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1 Introduction

This text is a compilation of lecture notes from a course given by Thanate Dhirasakdanon and assisted by
Ilmari Karonen at the University of Helsinki in fall 2011 on the mathematical modeling of infectious diseases.
It is a work in progress, with new sections added (and earlier ones possibly revised) as the course proceeds.
Each section approximately covers the material presented in one lecture session.

As its name suggests, the aim of this course is to present basic mathematical techniques for modeling the
spreading of infections in a host population. This field of study is sometimes called “mathematical epidemiol-
ogy”, although that term really covers a wider spectrum of topics than will be touched upon in this course. In
general, epidemiology means “the study of the causes, distributions and control of diseases in populations”(The
American Heritage Dictionary, 2002). In this course, we will mainly focus on the distribution aspect, perhaps
occasionally touching upon the effects of various disease control strategies.

The study of the mathematics of infectious diseases, as presented in this course, is essentially the study
of contact processes: stochastic processes in which an infection spreads through a network of intermittent
contacts among a set of hosts. However, for much of this course, we will not be dealing with the contact
processes themselves — even though we formally consider an epidemic as a stochastic process, we will often
approximate the dynamics of such processes with simpler models, such as deterministic differential equations.

1.1 Basic terminology

We consider a population of host individuals (humans, animals, plants, etc.) which may be infected by a
disease. Typically, we divide the individual hosts into several classes, such as:

Susceptible (S): not carrying the disease but capable of contracting it, and

Infective (I): carrying the disease and capable of spreading it to susceptible individuals.

These two classes make up the simplest types of epidemic models (the “SI” and “SIS” models)1, and are
usually present in more complex models as well. In addition, several other classes may be present in the
population, such as:

Latent (L), or Exposed (E): carrying the disease but not (yet) capable of spreading it,

Recovered (R): not carrying the disease and incapable of contracting it (typically due to acquired immunity
after infection), or

Removed (R): infected but incapable of spreading the disease (due to death or isolation from general pop-
ulation).

1In epidemiological literature, it is common to refer to certain common classes of models using abbreviations of the sequence of
states which an individual passes through over the course of the infection. Thus, a model in which susceptible individuals become
permanently infective would be called an “SI” model, while one in which infective individuals eventually recover and become
susceptible again would be called an “SIS” model. If the recovered individuals did not become susceptible again but remained
immune, we would have an “SIR”, or, if the immunity wore off after a time, an “SIRS” model.
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It is somewhat confusing that the same letter “R” is traditionally used to denote both the recovered and
the removed classes. Fortunately, these two classes rarely appear in the same models. Also, in many models
it actually makes little if any difference whether individuals are removed from the population or remain in it
in an immune, non-infective state, in which case it is safe to conflate these two classes.

Disease-causing organisms can be broadly divided into two classes: microparasites, such as viruses and
bacteria, and macroparasites such as intestinal worms. The defining feature is microparasites, from the point
of view of disease modeling, is that they reproduce very rapidly upon entering a new host. Thus, when
modeling microparasite infections, we may reasonably classify each host individual simply as either infected
or non-infected, without having to explicitly consider the number of parasites present in each infected host.

In this course, for the sake of simplicity, we will mainly consider microparasite infections.

2 Microparasite epidemic in a closed population

We consider a microparasite infection spreading in a closed population of host individuals. By "closed", we
mean that we assume that no hosts will enter or leave the population during the period we consider. We also
ignore host population dynamics, assuming that no new hosts will be born — this simplifying assumption is
justified if the epidemic we’re modeling occurs on a short timescale compared to the host life cycle, as is the
case e.g. with influenza epidemics in human populations.

A model of such an epidemic was introduced by W.O. Kermack and A.G. McKendrick in 1927 (Kermack
and McKendrick, 1927). Their model is formulated as a system of ordinary differential equations as

dS

dt
= −σSI, dI

dt
= σSI − γI, dR

dt
= γI (1)

with the initial conditions
S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0.

We usually only interested in the initial conditions such that S(0) > 0 and I(0) > 0.
Actually Kermack and McKendrick presented a more general model (so-called age of infection model, to

be discussed later), and the above is an simplified model obtained after making certain assumptions (see
Section 5).

Of course, the spreading of an actual infection is a stochastic process, but this ODE system can be
interpreted as a deterministic approximation of the contact process for large host populations (formally, in the
limit as the population size tends to infinity). In particular, the variables S = S(t), I = I(t) and R = R(t)
in (1) should be interpreted as the respective densities of susceptible, infective and recovered (or removed)
individuals per unit area (or length or volume) in a very large, well mixed host population.

The Kermack–McKendrick model makes a number of simplifying assumptions:

• Every infective host has the same chance to recover, and every susceptible the same chance to become
infected, over any given time period. Further, every infective host can spread the disease equally well.

• The host population is randomly mixed, such that each individual is equally likely to meet any other
(and potentially propagate the disease) over any given time period.

• There is no latency period, i.e. infected susceptibles become immediately infective themselves.

• Once an infective is recovered or removed it is unable to become infective again. This holds, for example,
if the infection gives permanent immunity against reinfection, such that no host individual can become
infected more than once. Alternatively, this holds if the infection always results in death of the host.

Besides the initial conditions, the Kermack–McKendrick model has two free parameters: γ denotes the
per-capita recovery rate of infective individuals per unit of time and has the unit 1/time, while σ is call
“infection rate” and has the unit 1/time per density of host individuals. Note that σI can be interpreted
as the per-capita rate at which susceptible individuals become infective (also called the force of infection),
and that σS can be interpreted the per-capita rate at which infective individuals cause infection. We assume
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here mass action (also called density-dependent incidence, such that the total population infection rate σSI is
directly proportional to both the density of susceptibles S and of the infectives I. Later on, we will consider
more general forms of contact mechanism.

Determining the course of the epidemic under the Kermack–McKendrick model, given the parameters σ
and γ, amounts to solving an initial value problem of ordinary differential equations, i.e. finding functions
S(t), I(t) and R(t) which satisfy the system of ODEs (1) and match some given initial densities S(0), I(0)
and R(0). The Kermack–McKendrick model can be shown to satisfy the following properties:

• A unique solution exists for all t ∈ [0,∞).

• S(t), I(t) and R(t) are non-negative for all t ∈ [0,∞).

• The total population size N = S(t) + I(t) + R(t) is constant (for an infection that always results in
death, we should think of R as the “density” of dead individuals).

• S(t) decreases monotonically towards S∞ := lim
t→∞

S(t) > 0.

• If S(0) ≤ γ
σ , I(t) decreases monotonically towards lim

t→∞
I(t) = 0. In this case, we say that there is no

epidemic.

• If S(0) > γ
σ , I(t) initially increases (and later decreases towards 0), in which case we say that an epidemic

occurs.

Despite its simplicity and small number of free parameters (just two), the Kermack–McKendrick model
provides a surprisingly good fit to measured data from many real epidemics. For example, figure 1, taken from
the original 1927 paper by Kermack and McKendrick, shows a comparison of actual mortality data from a
plague epidemic in Bombay in 1905–1906 with their model, with coefficients and initial conditions chosen to
reproduce the observed size and duration of the epidemic. We can see that, even though the model must surely
be an oversimplification of the actual disease dynamics, the shape of the curve still matches the observations
remarkably well.

3 Solutions to initial value problems

This is our first mathematical interlude. All of results in this section can be found on any standard textbook
on theory of ordinary differential equations. See, e.g., Hale (1970 (reprinted by Dover Publications in 2009).
For brevity, we omit the proofs.

We begin with a precise definition:

Definition 3.1. Let I be a non-trivial interval in R and let D be a connected subset of Rn. If (t, x) ∈ I ×D,
we interpret t as time and x as state. Let f : I ×D → Rn be continuous. Let (t0, x0) ∈ I ×D. The function
f is called the vector field, and the point (t0, x0) is called the initial condition.

A function x : J → D defined on a non-trivial subinterval J ⊆ I is called a solution of the initial value
problem

dx

dt
= f(t, x(t)), x(t0) = x0, (2)

if the following conditions are satisfied:

(1) x(t) ∈ D for all t ∈ J .

(2) The function x is differentiable on J .

(3) The equation (2) is satisfied for all t ∈ J .

If a is an end-point of J , the derivative of x at a means either left- or right-derivative.

On open domain, solutions to an initial value problem always exist, at least locally:
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Figure 1: A chart from Kermack and McKendrick (1927), comparing recorded deaths per week from a plague
epidemic in Bombay in 1905–1906 (black dots) to the Kermack–McKendrick model (line and circled dots).
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Proposition 3.2 (Local existence). Let I be an open interval in R and let D be a open connected subset
of Rn. Let f : I × D → Rn be continuous. Let (t0, x0) ∈ I × D. Then, there exist ε > 0 and a solution
x : (t0 − ε, t0 + ε)→ D to the initial value problem (2).

Proposition 3.2 can be strengthened considerably:

Theorem 3.3 (Maximum interval of existence). Let D be an open connected subset of Rn, I be an open
interval in R, and f : I×D → Rn be continuous. Then, for each (t0, x0) ∈ I×D, there exists an open interval
J := (a, b) ⊆ I, such that the initial value problem (2) has a solution on J but not on any proper superset of
J . Furthermore, for each c ∈ {a, b}, at least one of the following three conditions will hold:

(1) |c| =∞,

(2) lim sup
t∈(a,b), t→c

||x(t)|| =∞, or

(3) there exists an element y ∈ Rn \D and a sequence (tj) in (a, b) such that (tj , x(tj))→ (c, y) as j →∞.

In addition to the existence of solutions, we are also typically interested in their uniqueness. Theorem 3.5
below provides a sufficient and often useful condition for this. In what follows, the following definition will be
central:

Definition 3.4 (Local Lipschitz continuity). A function f : I ×D → Rn is called locally Lipschitz continuous
(LLC) with respect to its second argument if, for any (t0, x0) ∈ I ×D, there exist an ε > 0 and a Λ > 0 such
that, for all t ∈ I, |t− t0| < ε and for all x ∈ D, ||x− x0|| < ε and x′ ∈ D, ||x′ − x0|| < ε,

||f(t, x)− f(t, x′)|| ≤ Λ||x− x′||.

Note that I and D need not be open.

This definition may seem technical, but the underlying concept is simple: if f is LLC, then around every
point (t0, x0) we may find a neighborhood where the variation of f(t, x) as a function of its second argument
x is bounded, in the sense that if we move x by some distance δ (while staying within the neighborhood), then
f(t, x) moves at most the distance Λδ.

Using this definition, we may state the following sufficient criterion for the uniqueness of solutions to initial
value problems:

Theorem 3.5 (Uniqueness). Let D be a connected subset of Rn and I a non-trivial interval in R. If f :
I ×D → Rn is continuous (with respect to both arguments) and LLC with respect to its second argument,
then, for any (t0, x0) ∈ I×D and for any interval J 3 t0, the initial value problem (2) has at most one solution
on J .

Local Lipschitz continuity is a strictly stronger property than plain continuity; for example, a function
cannot be LLC at a point where it has a vertical tangent. However, the following proposition can often be
used to establish local Lipschitz continuity:

Proposition 3.6. Let I be a non-trivial interval in R and let D be an open connected subset of Rn. If
f : I ×D → Rn is continuous and has a continuous derivative with respect to its second argument (note that
the derivative is an n×n matrix), then it is locally Lipschitz continuous (with respect to its second argument).

Another useful result is:

Proposition 3.7. Let I be a non-trivial interval in R and let D be a connected subset of Rn. Let f : I×D →
Rn. Write f(t, x) = (f1(t, x), . . . , fn(t, x)), i.e., fj(t, x) is the jth component of f(t, x). Then if each fj is
locally Lipschitz continuous, then f itself is locally Lipschitz continuous.

The following proposition is useful in many situations, especially for showing that solutions of initial value
problems stay non-negative (or strictly positive) for all time.
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Proposition 3.8 (Simple scalar differential inequalities). Let I be a non-trivial interval in R, and let D be a
subset of R (not Rn!). Let f : I ×D → R be continuous and let (t0, x0) ∈ I ×D. Let x : I → R be a solution
of the initial value problem dx

dt = f(t, x), x(t0) = x0.

• If y : I → R is a continuously differentiable function such that dy
dt ≤ f(t, y), y(t0) ≤ x0, then y(t) ≤ x(t)

for all t ≥ t0 (such that t ∈ I).

• If y : I → R is a continuously differentiable function such that dy
dt ≥ f(t, y), y(t0) ≥ x0, then y(t) ≥ x(t)

for all t ≥ t0 (such that t ∈ I).

4 Properties of the simplified Kermack–McKendrick model

We now study properties of solutions of the simplified Kermack–McKendrick model (1) introduced in Section 2,
which we repeat here:

dS

dt
= −σSI, (3)

dI

dt
= σSI − γI, (4)

dR

dt
= γI, (5)

with S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, σ > 0, and γ > 0.

Proposition 4.1 (Well-posedness). For each initial condition S(0) ≥ 0, I(0) ≥ 0, and R(0) ≥ 0, there exists
a unique solution of (3)–(5) defined on t ∈ [0,∞). Each component S(t), I(t), R(t) of the solution is non-
negative and N := S(t) + I(t) +R(t) is constant. If S(0) > 0 and I(0) > 0, then S(t) > 0 and I(t) > 0 for all
t ∈ [0,∞).

Proof. Here, the vector field is f : (−∞,∞)× R3 → R3 defined by

f(t, S, I, R) =

 −σSI
σSI − γI

γI.


Since f is obviously continuous, there exists a maximal solution (S(t), I(t), R(t)) defined on some open interval
containing 0 by Theorem 3.3, in particular, the maximal solution is defined on [0, b) for some 0 < b ≤ ∞.
Since the derivative of f with respect to (S, I,R) is

f ′(t, S, I, R) =

−σI −σS 0
σI σS − γ 0
0 γ 0.


We can see that f ′ is continuous with respect to (S, I,R) and so f is locally Lipschitz continuous on
(−∞,∞)×R3 by Proposition 3.6. This means that the solution (S(t), I(t), R(t)) is uniquely defined on [0, b)
by Theorem 3.5. It is not hard to see that dS

dt (t) + dI
dt (t) + dR

dt (t) = 0, and so N := S(t) + I(t) + R(t)

is a constant. From (3), we have S(t) = S(0)e−σ
∫ t
0 I(s) ds ≥ 0 for t ∈ [0, b), and from (4), we have

I(t) = I(0)e
∫ t
0 (σS(s)−γ) ds ≥ 0. The last sentence also shows that S(t) > 0 and I(t) > 0 for t ∈ [0, b) if

S(0) > 0 and I(0) > 0. From (5), we have R(t) = R(0) + γ
∫ t
0 I(s) ds ≥ 0. Hence the solution remains

bounded on t ∈ [0, b), i.e., 0 ≤ S(t) + I(t) + R(t) = N for t ∈ [0, b). From Theorem 3.3, we must have
b =∞.

Proposition 4.2 (Behavior of solution components). Let (S(t), I(t)), R(t)) be the unique solution of (3)–(5).
Then S(t) is a non-increasing function of t, R(t) is a non-decreasing function of t, and I(t)→ 0 as t→∞. If
S(0) > 0 and I(0) > 0, then S(t) is a strictly decreasing function of t, R(t) is a strictly increasing function of
t, and S∞ := limt→∞ S(t) < γ

σ .

6



Proof. From equations (3) and (5), and the non-negativity of the solution, we can see that S(t) is non-increasing
and R(t) is non-decreasing. If I(0) = 0, we have I(t) = 0 for all t ≥ 0. If S(0) = 0, we have S(t) = 0 for all
t ≥ 0 and so dI

dt = −γI for all t ≥ 0. Hence if S(0) = 0 or I(0) = 0, we have I(t) → 0 as t ∈ ∞. We can
now assume, for the rest of this proof, that S(0), I(0) > 0, and so S(t), I(t) > 0 for all t ≥ 0. From equations
(3) and (5) again, we can see that S(t) is strictly decreasing and R(t) is strictly increasing. Suppose, to get
a contradiction, that S∞ ≥ γ

σ . Then dI
dt ≥ (σS∞ − γ)I ≥ 0. Hence I(t) ≥ I(0) for all t ≥ 0. From (3), we

have dS
dt ≤ −σI(0)S, and so S(t) ≤ S(0)e−σI(0)t → 0 as t ∈ ∞, contradicting the assumption that S∞ ≥ γ

σ .
We therefore must have S∞ < γ

σ . This means there exist ε > 0 and t0 > 0 such that S(t) ≤ γ
σ − ε for t ≥ t0.

From (4), we have dI
dt = (σS − γ)I ≤ −εσI for t ≥ t0. Hence I(t) ≤ I(t0)e

−εσ(t−t0) → 0 as t→∞.

We sometimes leave out the equation (5) for R since it does not affect the dynamic of S and I in any way.

Proposition 4.3 (Constant of motion). If S(0) > 0, then the function V (S, I) := S + I − γ
σ logS stays

constant along the solution of (3)–(4). More precisely, V (S(t), I(t)) = V (S(0), I(0)) for all t ≥ 0 if (S(t), I(t))
is a solution of (3)–(4) with S(0) > 0.

Proof. We just have to show that the derivative with respect to t of V (S(t), I(t)) is 0.

Proposition 4.4 (Final size). Let (S(t), I(t)) be a solution of (3)–(4) with S(0) > 0 and I(0) > 0. Then
the limit S∞ := limt→∞ S(t) exists and 0 < S∞ < γ

σ . This means, in particular, that there are always some
susceptibles left untouched after the epidemic has passed, and that the density of susceptible after the epidemic
has passed is strictly less than γ

σ .
More precisely, S∞ is a unique solution in (0, γσ ) of the final size equation:

S∞ −
γ

σ
logS∞ = S(0) + I(0)− γ

σ
logS(0). (6)

If S(0) ≤ γ
σ , then S∞ → S(0) as I(0)→ 0.

Proof. The facts that S∞ exists and that S∞ < γ
σ are contained in the statement of Proposition 4.2. From

Proposition 4.3, we have S(t)+I(t)− γ
σ logS(t) = S(0)+I(0)− γ

σ logS(0) for all t ≥ 0. Define f(x) = x− γ
σ log x,

x > 0. Then f is continuous, has a unique minimum at x = γ
σ , and is strictly decreasing on (0, γσ ]. Since

limx→0+ f(x) =∞ and since f( γσ ) ≤ f(S(0)) < S(0) + I(0)− γ
σ logS(0). There is a unique S∞ ∈ (0, γσ ) such

that S∞− γ
σ logS∞ = f(S∞) = S(0) + I(0)− γ

σ logS(0). Since f is strictly decreasing on (0, γσ ], we can define
f−1 with the domain [f( γσ ),∞) and range (0, γσ ]. Now if 0 < S(0) ≤ γ

σ , then we have f−1(f(S(0))) = S(0)
and so S∞ = f−1(f(S∞)) = f−1(f(S(0)) + I(0))→ f−1(f(S(0))) = S(0) as I(0)→ 0.

4.1 The basic reproductive number of the simplified Kermack–McKendrick model,
threshold theorem

The fundamental quantity in most models in epidemiology is the basic reproductive number, usually denotes
by R0, and is defined as

the number of secondary infections caused by a single infective individual introduced into an
entirely susceptible population.

For the simplified Kermack–McKendrick model, it can be shown (see Section 5) that the mean infectious
period, i.e., the expected amount of time that a newly infected individual stays infective, is 1

γ . Recall that
σS can be interpreted the per capita rate (per unit time) at which infective individuals cause infection (see
Section 2). Hence, for the simplified Kermack–McKendrick model, if an infective individual is introduced into
an entirely susceptible population of initial size S(0), then this infective individual will cause σS(0)

γ secondary

infections, i.e., R0 = σS(0)
γ .

Theorem 4.5 (Kermack–McKendrick threshold theorem). Let (S(t), I(t)) be a solution of (1) with S(0) > 0
and I(0) > 0.
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(a) If S(0) ≤ γ
σ , equivalently, if R0 ≤ 1, then I(t) is strictly decreasing toward 0 as t→∞.

(b) If S(0) > γ
σ , equivalently, if R0 > 1, then I(t) initially increases, and then decreases toward 0 as t→∞.

Define Imax = supt∈[0,∞) I(t) > 0. We can now say a bit more.

(c) If S(0) ≤ γ
σ , equivalently, if R0 ≤ 1, then Imax = I(0), and S∞ → S(0) as I(0)→ 0.

(d) If S(0) > γ
σ , equivalently, if R0 > 1, then Imax stays bounded away from 0 as I(0)→ 0, and S∞ < γ

σ <
S(0) as I(0)→ 0.

Proof. (a) and (c): Suppose that 0 < S(0) ≤ γ
σ . Then S(t) < γ

σ for t > 0 since S(t) is strictly decreasing by
Proposition 4.2. Hence dI

dt (t) = (σS(t) − γ)I(t) < 0 for t > 0, and so I(t) is strictly decreasing. Therefore,
Imax = I(0). The limit limt→∞ I(t) = 0 by Proposition 4.2, and we have S∞ → S(0) as I(0) → 0 by
Proposition 4.4.

(b) and (d): Suppose that S(0) > γ
σ . The inequalities S∞ < γ

σ < S(0) follows from Proposition 4.4. Since
S(t) is strictly decreasing by Proposition 4.2, there is t′ > 0 such that S(t) > γ

σ for t ∈ [0, t′), S(t′) = γ
σ , and

S(t) < γ
σ for t ∈ (t′,∞). Hence dI

dt (t) = (σS(t)− γ)I(t) > 0 for t ∈ [0, t′) and dI
dt (t) = (σS(t)− γ)I(t) < 0 for

t ∈ (t′,∞). This means that I(t) is strictly increasing on t ∈ [0, t′) and is strictly decreasing on t ∈ (t′,∞).
The limit limt→∞ I(t) = 0 by Proposition 4.2, From Proposition 4.3, we have Imax = S(0) − γ

σ logS(0) −
S(t′) + γ

σ logS(t′) + I(0) ≥ S(0)− γ
σ logS(0)− γ

σ + γ
σ log γ

σ > 0. The last inequality comes from the fact that
the function x 7→ x− γ

σ log x has a unique minimum at x = γ
σ .

The final size equation (6) can be alternatively written as

S∞
S(0)

− 1

R0
log
( S∞
S(0)

)
= 1 +

I(0)

S(0)
. (7)

5 Age of infection Kermack–McKendrick epidemic model in closed popu-
lation

The Kermack–McKendrick model described in sections 2 and 4 is based on the assumption that all infective
hosts are equally likely to recover and equally effective at spreading the disease, regardless of how long ago
they were infected. In most real diseases, however, infectivity and recovery (and/or mortality) rates vary
considerably over the course of the infection; in particular, many infections have an initial latency period,
during which infectivity is very low.

The model described in this section generalizes the simplified Kermack–McKendrick model to relax this
assumption by taking into account the age of infection, that is to say, the amount of time since a given host was
infected. This is, in fact, the model that Kermack and McKendrick proposed in (Kermack and McKendrick,
1927).

Let S(t) be the density of susceptible hosts in the population at time t, and let i : [0,∞)× [0,∞)→ [0,∞)

be a function such that
∫ b
a i(t, τ)dτ is the density of infective hosts with infection age between a and b at time

t, i.e., the density of infective hosts that was infected (entered infective class) between the time t − a and
t− b. Essentially, one can think of i(t, τ) as the density of infective hosts of age τ in the population at time t,
although one should keep in mind that this is really a density per area times age interval ; the actual density
per area of infectives of age exactly τ is zero.
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6 Epidemic model in closed population with general homogeneous mixing
contact rate

We consider the model:

dS

dt
= −C(N)

SI

N
, (8)

dI

dt
= C(N)

SI

N
− (γ + α)I, (9)

dR

dt
= γI, (10)

N = S + I +R. (11)

Here, as usual, S is the density of susceptibles, I is the density of infectives, R is the density of recovered (with
permanent immunity), and N is the total population density under consideration. The parameter γ is the
per-capita recovery rate of infectives, as in the simplified Kermack–McKendrick model. Unlike the simplified
Kermack–McKendrick model, we distinguish between those who recover from the disease and those who die
because of the disease. We let the parameter α be the per-capita mortality rate of the infectives. Notice
that if α > 0, the total population density N will not be a constant. The function C(N) is a contact rate
function, and can be interpreted as a number of contact per unit time that a typical individual makes with
other individuals if the total population density is N . Note that

• if C(N) = σN , we get the usual mass-action incidence, and

• if C(N) = σ is a constant, we talk about standard incidence.

We make the following two assumptions:

• γ ≥ 0, α ≥ 0, and γ + α > 0.

• C : (0,∞)→ (0,∞) is strictly positive, non-decreasing, and locally Lipschitz continuous function.

Note that limN→0+ C(N) always exists since C is non-decreasing, and we define C(0) := limN→0+ C(N). We
will sometimes assume that C(N)

N is a non-increasing function of N .
It is more convenience to drop the differential equation for R and to work with the differential equation

for N instead. Hence we rewrite (8)–(11) as

dN

dt
= −αI, (12)

dS

dt
= −C(N)

SI

N
, (13)

dI

dt
= C(N)

SI

N
− (γ + α)I. (14)

We choose a state-space S = {(N,S, I) ∈ R3 : S > 0, I > 0, S + I ≤ N} since we want to avoid the division
by zero in (13) and (14) (this is not essential, but it helps simplify the analysis).

Proposition 6.1. The model (12)–(14) is well-defined, i.e., if (N0, S0, I0) ∈ S then there is a unique solution
of (12)–(14) with N(0) = N0, S(0) = S0, I(0) = I0, and the solution is defined and stays in S for all t ∈ [0,∞).

Proof. For a moment, we work with the state-space S ′ := {(N,S, I) ∈ R3 : N > 0, S > 0, I > 0} which is an
open subset of R3. Note that S ⊆ S ′.

The vector field

f(N,S, I) =

 −αI
−C(N)SIN

C(N)SIN − (γ + α)I
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is locally Lipschitz continuous on S ′, and so the initial value problem (12)–(14) with (N0, S0, I0) :=
(N(0), S(0), I(0)) ∈ S ′ has a unique solution defined on t ∈ [0, b) for some b ∈ (0,∞].

We now assume that (N0, S0, I0) ∈ S for the rest of this proof.

We have S(t) = S0e
−

∫ t
0 C(N(s))

I(s)
N(s)

ds
> 0 and I(t) = I0e

∫ t
0 (C(N(s))

I(s)
N(s)
−γ−α) ds

> 0 for all t ∈ [0, b). We
also have Ṅ − Ṡ − İ = γI > 0, and so N(t) − S(t) − I(t) ≥ N0 − S0 − I0 ≥ 0 for all t ∈ [0, b). Hence
(N(t), S(t), I(t)) ∈ S for all t ∈ [0, b) if (N0, S0, I0) ∈ S. Note also that N(t) ≤ N0 for all t ∈ [0, b).

Suppose, to get a contradiction, that b <∞. Then, from Theorem 3.3, either (a) N(t) + S(t) + I(t)→∞
as t→ b−, or (b) there exists a sequence (tk) in [0, b) with limk→∞ tk = b and limk→∞(N(tk), S(tk), I(tk)) :=
(Nb, Sb, Ib) /∈ S ′. (a) is impossible since N(t)+S(t)+I(t) ≤ 2N(t) ≤ 2N0 for all t ∈ [0, b), and (b) is impossible

since N(t) ≥ S(t) + I(t) and since S(t) = S0e
−

∫ t
0 C(N(s))

I(s)
N(s)

ds ≥ S0e−
∫ t
0 C(N(s)) ds ≥ S0e−C(N0)t ≥ S0e−C(N0)b

and I(t) = I0e
∫ t
0 (C(N(s))

I(s)
N(s)
−γ−α) ds ≥ I0e−(γ+α)t ≥ I0e−(γ+α)b for all t ∈ [0, b), and so the solution is bounded

away from the boundary of S ′.

To continue, we need the following result:

Lemma 6.2 (Barbalat’s Lemma). Let f : [0,∞) → R be a continuously differentiable function such that
limt→∞ f(t) exists.

Suppose that ḟ is uniformly continuous on [0,∞). Then limt→∞ ḟ(t) = 0.
In particular, if f is twice continuously differentiable and f̈(t) is bounded on t ∈ [0,∞), then ḟ is uniformly

continuous and the conclusion of the Lemma holds.

Proof. The proof can be found in, e.g., (Thieme, 2003, Theorem A.16 and Corollary A.18).

Proposition 6.3. N(t) and S(t) are strictly decreasing functions, and we have limt→∞ I(t) = 0.

Proof. It is clear that N(t) and S(t) are strictly decreasing since their derivatives are strictly negative.
To show that limt→∞ I(t) = 0, we consider two cases: α > 0 and α = 0.
Case α > 0. We know that N∞ := limt→∞N(t) exists since N is decreasing and N(t) > 0 for all t ∈ [0,∞).

We also have

|N̈ | = α|İ| = α
∣∣C(N)

SI

N
− (γ + α)I

∣∣ ≤ α(C(N)
SI

N
+ (γ + α)I

)
≤ α

(
C(N)I + (γ + α)I

)
≤ α

(
C(N) + (γ + α)

)
N ≤ α

(
C(N0) + (γ + α)

)
N0.

Hence Ṅ(t) is uniformly continuous on t ∈ [0,∞) and so limt→∞ Ṅ(t) = 0 by Lemma 6.2. Since I(t) = − Ṅ(t)
α ,

we have limt→∞ I(t) = 0.
Case α = 0. In this case, N is constant and the model reduces to the simplified Kermack–McKendrick

model (with σ = C(N)/N)). Hence the claim follows from Proposition 4.2.

In order to get the basic reproductive number for this model, we note that the initial infection rate caused
by a single infective is C(N0)

S0
N0

. The infectious period is exponentially distributed with the mean 1
γ+α . Hence,

for this model, we have

R0 =
C(N0)S0

(γ + α)N0
. (15)

Lemma 6.4. (a) If C(N(t′)) S(t
′)

N(t′) ≤ γ + α for some t′ ≥ 0, then C(N(t)) S(t)N(t) ≤ γ + α for all t ≥ t′.

(b) If C(N0)
S0
N0

> γ + α, then there exists t′ > 0 such that C(N(t′)) S(t
′)

N(t′) = γ + α, and such that

C(N(t)) S(t)N(t) > γ + α for all t ∈ [0, t′).
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Proof. (a) Suppose, to get a contradiction, that there exists t1 < t2 such that C(N(t1))
S(t1)
N(t1)

≤ γ + α

and C(N(t2))
S(t2)
N(t2)

> γ + α. Since the function t 7→ C(N(t)) S(t)N(t) is continuous, we can assume that

C(N(t1))
S(t1)
N(t1)

= γ + α, and that C(N(t)) S(t)N(t) > γ + α for all t ∈ (t1, t2]. Since S(t)
N(t) < 1, we have

C(N(t)) > γ + α ≥ α for all t ∈ (t1, t2]. Since N(t) is decreasing and C(N) is non-decreasing, we have

C(N(t2))
S(t2)

N(t2)
− C(N(t1))

S(t1)

N(t1)
≤ C(N(t1))

( S(t2)

N(t2)
− S(t1)

N(t1)

)
,

and by the mean value theorem, there is t ∈ (t1, t2) such that

C(N(t2))
S(t2)

N(t2)
− C(N(t1))

S(t1)

N(t1)
≤ C(N(t1))(t2 − t1)

( Ṡ(t)

N(t)
− S(t)

N(t)

Ṅ(t)

N(t)

)
= C(N(t1))(t2 − t1)

(
− C(N(t))S(t)I(t)

(N(t))2
+ α

S(t)I(t)

(N(t))2

)
= C(N(t1))(t2 − t1)

(
− C(N(t)) + α

)S(t)I(t)

(N(t))2

< 0,

contradicting C(N(t1))
S(t1)
N(t1)

= γ + α < C(N(t2))
S(t2)
N(t2)

.

(b) If C(N0)
S0
N0

> γ + α, and if there does not exist t′ > 0 such that C(N(t′)) S(t
′)

N(t′) = γ + α, then

C(N(t)) S(t)N(t) > γ+α for all t ≥ 0. But then İ =
(
C(N) SN − (γ+α)

)
I > 0 for all t ≥ 0, and so I(t) ≥ I0 for all

t ≥ 0, contradicting limt→∞ I(t) = 0. Hence there exists t′ > 0 be such that C(N(t′)) S(t
′)

N(t′) = γ + α, and since

the function t 7→ C(N(t)) S(t)N(t) is continuous, we can assume that C(N(t)) S(t)N(t) > γ + α for all t ∈ [0, t′).

Theorem 6.5. (a) If R0 ≤ 1, then I(t) is non-increasing and tends toward 0 as t→∞.

(b) If R0 > 1, then I(t) initially increases, and then becomes non-increasing and tends toward 0 as t→∞.

Proof. We have limt→∞ I(t) = 0 by Proposition 6.3.

(a): Suppose that R0 ≤ 1, and so C(N0)
S0
N0
≤ γ +α. By Lemma 6.4(a), we have C(N(t)) S(t)N(t) ≤ γ +α for

all t ≥ 0, and so İ =
(
C(N(t)) S(t)N(t) − (γ + α)

)
I(t) ≤ 0 for all t ≥ 0. Hence I(t) is non-increasing.

(b): Suppose that R0 > 0 and so C(N0)
S0
N0

> γ + α. By Lemma 6.4(a,b), there exists t′ > 0 such that

such that C(N(t)) S(t)N(t) > γ + α for all t ∈ [0, t′), and such that C(N(t))S(t
′)

N(t) ≤ γ + α for all t ∈ [t′,∞), Since

İ =
(
C(N(t)) S(t)N(t) − (γ + α)

)
I(t), I(t) is increasing on [0, t′) and non-decreasing on [t′,∞).

The following proposition considers the final size of the epidemic in case where γ > 0, i.e., there are
possibilities that some individuals survive the disease.

Proposition 6.6. If γ > 0, then N∞ > 0 and S∞ > 0 where N∞ := limt→∞N(t) and S∞ := limt→∞ S(t).

If C(N)
N is a non-increasing function of N , we also have a final size inequality (compare with (6)):

logS0 − logS∞ ≥
C(N0)

N0

S0 + I0 − S∞
γ + α

. (16)

We can also write (16) as (compare with (7)):

S∞
S0
− 1

R0
log

S∞
S0
≥ 1 +

I0
S0
, (17)
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Proof. We again consider two cases: α > 0 and α = 0.
Case α > 0. We have İ = −Ṡ + γ+α

α Ṅ , and so, by integrating both side, we have I(t) = I0 + S0 − S(t) +
γ+α
α (N(t)−N0). Hence

Ṅ(t) = −αI(t) = −α
(
I0 + S0 − S(t) +

γ + α

α
(N(t)−N0)

)
= αS(t)− (γ + α)

(
N(t)−N0

)
− α(I0 + S0) = αS(t)− (γ + α)N(t) + γN0 + α(N0 − I0 − S0)

≥ −(γ + α)N(t) + γN0.

Solving the above differential inequality, we get N(t) ≥ N0e
−(γ+α)t+ γN0

γ+α

(
1−e−(γ+α)t

)
. Hence N∞ ≥ γN0

γ+α > 0.

Since Ṡ
S = C(N)

N
Ṅ
α , and so, by integrating both side, we have

log
S(t)

S0
=

1

α

∫ t

0
C(N(s))

Ṅ(s)

N(s)
ds =

1

α

∫ logN(t)

logN0

C(es) ds.

Hence S(t) = S0e
1
α

∫ logN(t)
logN0

C(es) ds, and so S∞ = S0e
1
α

∫ logN∞
logN0

C(es) ds
> 0. Now since Ṡ + İ = −(γ + α)I we

have S(t) + I(t)− S0 − I0 = −(γ + α)
∫ t
0 I(s) ds. Since Ṡ

S = −C(N)I
N , we have

log
S0
S(t)

=

∫ t

0

C(N(s))

N(s)
I(s) ds ≥ C(N0)

N0

∫ t

0
I(s) ds

=
C(N0)

N0

S0 + I0 − S(t)− I(t)

γ + α
.

Taking the limit as t→∞, we have (16).

Now since R0 = C(N0)S0

γ+α , log S0
S∞
≥ R0

(
1 + I0

S0
− S∞

S0

)
, and so S∞

S0
− 1
R0

log S∞
S0
≥ 1 + I0

S0
.

Case α = 0. In this case, N is constant and the model reduces to the simplified Kermack–McKendrick
model (with σ = C(N)/N)). Hence the claim follows from Proposition 4.4. Note that in this case (16) is an
equality.

We now consider the final size of the epidemic in case γ = 0, i.e., every infective dies because of the disease.
In this case, we have N = S + I since there is no recovered individual.

Proposition 6.7. Suppose that γ = 0 (and so α > 0).
If C(0) ≥ α, then N∞ = S∞ = 0, i.e., the population goes extinct because of the disease.
If C(0) < α, then N∞ = S∞ > 0.

Proof. We define f(t) := I(t)
N(t) , which is well-defined since N(t) > 0 for all t. We also have 0 < f(t) < 1 for all

t since S(t), I(t) > 0.
From (12) and (14), and the fact that S(t) = N(t)− I(t), we have (using the quotient rule from calculus):

Ṅ(t) = −αf(t)N(t),

ḟ(t) =
(
C(N(t))− α

)(
1− f(t)

)
f(t).

Suppose that C(0) ≥ α. Then C(N) ≥ α for all N and so ḟ(t) ≥ 0. Hence f(t) ≥ f0 (where f0 = f(0)),
and so Ṅ(t) = −αf(t)N(t) ≤ −αf0N(t). Hence N(t) ≤ N0e

−αf0t and so N∞ = 0.
Now suppose that C(0) < α. If C(N∞) ≥ α, then we must have N∞ > 0 since C(0) < α and C is non-

decreasing. So we can assume that C(N∞) < α. Hence there exist T > 0 and ε > 0 such that C(N(t)) < α−ε
for t ≥ T , and so ḟ(t) = (C(N(t))− α)(1− f(t))f(t) < −ε(1− f(t))f(t). Hence f(t) is decreasing for t ≥ T
and ḟ(t) < −ε(1−f(t))f(t) < −ε(1−f(T ))f(t) for all t ≥ T . This means that f(t) ≤ f(T )e−ε(t−T ) for t ≥ T .
Since ṄN = −αf , we have

logN(t)− logN(T ) = −α
∫ t

T
f(s) ds ≥ −αf(T )

∫ t

T
e−ε(s−T ) ds = −αf(T )

1− e−(t−T )

ε
> −αf(T )

ε
.

Hence logN(t) is bounded away from −∞ and so N∞ > 0.
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7 Stability of equilibria for systems of ordinary differential equations

This is another mathematical interlude.

Definition 7.1. Let f : D → Rn be a vector field defined on a connected subset D of Rn. A point x ∈ D is
called an equilibrium of the vector field f if f(x) = 0.

Proposition 7.2. Let D be a connected subset of Rn. Let f : D → Rn be locally Lipschitz continuous. Let
x0 ∈ D be an equilibrium of f . Then the “constant” function x : (−∞,∞) → D defined by x(t) = x0 for all
t ∈ (−∞,∞) is a solution to the differential equation

dx

dt
= f(x(t)).

Furthermore, x is the only solution of the differential equation that passes through the point x0, i.e., if
y : I → D is a solution of the differential equation such that y(t0) = x0 for some t0 ∈ I, then y = x on I.

Definition 7.3. Let D be a connected subset of Rn. Let f : D → Rn be locally Lipschitz continuous. Let
y ∈ D be an equilibrium of f . Then

• y is a (locally) stable equilibrium if for every ε > 0, there is δ > 0 such that if x : [0,∞)→ D is a solution
to the differential equation dx

dt = f(x(t)) with ‖x(0)− y‖ < δ, then ‖x(t)− y‖ < ε for all t ∈ [0,∞).

• y is a locally asymptotically stable equilibrium if it is a stable equilibrium and there exists ε > 0 such
that if x : [0,∞) → D is a solution to the differential equation dx

dt = f(x(t)) with ‖x(0) − y‖ < ε, then
limt→∞ x(t) = y.

• y is an unstable equilibrium if it is not stable.

Proposition 7.4 (Principle of linearized stability). Let D be a connected subset of Rn. Let f : D → Rn be
continuously differentiable. Let y ∈ D be an equilibrium of f . Let J be the Jacobian matrix of f evaluated at
y. Then

• y is locally asymptotically stable if all of the eigenvalues of J have strictly negative real part.

• y is unstable if there is an eigenvalue of J that have strictly positive real part.

Proposition 7.5 (Routh-Hurwitz criteria).

• Let D be a connected subset of R2. Let f : D → R2 be continuously differentiable. Let y ∈ D be an
equilibrium of f . Let J be the Jacobian matrix of f evaluated at y.

Then

– y is locally asymptotically stable if det J > 0 and trace J < 0.

– y is unstable if either det J < 0 or trace J > 0.

• Let D be a connected subset of R3. Let f : D → R3 be continuously differentiable. Let y ∈ D be an
equilibrium of f . Let J be the Jacobian matrix of f evaluated at y.

Then y is locally asymptotically stable if det J < 0, trace J < 0, and

det A− (trace A)(A1 +A2 +A3) > 0,

where Aj , j = 1, 2, 3, are determinants of 2 × 2 matrices obtained from J by deleting the jth column
and jth row.
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8 Host limitation by infectious diseases

Consider the following model:

dS

dt
= βN − µS − σSI, (18)

dI

dt
= σSI − (µ+ γ + α)I, (19)

dR

dt
= γI − µR, (20)

N = S + I +R. (21)

Here β is the per-capita birth rate of the host population. Notice that we assume that susceptibles, infectives,
and recovered individual gives birth at the same rate, and that all new-borns are susceptibles. We also assume
that susceptibles and recovered die at the per-capita death rate µ, and that infectives die at the per-capita
death rate µ+α. Hence α can be thought of as an additional death rate by being infected. For simplicity, we
work with the mass-action incidence (σSI). All other parameters and state variables have the same meaning
as the ones in Section 6. We will assume that µ > 0, β > µ, α > 0, σ > 0, and γ ≥ 0.

It will be more convenience to rewrite (18)–(21) as

dN

dt
= (β − µ)N − αI, (22)

dS

dt
= βN − µS − σSI, (23)

dI

dt
= σSI − (µ+ γ + α)I. (24)

We pick S = {(N,S, I) ∈ R3 : S ≥ 0, I ≥ 0, S + I ≤ N} as our state-space.

Proposition 8.1. The model (22)–(24) is well-defined on the state-space S, i.e., for every (N0, S0, I0) ∈ S,
there exists a unique solution (N(t), S(t), I(t)) ∈ S defined on t ∈ [0,∞) such that (N(0), S(0), I(0)) =
(N0, S0, I0).

If I0 = 0, we have N(t) = N0e
(β−µ)t for t ≥ 0, i.e., the total density of the population grows exponentially

in absence of the diseases. Also if I0 = 0 and N0 = S0, we have N(t) = S(t) for all t ≥ 0.

The proof will be left as a homework.
We now look for equilibria of this model, i.e., for all values of (N,S, I) that solve the following system of

algebraic equations:

0 = (β − µ)N − αI, (25)
0 = βN − µS − σSI, (26)
0 = σSI − (µ+ γ + α)I. (27)

If N = 0, we have I = 0 from (25), and then we have S = 0 from (26). We can then verify that (N,S, I) =
(0, 0, 0) is a solution to (25)–(27). Now we assume that N > 0. From (25), we have I = β−µ

α N > 0. From
(27), we have S = µ+γ+α

σ . From (26), we have I = βN−µS
σS . So, β−µα N = I = βN−µS

σS . Solving for N , we have

N = µS

β−β−µ
α
σS

=
µµ+γ+α

σ

β−β−µ
α

(µ+γ+α)
= αµ(µ+γ+α)

σ(µ(µ+γ+α)−β(µ+γ)) = α

σ
(
1−β

µ
µ+γ

µ+γ+α

) . So I = β−µ
α N = β−µ

σ
(
1−β

µ
µ+γ

µ+γ+α

) , and
S + I =

(µ+γ+α)(1−β
µ

µ+γ
µ+γ+α

)+(β−µ)

σ
(
1−β

µ
µ+γ

µ+γ+α

) =
(µ+γ+α)−β

µ
(µ+γ)+(β−µ)

σ
(
1−β

µ
µ+γ

µ+γ+α

) =
γ+α−β

µ
γ

σ
(
1−β

µ
µ+γ

µ+γ+α

) . Notice that, to have N > 0 and

I > 0, we must require that β
µ

µ+γ
µ+γ+α < 1. Also, to have S + I ≤ N , we must require that γ + α − β

µγ ≤ α,
but this last inequality is automatically satisfied because of the assumption β > µ. We now summarize:
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Proposition 8.2. (N,S, I) = (0, 0, 0) is always an equilibrium. If βµ
µ+γ

µ+γ+α < 1, there is another equilibrium
(N∗, S∗, I∗) where

N∗ =
α

σ
(
1− β

µ
µ+γ

µ+γ+α

) , (28)

S∗ =
µ+ γ + α

σ
, (29)

I∗ =
β − µ

σ
(
1− β

µ
µ+γ

µ+γ+α

) . (30)

If the inequality in the above Proposition is reversed, the solution is unbounded:

Proposition 8.3. If βµ
µ+γ

µ+γ+α > 1, then limt→∞N(t) =∞ for every solution of (22)–(24) with N0 > 0.

Proof. If I0 = 0, then N(t) = N0e
(β−µ)t →∞ as t→∞ and the claim is true. So we can assume that I0 > 0.

Define x(t) = N(t)− α
µ+γ+α

(
S(t) + I(t)

)
. Then

ẋ = Ṅ − α

µ+ γ + α
(Ṡ + İ) = (β − µ)N − αI − α

µ+ γ + α

(
βN − µS − (µ+ γ + α)I

)
= (β − µ)N − αβ

µ+ γ + α
N +

αµ

µ+ γ + α
S ≥ (β − µ)N − αβ

µ+ γ + α
N

= µ
(β
µ
− 1− αβ

µ(µ+ γ + α)

)
N = µ

(β
µ

(
1− α

µ+ γ + α

)
− 1
)
N

= µ
(β
µ

µ+ γ

µ+ γ + α
− 1
)
N ≥ µ

(β
µ

µ+ γ

µ+ γ + α
− 1
)(
N − α

µ+ γ + α
(S + I)

)
≥ µ

(β
µ

µ+ γ

µ+ γ + α
− 1
)
x.

Hence x(t) ≥ x0e
µ(β
µ

µ+γ
µ+γ+α

−1)t, where x0 = N0 − α
µ+γ+α(S0 + I0) > N0 − (S0 + I0) ≥ 0. Hence x(t) → ∞ as

t→∞. Since N(t) ≥ x(t), we have N(t)→∞ as t→∞.

We now study the stability of the equilibrium (N∗, S∗, I∗) (note that the equilibrium (N,S, I) = (0, 0, 0)
is always unstable).

The Jacobian matrix of (22)–(24) isβ − µ 0 −α
β −µ− σI −σS
0 σI σS − µ− γ − α

 (31)

Proposition 8.4. The equilibrium (N∗, S∗, I∗), if it exists, is locally asymptotically stable.

Proof. We use the Routh-Hurwitz criterion. At (N∗, S∗, I∗), the Jacobian matrix is

A =

β − µ 0 −α
β −µ− σI∗ −σS∗
0 σI∗ 0

 =

β − µ 0 −α
β −βN∗S∗ −σS∗
0 σI∗ 0


We have

detA = −σαβI∗ + σ2S∗I∗(β − µ)

= σI∗
(
− αβ + σS∗(β − µ)

)
= σI∗

(
− αβ + (µ+ γ + α)(β − µ)

)
= σI∗

(
− αβ + (µ+ γ + α)β − (µ+ γ + α)µ

)
= σI∗

(
(µ+ γ)β − (µ+ γ + α)µ

)
= σI∗(µ+ γ + α)µ

(β
µ

µ+ γ

µ+ γ + α
− 1
)
< 0,
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and

trace A = β − µ− βN
∗

S∗
< −µ < 0.

We have A1 = σ2I∗S∗, A2 = 0, A3 = −(β − µ)βN
∗

S∗ . Hence

det A− (trace A)(A1 +A2 +A3)

= σI∗
(
− αβ + σS∗(β − µ)

)
−
(
β − µ− βN

∗

S∗

)(
σ2I∗S∗ − (β − µ)β

N∗

S∗

)
.

Now note that σI∗ = βN∗−µS∗
S∗ and σS∗ = µ+ γ + α. Hence

det A− (trace A)(A1 +A2 +A3)

=
βN∗ − µS∗

S∗
(
− αβ + (µ+ γ + α)(β − µ)

)
−
(
β − µ− βN

∗

S∗

)(βN∗ − µS∗
S∗

(µ+ γ + α)− (β − µ)β
N∗

S∗

)
= −αββN

∗ − µS∗

S∗
+ (β − µ)2β

N∗

S∗
+ β

N∗

S∗

(βN∗ − µS∗
S∗

(µ+ γ + α)− (β − µ)β
N∗

S∗

)
> −αββN

∗ − µS∗

S∗
+ β

N∗

S∗

(βN∗ − µS∗
S∗

(µ+ γ + α)− (β − µ)β
N∗

S∗

)
=
(N∗
S∗
− 1
)
αβ

βN∗ − µS∗

S∗
+ β

N∗

S∗

(βN∗ − µS∗
S∗

(µ+ γ)− (β − µ)β
N∗

S∗

)
.

Let F = β
µ

µ+γ
µ+γ+α . Since N

∗ = α
σ(1−F ) and S∗ = µ+γ+α

σ , we have

N∗

S∗
=

α

(µ+ γ + α)(1− F )

and so

N∗

S∗
− 1 =

α− (µ+ γ + α)(1− F )

(µ+ γ + α)(1− F )
=
α− (µ+ γ + α) + β

µ(µ+ γ)

(µ+ γ + α)(1− F )

=
−µ(µ+ γ) + β(µ+ γ)

µ(µ+ γ + α)(1− F )
=

(β − µ)(µ+ γ)

µ(µ+ γ + α)(1− F )

=
(β − µ)(µ+ γ)

µα

N∗

S∗
.

Hence

det A− (trace A)(A1 +A2 +A3)

>
(β − µ)(µ+ γ)

µα

N∗

S∗
αβ

βN∗ − µS∗

S∗
+ β

N∗

S∗

(βN∗ − µS∗
S∗

(µ+ γ)− (β − µ)β
N∗

S∗

)
= β

N∗

S∗

((β − µ)(µ+ γ)

µ

βN∗ − µS∗

S∗
+
βN∗ − µS∗

S∗
(µ+ γ)− (β − µ)β

N∗

S∗

)
= β

N∗

S∗

(
(β − µ)

((µ+ γ)

µ

βN∗ − µS∗

S∗
− βN

∗

S∗

)
+
βN∗ − µS∗

S∗
(µ+ γ)

)
= β

N∗

S∗

(
(β − µ)

(βN∗
S∗

(
µ+ γ

µ
− 1)− (µ+ γ)

)
+
βN∗ − µS∗

S∗
(µ+ γ)

)
> β

N∗

S∗

(
− (β − µ)(µ+ γ) +

βN∗ − µS∗

S∗
(µ+ γ)

)
> β

N∗

S∗

(
− (β − µ)(µ+ γ) + (β − µ)(µ+ γ)

)
= 0.
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9 Invariant sets, ω-limit sets, and Lyapunov-LaSalle theorem

Another mathematical interlude.

Definition 9.1. Let D be a connected subset of Rn, and let f : D → Rn be locally Lipschitz continuous. A
set A ⊆ D is called an invariant set for the vector field f (or for the differential equation ẋ = f(x)) if for each
x0 ∈ A, the (unique) solution x : (−∞,∞) → D to the initial value problem ẋ = f(x), x(0) = x0 exists and
is defined for all t ∈ (−∞,∞) (not just for t ∈ [0,∞)!), and furthermore, the solution stays in the set A for
all t ∈ (−∞,∞), i.e., x(t) ∈ A for all t ∈ (−∞,∞).

Examples of invariant sets are sets consisting of equilibria. Another example is the so-called periodic orbit.

Definition 9.2. Let A ⊆ Rn be non-empty and let x ∈ Rn. We define the distance between the point x and
the set A as

d(x,A) = inf{‖x− y‖ : y ∈ A}. (32)

Note that if A consists of just one point y, then d(x,A) = ‖x− y‖.

Proposition 9.3 (ω-limit set). Let D be a connected subset of Rn, and let f : D → Rn be locally Lipschitz
continuous. Let x : [0,∞) → D be a solution to the differential equation ẋ = f(x) (which is defined for all
non-negative time). If x is bounded, i.e., if there exists M > 0 such that ‖x(t)‖ ≤ M for all t ∈ [0,∞), then
there is a unique non-empty, compact, connected, and invariant set A ⊆ D such that d(x(t), A)→ 0 as t→∞.
That is, A “attracts” the solution x.

The set A is called the ω-limit set of the solution x.

Definition 9.4. Let D be a open connected subset of Rn, and let f : D → Rn be continuously differentiable.
Assume that for each x0 ∈ D, the (unique) solution to the initial value problem ẋ = f(x), x(0) = x0 exists and
is defined for all t ∈ [0,∞). Let V : D → R be a continuously differentiable function. Define the directional
derivative of V at x ∈ D in the direction of vector field f by

〈∇V (x), f(x)〉.

Here, ∇V (x) =
(
∂V
∂x1

(x), . . . , ∂V∂x1 (x)
)T and 〈 , 〉 is the usual inner product in Rn.

Then V is called a Lyapunov function for the vector field f (or for the differential ẋ = f(x)) if

• V (x)→∞ as ‖x‖ → ∞ (note that we require that x stays in D).

• The directional derivative of V in the direction of f exists and is non-positive for all x ∈ D, i.e.,

〈∇V (x), f(x)〉 ≤ 0, for all x ∈ D.

Theorem 9.5 (Lyapunov-LaSalle). Let D be an open connected subset of Rn, and let f : D → Rn be
continuously differentiable. Assume that for each x0 ∈ D, the (unique) solution to the initial value problem
ẋ = f(x), x(0) = x0 exists and is defined for all t ∈ [0,∞). Suppose that V : D → R is a Lyapunov function
for f . Then

• Every solution is bounded.

• The ω-limit set of every solution (which exists by Proposition 9.3) is contained in the set
{
x ∈ D :

〈∇V (x), f(x)〉 = 0
}
.
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10 Stability of the equilibria of a simple SI model with demographic

In Homework #5, we consider the model

dS

dt
= B − µS − σSI, (33)

dI

dt
= σSI − (µ+ α)I. (34)

We assume that there is no recovery from the diseases, and there is a constant stream of new susceptibles,
with rate B, coming into the system. All other parameters have the same meaning as the model in Section 8.1,
and all parameters are assume to be strictly positive. The state-space is S = {(S, I) ∈ R2 : S ≥ 0, I ≥ 0}.

We first find all equilibria of the model. If (S, I) is an equilibrium of the model, then we must have

B − µS − σSI = 0, (35)
σSI − (µ+ α)I = 0. (36)

If I = 0, then we must have B − µS = 0, and so S = B
µ . We can then check that (So, Io) = (Bµ , 0)

is an equilibrium. If I 6= 0, we must have σS − (µ + α) = 0, and so S = µ+α
σ , and so we must have

I = B−µS
σS =

B−µµ+α
σ

σ µ+α
σ

= B
µ+α −

µ
σ = µ

σ (Bµ
σ

µ+α − 1). To be relevant, we must have I > 0, and so we must have
B
µ

σ
µ+α > 1. We can then check that (S∗, I∗) =

(µ+α
σ , µσ (Bµ

σ
µ+α−1)

)
is an equilibrium provided that B

µ
σ

µ+α > 1.

In summary, (So, Io) = (Bµ , 0) is always an equilibrium and

(S∗, I∗) =
(µ+ α

σ
,
µ

σ
(
B

µ

σ

µ+ α
− 1)

)
(37)

is an equilibrium if and only if B
µ

σ
µ+α > 1. We call (So, Io) the disease-free equilibrium and (S∗, I∗) the

endemic (or interior) equilibrium.
Next, we study the stability of (So, Io) and (S∗, I∗) (when it exists). The Jacobian matrix of (33)–(34) is

J =

(
−µ− σI −σS
σI σS − µ− α

)
(38)

At (So, Io), the Jacobian matrix becomes,

Jo =

(
−µ −σBµ
0 σBµ − µ− α

)
(39)

We have det Jo = −µ
(
σBµ − µ− α

)
, and trace Jo = σBµ − 2µ− α. By the Routh-Hurwitz criteria, (So, Io) is

locally asymptotically stable if det Jo > 0 and trace Jo < 0, and is unstable if either det Jo < 0 or trace Jo > 0.
Hence (So, Io) is locally asymptotically stable if σBµ −µ−α < 0, which is equivalent to B

µ
σ

µ+α < 1, and (So, Io)

is unstable if σBµ − µ− α > 0, which is equivalent to B
µ

σ
µ+α < 1. At (S∗, I∗), if it exists, the Jacobian matrix

becomes,

Jo =

(
−µ− σI∗ −σS∗
σI∗ σS∗ − µ− α

)
=

(
−µ− σI∗ −µ− α
σI∗ 0

)
(40)

We have det J∗ = (µ + α)σI∗ > 0, and trace J∗ = −µ − σI∗ < 0. By the Routh-Hurwitz criteria again, we
can see that (S∗, I∗) is locally asymptotically stable whenever it exists.

In summary, if Bµ
σ

µ+α < 1, then (So, Io) is the only equilibrium of the system, and it is locally asymptotically
stable. If B

µ
σ

µ+α > 1, then (So, Io) is unstable and there is another equilibrium (S∗, I∗) which is locally
asymptotically stable.

By using Lyapunov-LaSalle Theorem, we will now show that, in fact, the equilibria are “globally” asymp-
totically stable whenever it is locally asymptotically stable, in a sense that is to be made precise below.
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Assume first that Bµ
σ

µ+α < 1, and so (So, Io) = (B/µ, 0) is locally asymptotically stable. Let So = {(S, I) ∈
R2 : S > 0, I ≥ 0}. Define a function V : So → R by

V (S, I) = S − So logS + I. (41)

We can see that V (S, I)→∞ as S or I goes to infinity. To show that V is a Lyapunov function, we find the
directional derivative of V along the vector field defined by (33)–(34).

∂V

∂S
Ṡ +

∂V

∂I
İ =

(
1− So

S

)(
B − µS − σSI

)
+ σSI − (µ+ α)I

= B − µS − σSI − So
(B
S
− µ− σI

)
+ σSI − (µ+ α)I

= (S − So)
(B
S
− µ

)
+
(
σSo − µ− α

)
I

= (S − B

µ
)
(B
S
− µ

)
+
(
σ
B

µ
− µ− α

)
I

= − 1

µS
(µS −B)2 +

1

µ+ α

(B
µ

σ

µ+ α
− 1
)
I

≤ 0.

(42)

Hence, V is a Lyapunov function. From Theorem 9.5, the ω-limit set of every solution starting in So is
contained in the set{

(S, I) ∈ So : − 1

µS
(µS −B)2 +

1

µ+ α

(B
µ

σ

µ+ α
− 1
)
I = 0

}
=
{

(B/µ, 0)
}
. (43)

By Proposition 9.3, every solution that starts in So converges to (B/µ, 0) = (So, Io). It is also not hard to
see that a solution starts in S \ So = {(S, I) ∈ S : I = 0} also converges to (B/µ, 0). Hence we have

Proposition 10.1. If B
µ

σ
µ+α < 1, then (So, Io) is the only equilibrium of the model (33)–(34). It is locally

asymptotically stable, and also globally asymptotically stable in a sense that for every solution (S(t), I(t)),
we have limt→∞(S(t), I(t)) = (So, Io).

Now assume that B
µ

σ
µ+α > 1, and so (So, Io) is unstable and (S∗, I∗) exists and is locally asymptotically

stable. Let S∗ = {(S, I) ∈ R2 : S > 0, I > 0}. Define a function V : S∗ → R by

V (S, I) = S − S∗ logS + I − I∗ log I. (44)

Again, we can see that V (S, I) → ∞ as S or I goes to infinity. To show that V is a Lyapunov function, we
find the directional derivative of V along the vector field defined by (33)–(34).

∂V

∂S
Ṡ +

∂V

∂I
İ =

(
1− S∗

S

)(
B − µS − σSI

)
+
(
1− I∗

I

)(
σS − µ− α

)
I

= (S − S∗)
(B
S
− µ− σI

)
+ (I − I∗)

(
σS − µ− α

)
.

(45)

Since B − µS∗ − σS∗I∗ = 0 and σS∗ − µ− α = 0, we have

∂V

∂S
Ṡ +

∂V

∂I
İ = (S − S∗)

(B
S
− B

S∗
− σ(I − I∗)

)
+ (I − I∗)σ(S − S∗)

= (S − S∗)
(B
S
− B

S∗
)

= − B

SS∗
(S − S∗)2 ≤ 0.

(46)

Hence, V is a Lyapunov function. From Theorem 9.5, the ω-limit set of every solution starting in S∗ is
contained in the set {

(S, I) ∈ S∗ : − B

SS∗
(S − S∗)2 = 0

}
=
{

(S, I) ∈ S∗ : S = S∗
}
. (47)
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We claim that the ω-limit set is the singleton {(S∗, I∗)}. So let (S(t), I(t)) be a solution that starts in S∗
with the ω-limit set A. We know that A ⊆ {(S, I) ∈ S∗ : S = S∗}. Suppose that A 6= {(S∗, I∗)}, then
there is I ′ 6= I∗ such that (S∗, I ′) ∈ A. Let (S̃(t), Ĩ(t)) be the solution that starts from (S∗, I ′). Since A
is invariant, we have (S̃(t), Ĩ(t)) ∈ A for all t ∈ [0,∞). In particular, S̃(t) = S∗I for all t ∈ [0,∞), and so
0 = dS̃

dt = B−µS∗− σS∗Ĩ(t) for all t ∈ [0,∞) by (33). This is only possible if Ĩ(t) = I∗ for all t ∈ [0,∞), but
since we assume that Ĩ(0) = I ′ 6= I∗, this is a contradiction.

By Proposition 9.3, every solution that starts in S∗ converges to (S∗, I∗). Note that a solution that starts
in S \ So = {(S, I) ∈ S : I = 0} converges instead to (So, Io) = (B/µ, 0). Hence we have

Proposition 10.2. If B
µ

σ
µ+α > 1, then (So, Io) is unstable and there exists a unique locally asymptotically

stable endemic equilibrium (S∗, I∗). For every solution (S(t), I(t)) with I(0) = 0, we have limt→∞(S(t), I(t)) =
(S∗, I∗). For every solution (S(t), I(t)) with S(0) > 0 and I(0) > 0, we have limt→∞(S(t), I(t)) = (S∗, I∗).

11 Host limitation model revisited: global stability of the endemic equi-
librium

We revisit the model (22)–(24) of Section 8. We now rewrite the model in term of N , fS := S
N , and fI := I

N .
Using the quotient rule from calculus, the model becomes

dN

dt
= N(β − µ− αfI), (48)

dfS
dt

= β(1− fS)− σNfSfI + αfSfI , (49)

dfI
dt

= σNfSfI − αfI(1− fI)− (β + γ)fI . (50)

For this section, we will assume that γ = 0, i.e., there is no recovered class. Then N = S + I, and so
fS + fI = S

N + I
N = 1. Hence we can eliminate the equation (49) and rewrite (48)–(50) as

dN

dt
= N(β − µ− αfI), (51)

dfI
dt

= (σN − α)(1− fI)fI − βfI . (52)

The state-space then becomes S = {(N, fI) ∈ R2 : N ≥ 0, 0 ≤ fI ≤ 1}. From Section 8, we know that the
interior equilibrium (N∗, f∗I ) ∈ S exists with N∗ > 0 and f∗I > 0 if and only if βµ

µ
µ+α < 1, and that the interior

equilibrium is locally asymptotically stable whenever it exists.
Define So = {(N, fI) ∈ S : N > 0, 0 < fI < 1}.

Proposition 11.1. Suppose that the equilibrium (N∗, f∗I ) exists. Then (N∗, f∗I ) is globally asymptotically
stable in a sense that every solution that starts in So converges to (N∗, f∗I ).

Proof. We prove this by showing that the ω-limit set of every solution (N(t), fI(t)) that starts in So is the
singleton {(N∗, f∗I )}, and so by Proposition 9.3, ‖(N(t), fI(t))− (N∗, f∗I )‖ = d

(
(N(t), fI(t)), {(N∗, f∗I )}

)
→ 0

as t→∞.
We have

0 = β − µ− αf∗I , (53)
0 = (σN∗ − α)f∗I (1− f∗I )− βf∗I . (54)

Define a function V on So as

V (N, fI) = σ
(
N −N∗ logN

)
− α

(
f∗I log fI + (1− f∗I ) log(1− fI)

)
. (55)
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It is easy to see that V (N, fI) → ∞ when (N, fI) ∈ So and ‖(N, fI)‖ → ∞. To show that V is a Lyapunov
function, we find the directional derivative of V along the vector field defined by (51)–(52).

∂V

∂N
Ṅ +

∂V

∂fI
ḟI =

∂V

∂N

(
N(β − µ− αfI)

)
+
∂V

∂fI

(
(σN − α)(1− fI)fI − βfI

)
= σ

(
1− N∗

N

)(
N(β − µ− αfI)

)
− α

(f∗I
fI
−

1− f∗I
1− fI

)(
(σN − α)(1− fI)fI − βfI

)
= σ(N −N∗)(β − µ− αfI)− α

f∗I − fI
fI(1− fI)

(
(σN − α)(1− fI)fI − βfI

)
= σ(N −N∗)(β − µ− αfI) + α(fI − f∗I )

(
σN − α− β

1− fI
)
.

(56)

Using (53)–(54), we have

∂V

∂N
Ṅ +

∂V

∂fI
ḟI = σ(N −N∗)(−αfI + αf∗I ) + α(fI − f∗I )

(
σN − β

1− fI
− σN∗ +

β

1− f∗I

)
= −ασ(N −N∗)(fI − f∗I ) + ασ(fI − f∗I )(N −N∗)− αβ

( 1

1− fI
− 1

1− f∗I

)
= −αβ(fI − f∗I )

fI − f∗I
(1− fI)(1− f∗I )

≤ 0.

(57)

This shows that V is a Lyapunov function for our system. Hence from Theorem 9.5, the ω-limit set of every
solution that starts in So is contained in the set {(N, fI) ∈ So : fI = f∗I }.

We claim that the ω-limit set of every solution is the singleton {(N∗, f∗I )}. So let (N(t), fI(t)) be a
solution that starts in So with the ω-limit set A. We know that A ⊆ {(N, fI) ∈ So : fI = f∗I }. Suppose that
A 6= {(N∗, f∗I )}, then there is N ′ 6= N∗ such that (N ′, f∗I ) ∈ A. Let (Ñ(t), f̃I(t)) be the solution that starts
from (N ′, f∗I ). Since A is invariant, we have (Ñ(t), f̃I(t)) ∈ A for all t ∈ [0,∞). In particular, f̃I(t) = f∗I for
all t ∈ [0,∞), and so 0 = df̃I

dt = (σÑ(t)− α)(1− f∗I )f∗I − βf∗I for all t ∈ [0,∞) by (52). This is only possible
if Ñ(t) = N∗ for all t ∈ [0,∞), but since we assume that Ñ(0) = N ′ 6= N∗, this is a contradiction.
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