O(ε2) for any
arbitrary ε > 0. Let also zt be the distribution function of finite-size jumps in I

zt =
∑

s∈C∩(0,t]

(xs − xs−) (8.7)

we have

lim
n↑∞

∑
t∈pn

f(xti) (zti+1 − zti)2 =
∑

t∈C∩(0,s]

f(xt−) (xt − xt−)2 (8.8)

Let now y be the discrete measure such that∑
ti∈pn∩(0,t]

(xti+1 − xti)2 =
∑

ti∈pn∩(0,t]

(yti+1 + zti+1 − yti + zti)
2 (8.9)

i.e. the discrete approximant of the absolute continuous part of the measure defined by the quadratic variation of xt.
Then ∑

ti∈pn∩(0,t]

(xti+1 − xti)2 =

∑
ti∈pn∩(0,t]

(yti+1 − yti)2 +
∑

ti∈pn∩(0,t]

(zti+1 − zti)2 + 2
∑

ti∈pn∩(0,t]

(zti+1 − zti)(yti+1 − yti) (8.10)

By definition of y the third term of the right hand side converges to zero and the measure associated to y weakly
converges to a measure the atomic part thereof only comprises jumps of size less equal O(ε2). It follows that

lim
n

sup

∣∣∣∣∣ limn↑∞∑
t∈pn

f(xti) (yti+1 − yti)2 −
∫
(0,t)

dV c
[x ,x]((0, s]) f(xs−)

∣∣∣∣∣ ≤ O(ε2) (8.11)

which proves the claim
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Föllmer [1] proved the following theorem, which we reproduce here in abridged form.

Theorem 8.1. Let xt : I 7→ R be a CADLAG function of finite quadratic variation and F ∈ C2(R). Then the Itô
formula

F (xt)− F (x0) =

∫ t

0
dxs (∂xF )(xs−)

+
1

2

∫ t

0
d V c

[x ,x]([0, s]) (∂2xF )(xs) +
∑
s∈J

[
F (xs)− F (xs−)− (∂xF )(xs−)J[x](s)

]
(8.12)

holds with ∫ t

0
dxs (∂xF )(xs−) = lim

|pn|↓0

∑
tk∈pn

(xtk+1
− xtk) (∂xF )(xtk) (8.13)

holds true and the series in (8.13) is absolutely convergent.

Proof. Since xt is not of finite variation the difficulty of the proof is to prove (8.13). The strategy of the proof is to
prove the absolute convergence of the left hand side and of the other terms on the right hand side. As far as the left
hand side is concerned, by hypothesis xt is continuous to the right so guaranteeing the convergence

F (xt)− F (x0) = lim
|pn|↓0

∑
tk∈pn

[F (xtk+1
)− F (xtk)] (8.14)

since the addends give rise to alternating sums. Let us now distinguish two cases

1. Suppose now that xt is continuous. Then by Taylor’s formula

F (xtk+1
)− F (xtk) = (xtk+1

− xtk)(∂xF )(xtk) +
(xtk+1

− xtk)2

2
(∂xF )(xt̃k) (8.15)

for some t̃k ∈ (tk, tk+1). We can rewrite the equality as

F (xtk+1
)− F (xtk) = (xtk+1

− xtk)(∂xF )(xtk)

+
(xtk+1

− xtk)2

2
(∂xF )(xtk) +

(xtk+1
− xtk)2

2
[(∂xF )(xt̃k)− (∂xF )(xtk)] (8.16)

We then have

lim
|pn|↓0

∑
tk∈pn

(xtk+1
− xtk)2[(∂xF )(xt̃k)− (∂xF )(xtk)]

≤ lim
|pn|↓0

max
tk∈pn

[(∂xF )(xt̃k)− (∂xF )(xtk)]
∑
tk∈pn

(xtk+1
− xtk)2 → 0 (8.17a)

lim
|pn|↓0

∑
tk∈pn

(xtk+1
− xtk)2 (∂xF )(xtk) ≤ lim

|pn|↓0
max
tk∈pn

(∂xF )(xtk)
∑
tk∈pn

(xtk+1
− xtk)2 < ∞ (8.17b)

where (8.17a) holds because of the continuity of xt and F and (8.17b) since F is continuous over a finite closed
interval. Gleaning the information provided (8.14) and (8.17a)-(8.17b) we conclude that the claim (8.13) must
hold true.
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2. Let us now turn to the general case of a CADLAG function. Let ε > 0 We divide the jumps of xt on [0, t] into
two classes:

(a) C1 ≡ C1(ε, t) with jumps of finite size;

(b) C2 ≡ C2(ε, t) such that
∑

s∈C2
J2
[x](s) ≤ ε

2.

We then write∑
tk∈pn

[
F (xtk+1

)− F (xtk)
]

=
∑
1

[
F (xtk+1

)− F (xtk)
]

+
∑
2

[
F (xtk+1

)− F (xtk)
]

(8.18)

where
∑

1 indicates the summation over those tk ∈ pn for which the interval ]tk, tk+1] contains a jump of class
C1. Clearly we have

lim
|pn|↓0

∑
1

[
F (xtk+1

)− F (xtk)
]

=
∑
s∈J

[F (xs)− F (xs−)] (8.19)

On the other hand we can apply Taylor’s formula to write

∑
2

[
F (xtk+1

)− F (xtk)
]

=
∑
tk∈pn

[
(xtk+1

− xtk)(∂xF )(xtk) +
(xtk+1

− xtk)2

2
(∂2xF )(xtk)

]

−
∑
1

[
(xtk+1

− xtk)(∂xF )(xtk) +
(xtk+1

− xtk)2

2
(∂2xF )(xtk)

]
+

1

2

∑
2

(xtk+1
− xtk)2R(t̃k, tk)(8.20)

with

R(t̃k, tk) :=
[
(∂xF )(xt̃k)− (∂xF )(xtk)

]
(8.21)

Furthermore

∑
tk∈pn

(xtk+1
− xtk)2(∂xF )(xtk) =

(∑
1

+
∑
2

)
(xtk+1

− xtk)2(∂xF )(xtk) (8.22)

we have ∑
2

[
F (xtk+1

)− F (xtk)
]

=
∑
tk∈pn

(xtk+1
− xtk)(∂xF )(xtk)

+
∑
2

(xtk+1
− xtk)2

[
(∂2xF )(xtk) +R(t̃k, tk)

]
−
∑
1

(xtk+1
− xtk)(∂xF )(xtk) (8.23)

Let us analyze the terms occurring in (8.20) separately.

(a) Since
∑

2 does not contain jumps of finite size

lim
|pn|↓0

∑
2

(xtk+1
− xtk)2R(t̃k, tk) = 0 (8.24)

for the same reasons put forward in the continuous xt case. Similarly

lim
|pn|↓0

∑
2

(xtk+1
− xtk)2(∂2xF )(xtk) =

∫ t

0
d V c

[x ,x]([0, s]) (∂2xF )(xs) (8.25)
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(b) The limit of the sum including jumps is dominated by these latter ones

lim
|pn|↓0

∑
1

(xtk+1
− xtk)(∂xF )(xtk) =

∑
s∈J

J[x](s)(∂xF )(xs−) (8.26)

We have then

F (xt)− F (xo) = lim
|pn|↓0

∑
tk∈pn

[F (xtk+1
)− F (xtk)] = lim

|pn|↓0

∑
tk∈pn

(xtk+1
− xtk)(∂xF )(xtk)

+
1

2

∫ t

0
d V c

[x ,x]([0, s]) (∂2xF )(xs) +
∑
s∈J

[
F (xs)− F (xs−)− (∂xF )(xs−)J[x](s)

]
(8.27)

where Taylor’s formula also guarantees that∑
s∈J

[
F (xs)− F (xs−)− (∂xF )(xs−)J[x](s)

]
≤ C

∑
s∈J

J2
[x](s) (8.28)

Thus the last two term on the right hand side of (8.27) denote a finite limit of the approximating sums. This
observation yields the claim and concludes the proof.

Observation if xt is CADLAG of finite (first) variation we have

F (xt)− F (x0) =

∫ t

0
ds (∂xF )(xs−) +

∑
s∈J

[F (xs)− F (xs−)] (8.29)

as an example consider

xt =

{
t t ∈ [0, 1/2)

t+ 1 t ∈ [1/2, 1]
(8.30)

If we take for F the identity map, the integral on the right hand side of (8.29) over [0, t] with t ≤ 1 yields∫ t

0
ds = t (8.31)

thus we see that the jump term accounts for the unit addend guaranteeing the identity between the two sides of (8.29).

Appendix

A Partitions

Definition A.1 (Partition). If I = [x− , x+] ⊂ R is an interval a partition p (subdivision) of I is a finite sequence
{xk}nk=1 of points in I such that

x− = x1 < . . . < xn = x+

Definition A.2 (Mesh of a partition). The mesh size of a partition p of an interval I = [x− , x+] is

|p| = max
1≤k≤n

|xk+1 − xk|

Definition A.3 (Refinement of a partition). The refinement of a partition p of the interval I is another partition p′ that
contains all the points from p and some additional points, again sorted by order of magnitude.
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