1. [An SIR model with quarantine]

Consider the following model:

$$
\begin{align*}
\dot{S} & =-C(N) \frac{S I}{N}, \tag{1}\\
\dot{I} & =C(N) \frac{S I}{N}-\gamma I-\alpha I, \tag{2}\\
\dot{Q} & =\alpha I-\delta Q, \tag{3}\\
\dot{R} & =\gamma I+\delta Q, \tag{4}\\
N & =S+I+R . \tag{5}
\end{align*}
$$

Here, Q is the "density" of infective individuals that are temporary removed from the population (quarantined). $\alpha \geq 0$ is the per-capita rate of removal. We assume that individuals that are quarantined recover at the per-capita rate of $\delta>0$. We also assume that the quarantined individuals do not take part in the contact process, and hence we set $N=S+I+R$. All other parameters have the same meaning and assumptions as in Section 6 of the lecture notes. All other parameters have the same meaning and assumptions as in Section 6 of the lecture notes. Note also that if $\alpha=0$, the model reduces to the one in Section 6 of the lecture notes. We define $S_{0}, I_{0}, Q_{0}, R_{0}$, and N_{0} to be $S(0), I(0), Q(0), R(0)$, and $N(0)$, respectively.
(a) Show that $N(t)+Q(t)$ is a constant, i.e., does not depend on t.

Show that if $Q_{0}=0$, we have $Q(t)=N_{0}-N(t)$, and then show that the system above can be rewritten as a system of three differential equations:

$$
\begin{align*}
\dot{N} & =-\alpha I+\delta\left(N_{0}-N\right) \tag{6}\\
\dot{S} & =-C(N) \frac{S I}{N} \tag{7}\\
\dot{I} & =C(N) \frac{S I}{N}-(\gamma+\alpha) I \tag{8}
\end{align*}
$$

Solution. The differential equation for N is

$$
\dot{N}=\dot{S}+\dot{I}+\dot{R}=-\alpha I+\delta Q,
$$

and since $\dot{Q}=\alpha I-\delta Q$, we have $\mathrm{a} \dot{N}+\dot{Q}=0$. Hence $Q(t)+N(t)=Q_{0}+N_{0}$ for all t where the solution is defined. Since $Q_{0}=0$, we have $Q(t)=N_{0}-N(t)$ for all t where the solution is defined.

The equations for S and I remain the same, and so we have the system:

$$
\begin{align*}
\dot{N} & =-\alpha I+\delta\left(N_{0}-N\right) \tag{9}\\
\dot{S} & =-C(N) \frac{S I}{N} \tag{10}\\
\dot{I} & =C(N) \frac{S I}{N}-(\gamma+\alpha) I \tag{11}
\end{align*}
$$

(b,c) Show that the model is well-defined on the state-space

$$
\begin{equation*}
\mathcal{S}=\left\{(N, S, I) \in \mathbb{R}^{3} \mid S, I>0, S+I \leq N \leq N_{0}\right\} \tag{12}
\end{equation*}
$$

Solution. We define $\mathcal{S}^{\prime}:=\left\{(N, S, I) \in \mathbb{R}^{3} \mid S, I, N>0\right\}$ which is an open subset of \mathbb{R}^{3} and is a superset of \mathcal{S}. The vector field

$$
f(N, S, I)=\left(\begin{array}{c}
-\alpha I+\delta\left(N_{0}-N\right) \\
-C(N) \frac{S I}{N} \\
C(N) \frac{S I}{N}-(\gamma+\alpha) I
\end{array}\right)
$$

is continuously differentiable on \mathcal{S}^{\prime}, and so there exists a unique solution to the initial value problem (6)-(8) with $\left(N_{0}, S_{0}, I_{0}\right) \in \mathcal{S}^{\prime}$ defined on $t \in[0, b)$ for some $0<b \leq \infty$.

We now restrict our attention to the case that $\left(N_{0}, S_{0}, I_{0}\right) \in \mathcal{S}$.
We have $S(t)=S_{0} e^{-\int_{0}^{t} C(N(s)) \frac{I(s)}{N(s)} \mathrm{d} s}>0$ and $I(t)=I_{0} e^{\int_{0}^{t}\left(C(N(s)) \frac{I(s)}{N(s)}-\gamma-\alpha\right) \mathrm{d} s}>0$ for all $t \in[0, b)$. We have $\frac{\mathrm{d}}{\mathrm{d} t}\left(N_{0}-N\right)=\alpha I-\delta\left(N_{0}-N\right)>-\delta\left(N_{0}-N\right)$, and so $N_{0}-N(t) \geq\left(N_{0}-N(0)\right) e^{-\delta t} \geq 0$, i.e., $N(t) \leq N_{0}$ for all $t \in[0, b)$. We have $\dot{N}-\dot{S}-\dot{I}=\delta\left(N_{0}-N\right)+\gamma I \geq 0$, and so $N(t)-S(t)-I(t) \geq$ $N_{0}-S_{0}-I_{0}$, and since $S_{0}+I_{0} \leq N_{0}$, we have $S(t)+I(t) \leq N(t)$ for all $t \in[0, b)$. Therefore, the solution with $\left(N_{0}, S_{0}, I_{0}\right) \in \mathcal{S}$ stays in \mathcal{S} for $t \in[0, b)$.
Now suppose, to get a contradiction, that $b<\infty$. Then either (a) $|N(t)+S(t)+I(t)| \rightarrow \infty$ as $t \rightarrow b$, or (b) there exists a sequence $\left(t_{k}\right)$ in $[0, b)$ such that $t_{k} \rightarrow b$ as $k \rightarrow \infty$, and such that $\lim _{k \rightarrow \infty}\left(N\left(t_{k}\right), S\left(t_{k}\right), I\left(t_{k}\right)\right)$ exists but is not in \mathcal{S}^{\prime}. (a) is impossible since $N(t)+S(t)+I(t) \leq 2 N(t) \leq$ $2 N_{0}$, and (b) is impossible since $S(t)=S_{0} e^{-\int_{0}^{t} C(N(s)) \frac{I(s)}{N(s)} \mathrm{d} s} \geq S_{0} e^{-\int_{0}^{t} C(N(s)) \mathrm{d} s} \geq S_{0} e^{-\int_{0}^{t} C\left(N_{0}\right) \mathrm{d} s} \geq$ $S_{0} e^{-C\left(N_{0}\right) b}$ and $I(t)=I_{0} e^{\int_{0}^{t}\left(C(N(s)) \frac{I(s)}{N(s)}-\gamma-\alpha\right) \mathrm{d} s} \geq I_{0} e^{-\int_{0}^{t}(\gamma+\alpha) \mathrm{d} s} \geq I_{0} e^{-(\gamma+\alpha) b}$ for all $t \in[0, b)$.
(d,e) Show that $\lim _{t \rightarrow \infty} I(t)=0$ and $\lim _{t \rightarrow \infty}\left(N_{0}-N(t)\right)=0$, i.e., $\lim _{t \rightarrow \infty} Q(t)=0$ (and so, $N_{\infty}:=$ $\left.\lim _{t \rightarrow \infty} N(t)=N_{0}\right)$.

Solution. Let $P(t)=S(t)+I(t)$.
Since $\dot{P}=-(\gamma+\alpha) I, P(t)$ is positive and decreasing. Hence $P_{\infty}:=\lim _{t \rightarrow \infty} P(t)$ exists. Since $|\ddot{P}|=(\gamma+\alpha)|\dot{I}| \leq(\gamma+\alpha)\left|C(N) \frac{S I}{N}-(\gamma+\alpha) I\right| \leq(\gamma+\alpha)\left(C(N) \frac{S I}{N}+(\gamma+\alpha) I\right) \leq(\gamma+\alpha)\left(C\left(N_{0}\right) N_{0}+\right.$ $\left.(\gamma+\alpha) N_{0}\right)<\infty, \dot{P}$ is uniformly continuous. From Barbalat's Lemma, we have $\dot{P}(t) \rightarrow 0$ as $t \rightarrow \infty$. Hence $\lim _{t \rightarrow \infty} I(t)=-\lim _{t \rightarrow \infty} \dot{P}(t) /(\gamma+\alpha)=0$.
We now note that $N(t)-P(t)=N(t)-S(t)-I(t)$ is bounded above by N_{0}. Since $\dot{N}-\dot{P}=$ $\delta\left(N_{0}-N\right)+\gamma I>0, N(t)-P(t)$ is increasing and so the limit $\lim _{t \rightarrow \infty}(N(t)-P(t))$ exists. Since $\lim _{t \rightarrow \infty} P(t)$ exists, the limit $N_{\infty}:=\lim _{t \rightarrow \infty} N(t)$ also exists. Since $|\ddot{N}| \leq \alpha \dot{I}+\delta \dot{N} \leq \alpha\left(C(N) \frac{S I}{N}+\right.$ $(\gamma+\alpha) I)+\delta\left(\alpha I+\gamma\left(N_{0}-N\right)\right) \leq \alpha\left(C\left(N_{0}\right) N_{0}+(\gamma+\alpha) N_{0}\right)+\delta\left(\alpha N_{0}+\gamma N_{0}\right)<\infty$. We can apply Barbalat's Lemma and conclude that $\lim _{t \rightarrow \infty} \dot{N}=0$. Since we know from the last paragraph that $\lim _{t \rightarrow \infty} I=0$, we have $\lim _{t \rightarrow \infty}\left(N_{0}-N(t)\right)=\lim _{t \rightarrow \infty} \frac{1}{\delta}(\dot{N}(t)+\alpha I(t))=0$.
(f) Assume that $C(N) / N$ is a decreasing function of N. Show that S_{∞} satisfies the final size inequality:

$$
\log S_{0}-\log S_{\infty} \geq \frac{C\left(N_{0}\right)}{N_{0}} \frac{S_{0}+I_{0}-S_{\infty}}{\gamma+\alpha}
$$

Solution. Since $\dot{S}+\dot{I}=-(\gamma+\alpha) I$, we have $S(t)+I(t)-S_{0}-I_{0}=-(\gamma+\alpha) \int_{0}^{t} I(s) \mathrm{d} s$. Since $\frac{\dot{S}}{S}=-C(N) \frac{I}{N}$, we have

$$
\log \frac{S_{0}}{S(t)}=\int_{0}^{t} C(N(s)) \frac{I(s)}{N(s)} \mathrm{d} s \geq \frac{C\left(N_{0}\right)}{N_{0}} \int_{0}^{t} I(s) \mathrm{d} s
$$

$$
=\frac{C\left(N_{0}\right)}{N_{0}} \frac{S_{0}+I_{0}-S(t)-I(t)}{\gamma+\alpha}
$$

We know that S_{∞} exists because $S(t)$ is a bounded decreasing function. The expression $\frac{C\left(N_{0}\right)}{N_{0}} \frac{S_{0}+I_{0}-S(t)-I(t)}{\gamma+\alpha}$ converges to a finite limit as $t \rightarrow \infty$, and this means that $\log \frac{S_{0}}{S(t)}$ is bounded from above, and hence $S_{\infty}>0$. Now we can take the limit of above and get

$$
\log \frac{S_{0}}{S_{\infty}} \geq \frac{C\left(N_{0}\right)}{N_{0}} \frac{S_{0}+I_{0}-S_{\infty}}{\gamma+\alpha}
$$

(g) What is a formula of \mathcal{R}_{0} for this model?

Solution. From (8), we have $\dot{I}=\left(C(N) \frac{S}{N}-(\gamma+\alpha)\right) I$, Hence the mean infectious period for an infective individual is $\frac{1}{\gamma+\alpha}$. At the beginning, the rate of new infections per unit time per the density of infective individuals is $\frac{C\left(N_{0}\right) S_{0}}{N_{0}}$. Hence $\mathcal{R}_{0}=\frac{C\left(N_{0}\right) S_{0}}{N_{0}(\gamma+\alpha)}$.
The final size inequality can then be written as

$$
\frac{S_{\infty}}{S_{0}}-\frac{1}{\mathcal{R}_{0}} \log \frac{S_{\infty}}{S_{0}} \geq 1+\frac{I_{0}}{S_{0}}
$$

2. Suppose that the probability distribution of the number of secondary infections that a single infective make in its infection period is $\left\{q_{k}\right\}_{k=0}^{\infty}$. Assume that we are interested in the initial phase of the outbreak and so the density of susceptibles and of total population are approximately constant.
(a) Let $q_{0}=1 / 5, q_{1}=1 / 5 q_{2}=2 / 5, q_{3}=1 / 5$, and $q_{k}=0$ for $k \geq 4$. Calculate \mathcal{R}_{0} and the probability that a single infective introduced into the population will cause an outbreak.

Solution. The probability generating function is

$$
g(z)=\sum_{k=0}^{\infty} q_{k} z^{k}=\frac{1}{5}+\frac{1}{5} z+\frac{2}{5} z^{2}+\frac{1}{5} z^{3} .
$$

The probability z_{∞} that an outbreak will not occur is the smallest solution in $[0,1]$ of the equation

$$
z_{\infty}=g\left(z_{\infty}\right)=\frac{1}{5}+\frac{1}{5} z_{\infty}+\frac{2}{5} z_{\infty}^{2}+\frac{1}{5} z_{\infty}^{3}
$$

which can be rewritten as

$$
0=\frac{1}{5}-\frac{4}{5} z_{\infty}+\frac{2}{5} z_{\infty}^{2}+\frac{1}{5} z_{\infty}^{3}=\frac{1}{5}\left(z_{\infty}-1\right)\left(z_{\infty}^{2}+3 z_{\infty}-1\right)
$$

The solution of $z^{2}+3 z-1=0$ is $-\frac{3}{2}+\frac{\sqrt{13}}{2},-\frac{3}{2}-\frac{\sqrt{13}}{2} \approx 0.303,-3.303$. Hence $z_{\infty}=-\frac{3}{2}+\frac{\sqrt{13}}{2} \approx 0.303$. The probability of an outbreak is $1-z_{\infty}=\frac{5}{2}-\frac{\sqrt{13}}{2} \approx 0.697$.
(b) Do the same for $q_{0}=2 / 5, q_{1}=2 / 5 q_{2}=1 / 10, q_{3}=1 / 10$, and $q_{k}=0$ for $k \geq 4$.

Solution. The probability generating function is

$$
g_{g}(z)=\sum_{k=0}^{\infty} q_{k} z^{k}=\frac{2}{5}+\frac{2}{5} z+\frac{1}{10} z^{2}+\frac{1}{10} z^{3} .
$$

The probability z_{∞} that an outbreak will not occur is the smallest solution in $[0,1]$ of the equation

$$
z_{\infty}=g\left(z_{\infty}\right)=\frac{2}{5}+\frac{2}{5} z_{\infty}+\frac{1}{10} z_{\infty}^{2}+\frac{1}{10} z_{\infty}^{3},
$$

which can be rewritten as

$$
0=\frac{2}{5}-\frac{3}{5} z_{\infty}+\frac{1}{10} z_{\infty}^{2}+\frac{1}{10} z_{\infty}^{3}=\frac{1}{10}\left(z_{\infty}-1\right)\left(z_{\infty}^{2}+2 z_{\infty}-4\right) .
$$

The solution of $z^{2}+2 z-4=0$ is $-1+\sqrt{5},-1-\sqrt{5} \approx 1.236,-3.236$, both of which lie outside $[0,1]$. Hence $z_{\infty}=1$. The probability of an outbreak is $1-z_{\infty}=0$ (no possibility of an outbreak).
3. Suppose that the probability distribution of the number of secondary infections that a single infective make in its infectious period is $\left\{q_{k}\right\}_{k=0}^{\infty}$. Assume that the infectious period have a fixed length $T>0$, and that the contact process can be described by a Poisson process with rate c, i.e.,
$\operatorname{Prob}\{k$ secondary infections caused by a single infective during the time period $\tau\}=\frac{(c \tau)^{k}}{k!} e^{-c \tau}$.
Assume that we are interested in the initial phase of the outbreak and so the density of susceptibles and of total population are approximately constant. Find explicit formula for each q_{k}. Also find explicit formula for \mathcal{R}_{0}. Show that the probability of an outbreak is $1-z_{\infty}$, where z_{∞} satisfies the equation $z_{\infty}=e^{\mathcal{R}_{0}\left(z_{\infty}-1\right)}$.

Solution. The number of secondary infections that a single infective make in its (fixed length) infection period has a probability distribution $\left\{q_{k}\right\}_{k=0}^{\infty}$ where

$$
q_{k}=\frac{(c T)^{k}}{k!} e^{-c T} .
$$

The basic reproductive number \mathcal{R}_{0} is the expected number of secondary infections that a single infective make in its infection period, and so has the value

$$
\mathcal{R}_{0}=\sum_{k=1}^{\infty} k q_{k}=\sum_{k=1}^{\infty} k \frac{(c T)^{k}}{k!} e^{-c T}=c T e^{-c T} \sum_{k=1}^{\infty} \frac{(c T)^{k-1}}{(k-1)!}=c T e^{-c T} \sum_{k=0}^{\infty} \frac{(c T)^{k}}{k!}=c T e^{-c T} e^{c T}=c T .
$$

The probability of an outbreak is $1-z_{\infty}$, where z_{∞} satisfies the equation

$$
z_{\infty}=\sum_{k=0}^{\infty} q_{k} z_{\infty}^{k}=\sum_{k=0}^{\infty} \frac{\left(c T z_{\infty}\right)^{k}}{k!} e^{-c T}=e^{-c T} \sum_{k=0}^{\infty} \frac{\left(c T z_{\infty}\right)^{k}}{k!}=e^{-c T} e^{c T z_{\infty}}=e^{c T\left(z_{\infty}-1\right)}=e^{\mathcal{R}_{0}\left(z_{\infty}-1\right)} .
$$

