
Homework #4 solutions Mathematics of infectious diseases, fall 2011.

1. [An SIR model with quarantine]

Consider the following model:

Ṡ = −C(N)
SI

N
, (1)

İ = C(N)
SI

N
− γI − αI, (2)

Q̇ = αI − δQ, (3)

Ṙ = γI + δQ, (4)

N = S + I +R. (5)

Here, Q is the “density” of infective individuals that are temporary removed from the population (quaran-
tined). α ≥ 0 is the per-capita rate of removal. We assume that individuals that are quarantined recover at
the per-capita rate of δ > 0. We also assume that the quarantined individuals do not take part in the contact
process, and hence we set N = S + I + R. All other parameters have the same meaning and assumptions
as in Section 6 of the lecture notes. All other parameters have the same meaning and assumptions as in
Section 6 of the lecture notes. Note also that if α = 0, the model reduces to the one in Section 6 of the
lecture notes. We define S0, I0, Q0, R0, and N0 to be S(0), I(0), Q(0), R(0), and N(0), respectively.

(a) Show that N(t) +Q(t) is a constant, i.e., does not depend on t.

Show that if Q0 = 0, we have Q(t) = N0−N(t), and then show that the system above can be rewritten
as a system of three differential equations:

Ṅ = −αI + δ(N0 −N), (6)

Ṡ = −C(N)
SI

N
, (7)

İ = C(N)
SI

N
− (γ + α)I. (8)

Solution. The differential equation for N is

Ṅ = Ṡ + İ + Ṙ = −αI + δQ,

and since Q̇ = αI − δQ, we have aṄ + Q̇ = 0. Hence Q(t) + N(t) = Q0 + N0 for all t where the
solution is defined. Since Q0 = 0, we have Q(t) = N0 −N(t) for all t where the solution is defined.

The equations for S and I remain the same, and so we have the system:

Ṅ = −αI + δ(N0 −N), (9)

Ṡ = −C(N)
SI

N
, (10)

İ = C(N)
SI

N
− (γ + α)I. (11)

(b,c) Show that the model is well-defined on the state-space

S = {(N,S, I) ∈ R3 | S, I > 0, S + I ≤ N ≤ N0}. (12)
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Solution. We define S ′ := {(N,S, I) ∈ R3 | S, I,N > 0} which is an open subset of R3 and is a
superset of S. The vector field

f(N,S, I) =

 −αI + δ(N0 −N)
−C(N)SI

N

C(N)SI
N
− (γ + α)I


is continuously differentiable on S ′, and so there exists a unique solution to the initial value problem
(6)–(8) with (N0, S0, I0) ∈ S ′ defined on t ∈ [0, b) for some 0 < b ≤ ∞.

We now restrict our attention to the case that (N0, S0, I0) ∈ S.

We have S(t) = S0e
−

∫ t
0 C(N(s))

I(s)
N(s)

ds > 0 and I(t) = I0e
∫ t
0 (C(N(s))

I(s)
N(s)
−γ−α) ds > 0 for all t ∈ [0, b). We

have d
dt

(N0 − N) = αI − δ(N0 − N) > −δ(N0 − N), and so N0 − N(t) ≥ (N0 − N(0))e−δt ≥ 0, i.e.,

N(t) ≤ N0 for all t ∈ [0, b). We have Ṅ − Ṡ − İ = δ(N0 −N) + γI ≥ 0, and so N(t)− S(t)− I(t) ≥
N0 − S0 − I0, and since S0 + I0 ≤ N0, we have S(t) + I(t) ≤ N(t) for all t ∈ [0, b). Therefore, the
solution with (N0, S0, I0) ∈ S stays in S for t ∈ [0, b).

Now suppose, to get a contradiction, that b < ∞. Then either (a) |N(t) + S(t) + I(t)| → ∞ as
t → b, or (b) there exists a sequence (tk) in [0, b) such that tk → b as k → ∞, and such that
limk→∞(N(tk), S(tk), I(tk)) exists but is not in S ′. (a) is impossible since N(t)+S(t)+I(t) ≤ 2N(t) ≤
2N0, and (b) is impossible since S(t) = S0e

−
∫ t
0 C(N(s))

I(s)
N(s)

ds ≥ S0e
−

∫ t
0 C(N(s)) ds ≥ S0e

−
∫ t
0 C(N0) ds ≥

S0e
−C(N0)b and I(t) = I0e

∫ t
0 (C(N(s))

I(s)
N(s)
−γ−α) ds ≥ I0e

−
∫ t
0 (γ+α) ds ≥ I0e

−(γ+α)b for all t ∈ [0, b).

(d,e) Show that limt→∞ I(t) = 0 and limt→∞
(
N0 − N(t)

)
= 0, i.e., limt→∞Q(t) = 0 (and so, N∞ :=

limt→∞N(t) = N0).

Solution. Let P (t) = S(t) + I(t).

Since Ṗ = −(γ + α)I, P (t) is positive and decreasing. Hence P∞ := limt→∞ P (t) exists. Since
|P̈ | = (γ +α)|İ| ≤ (γ +α)

∣∣C(N)SI
N
− (γ +α)I

∣∣ ≤ (γ +α)
(
C(N)SI

N
+ (γ +α)I

)
≤ (γ +α)

(
C(N0)N0 +

(γ + α)N0

)
< ∞, Ṗ is uniformly continuous. From Barbalat’s Lemma, we have Ṗ (t) → 0 as t → ∞.

Hence limt→∞ I(t) = − limt→∞ Ṗ (t)/(γ + α) = 0.

We now note that N(t) − P (t) = N(t) − S(t) − I(t) is bounded above by N0. Since Ṅ − Ṗ =
δ(N0 − N) + γI > 0, N(t) − P (t) is increasing and so the limit limt→∞

(
N(t) − P (t)

)
exists. Since

limt→∞ P (t) exists, the limit N∞ := limt→∞N(t) also exists. Since |N̈ | ≤ αİ + δṄ ≤ α
(
C(N)SI

N
+

(γ + α)I
)

+ δ
(
αI + γ(N0 − N)

)
≤ α

(
C(N0)N0 + (γ + α)N0

)
+ δ
(
αN0 + γN0

)
< ∞. We can apply

Barbalat’s Lemma and conclude that limt→∞ Ṅ = 0. Since we know from the last paragraph that
limt→∞ I = 0, we have limt→∞(N0 −N(t)) = limt→∞

1
δ

(
Ṅ(t) + αI(t)

)
= 0.

(f) Assume that C(N)/N is a decreasing function of N . Show that S∞ satisfies the final size inequality:

logS0 − logS∞ ≥
C(N0)

N0

S0 + I0 − S∞
γ + α

.

Solution. Since Ṡ + İ = −(γ + α)I, we have S(t) + I(t) − S0 − I0 = −(γ + α)
∫ t
0
I(s) ds. Since

Ṡ
S

= −C(N) I
N

, we have

log
S0

S(t)
=

∫ t

0

C(N(s))
I(s)

N(s)
ds ≥ C(N0)

N0

∫ t

0

I(s) ds
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=
C(N0)

N0

S0 + I0 − S(t)− I(t)

γ + α

We know that S∞ exists because S(t) is a bounded decreasing function. The expression C(N0)
N0

S0+I0−S(t)−I(t)
γ+α

converges to a finite limit as t → ∞, and this means that log S0

S(t)
is bounded from above, and hence

S∞ > 0. Now we can take the limit of above and get

log
S0

S∞
≥ C(N0)

N0

S0 + I0 − S∞
γ + α

(g) What is a formula of R0 for this model?

Solution. From (8), we have İ =
(
C(N) S

N
− (γ + α)

)
I, Hence the mean infectious period for an

infective individual is 1
γ+α

. At the beginning, the rate of new infections per unit time per the density

of infective individuals is C(N0)S0

N0
. Hence R0 = C(N0)S0

N0(γ+α)
.

The final size inequality can then be written as

S∞
S0

− 1

R0

log
S∞
S0

≥ 1 +
I0
S0

2. Suppose that the probability distribution of the number of secondary infections that a single infective
make in its infection period is {qk}∞k=0. Assume that we are interested in the initial phase of the outbreak
and so the density of susceptibles and of total population are approximately constant.

(a) Let q0 = 1/5, q1 = 1/5 q2 = 2/5, q3 = 1/5, and qk = 0 for k ≥ 4. Calculate R0 and the probability
that a single infective introduced into the population will cause an outbreak.

Solution. The probability generating function is

g(z) =
∞∑
k=0

qkz
k =

1

5
+

1

5
z +

2

5
z2 +

1

5
z3.

The probability z∞ that an outbreak will not occur is the smallest solution in [0, 1] of the equation

z∞ = g(z∞) =
1

5
+

1

5
z∞ +

2

5
z2∞ +

1

5
z3∞,

which can be rewritten as

0 =
1

5
− 4

5
z∞ +

2

5
z2∞ +

1

5
z3∞ =

1

5
(z∞ − 1)(z2∞ + 3z∞ − 1).

The solution of z2 + 3z−1 = 0 is −3
2

+
√
13
2
,−3

2
−
√
13
2
≈ 0.303,−3.303. Hence z∞ = −3

2
+
√
13
2
≈ 0.303.

The probability of an outbreak is 1− z∞ = 5
2
−
√
13
2
≈ 0.697.

(b) Do the same for q0 = 2/5, q1 = 2/5 q2 = 1/10, q3 = 1/10, and qk = 0 for k ≥ 4.

Solution. The probability generating function is

g(z) =
∞∑
k=0

qkz
k =

2

5
+

2

5
z +

1

10
z2 +

1

10
z3.

Last updated: December 15, 2011, 04:34:53utc Page 3 of 4



Homework #4 solutions Mathematics of infectious diseases, fall 2011.

The probability z∞ that an outbreak will not occur is the smallest solution in [0, 1] of the equation

z∞ = g(z∞) =
2

5
+

2

5
z∞ +

1

10
z2∞ +

1

10
z3∞,

which can be rewritten as

0 =
2

5
− 3

5
z∞ +

1

10
z2∞ +

1

10
z3∞ =

1

10
(z∞ − 1)(z2∞ + 2z∞ − 4).

The solution of z2 + 2z − 4 = 0 is −1 +
√

5,−1−
√

5 ≈ 1.236,−3.236, both of which lie outside [0, 1].
Hence z∞ = 1. The probability of an outbreak is 1− z∞ = 0 (no possibility of an outbreak).

3. Suppose that the probability distribution of the number of secondary infections that a single infective
make in its infectious period is {qk}∞k=0. Assume that the infectious period have a fixed length T > 0, and
that the contact process can be described by a Poisson process with rate c, i.e.,

Prob{k secondary infections caused by a single infective during the time period τ} =
(cτ)k

k!
e−cτ .

Assume that we are interested in the initial phase of the outbreak and so the density of susceptibles and of
total population are approximately constant. Find explicit formula for each qk. Also find explicit formula
for R0. Show that the probability of an outbreak is 1− z∞, where z∞ satisfies the equation z∞ = eR0(z∞−1).

Solution. The number of secondary infections that a single infective make in its (fixed length) infection
period has a probability distribution {qk}∞k=0 where

qk =
(cT )k

k!
e−cT .

The basic reproductive number R0 is the expected number of secondary infections that a single infective
make in its infection period, and so has the value

R0 =
∞∑
k=1

kqk =
∞∑
k=1

k
(cT )k

k!
e−cT = cTe−cT

∞∑
k=1

(cT )k−1

(k − 1)!
= cTe−cT

∞∑
k=0

(cT )k

k!
= cTe−cT ecT = cT.

The probability of an outbreak is 1− z∞, where z∞ satisfies the equation

z∞ =
∞∑
k=0

qkz
k
∞ =

∞∑
k=0

(cTz∞)k

k!
e−cT = e−cT

∞∑
k=0

(cTz∞)k

k!
= e−cT ecTz∞ = ecT (z∞−1) = eR0(z∞−1).
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