1. [An SIR model with quarantine] Consider the following model:

$$\dot{S} = -C(N)\frac{SI}{N},\tag{1}$$

$$\dot{I} = C(N)\frac{SI}{N} - \gamma I - \alpha I, \qquad (2)$$

$$\dot{Q} = \alpha I - \delta Q,\tag{3}$$

$$\dot{R} = \gamma I + \delta Q,\tag{4}$$

$$N = S + I + R. ag{5}$$

Here, Q is the "density" of infective individuals that are temporary removed from the population (quarantined). $\alpha \geq 0$ is the per-capita rate of removal. We assume that individuals that are quarantined recover at the per-capita rate of $\delta > 0$. We also assume that the quarantined individuals do not take part in the contact process, and hence we set N = S + I + R. All other parameters have the same meaning and assumptions as in Section 6 of the lecture notes. All other parameters have the same meaning and assumptions as in Section 6 of the lecture notes. Note also that if $\alpha = 0$, the model reduces to the one in Section 6 of the lecture notes. We define S_0 , I_0 , Q_0 , R_0 , and N_0 to be S(0), I(0), Q(0), R(0), and N(0), respectively.

(a) Show that N(t) + Q(t) is a constant, i.e., does not depend on t.

Show that if $Q_0 = 0$, we have $Q(t) = N_0 - N(t)$, and then show that the system above can be rewritten as a system of three differential equations:

$$\dot{N} = -\alpha I + \delta(N_0 - N), \tag{6}$$

$$\dot{S} = -C(N)\frac{SI}{N},\tag{7}$$

$$\dot{I} = C(N)\frac{SI}{N} - (\gamma + \alpha)I.$$
(8)

Solution. The differential equation for N is

$$\dot{N} = \dot{S} + \dot{I} + \dot{R} = -\alpha I + \delta Q,$$

and since $\dot{Q} = \alpha I - \delta Q$, we have $a\dot{N} + \dot{Q} = 0$. Hence $Q(t) + N(t) = Q_0 + N_0$ for all t where the solution is defined. Since $Q_0 = 0$, we have $Q(t) = N_0 - N(t)$ for all t where the solution is defined.

The equations for S and I remain the same, and so we have the system:

$$\dot{N} = -\alpha I + \delta(N_0 - N), \tag{9}$$

$$\dot{S} = -C(N)\frac{SI}{N},\tag{10}$$

$$\dot{I} = C(N)\frac{SI}{N} - (\gamma + \alpha)I.$$
(11)

(b,c) Show that the model is well-defined on the state-space

$$S = \{ (N, S, I) \in \mathbb{R}^3 \mid S, I > 0, S + I \le N \le N_0 \}.$$
(12)

Solution. We define $S' := \{(N, S, I) \in \mathbb{R}^3 \mid S, I, N > 0\}$ which is an open subset of \mathbb{R}^3 and is a superset of S. The vector field

$$f(N, S, I) = \begin{pmatrix} -\alpha I + \delta(N_0 - N) \\ -C(N)\frac{SI}{N} \\ C(N)\frac{SI}{N} - (\gamma + \alpha)I \end{pmatrix}$$

is continuously differentiable on \mathcal{S}' , and so there exists a unique solution to the initial value problem (6)–(8) with $(N_0, S_0, I_0) \in \mathcal{S}'$ defined on $t \in [0, b)$ for some $0 < b \leq \infty$.

We now restrict our attention to the case that $(N_0, S_0, I_0) \in \mathcal{S}$.

We have $S(t) = S_0 e^{-\int_0^t C(N(s)) \frac{I(s)}{N(s)} ds} > 0$ and $I(t) = I_0 e^{\int_0^t (C(N(s)) \frac{I(s)}{N(s)} - \gamma - \alpha) ds} > 0$ for all $t \in [0, b)$. We have $\frac{d}{dt}(N_0 - N) = \alpha I - \delta(N_0 - N) > -\delta(N_0 - N)$, and so $N_0 - N(t) \ge (N_0 - N(0))e^{-\delta t} \ge 0$, i.e., $N(t) \le N_0$ for all $t \in [0, b)$. We have $\dot{N} - \dot{S} - \dot{I} = \delta(N_0 - N) + \gamma I \ge 0$, and so $N(t) - S(t) - I(t) \ge N_0 - S_0 - I_0$, and since $S_0 + I_0 \le N_0$, we have $S(t) + I(t) \le N(t)$ for all $t \in [0, b)$. Therefore, the solution with $(N_0, S_0, I_0) \in \mathcal{S}$ stays in \mathcal{S} for $t \in [0, b)$.

Now suppose, to get a contradiction, that $b < \infty$. Then either (a) $|N(t) + S(t) + I(t)| \to \infty$ as $t \to b$, or (b) there exists a sequence (t_k) in [0, b) such that $t_k \to b$ as $k \to \infty$, and such that $\lim_{k\to\infty} (N(t_k), S(t_k), I(t_k))$ exists but is not in \mathcal{S}' . (a) is impossible since $N(t) + S(t) + I(t) \le 2N(t) \le 2N_0$, and (b) is impossible since $S(t) = S_0 e^{-\int_0^t C(N(s)) \frac{I(s)}{N(s)} ds} \ge S_0 e^{-\int_0^t C(N(s)) ds} \ge S_0 e^{-\int_0^t C(N(s)) ds} \ge S_0 e^{-\int_0^t C(N_0) ds} \ge I_0 e^{-\int_0^t (\gamma + \alpha) ds} \ge I_0 e^{-(\gamma + \alpha)b}$ for all $t \in [0, b)$.

(d,e) Show that $\lim_{t\to\infty} I(t) = 0$ and $\lim_{t\to\infty} (N_0 - N(t)) = 0$, i.e., $\lim_{t\to\infty} Q(t) = 0$ (and so, $N_{\infty} := \lim_{t\to\infty} N(t) = N_0$).

Solution. Let P(t) = S(t) + I(t).

Since $\dot{P} = -(\gamma + \alpha)I$, P(t) is positive and decreasing. Hence $P_{\infty} := \lim_{t\to\infty} P(t)$ exists. Since $|\dot{P}| = (\gamma + \alpha)|\dot{I}| \leq (\gamma + \alpha)|C(N)\frac{SI}{N} - (\gamma + \alpha)I| \leq (\gamma + \alpha)(C(N)\frac{SI}{N} + (\gamma + \alpha)I) \leq (\gamma + \alpha)(C(N_0)N_0 + (\gamma + \alpha)N_0) < \infty$, \dot{P} is uniformly continuous. From Barbalat's Lemma, we have $\dot{P}(t) \to 0$ as $t \to \infty$. Hence $\lim_{t\to\infty} I(t) = -\lim_{t\to\infty} \dot{P}(t)/(\gamma + \alpha) = 0$.

We now note that N(t) - P(t) = N(t) - S(t) - I(t) is bounded above by N_0 . Since $\dot{N} - \dot{P} = \delta(N_0 - N) + \gamma I > 0$, N(t) - P(t) is increasing and so the limit $\lim_{t\to\infty} \left(N(t) - P(t)\right)$ exists. Since $\lim_{t\to\infty} P(t)$ exists, the limit $N_{\infty} := \lim_{t\to\infty} N(t)$ also exists. Since $|\ddot{N}| \leq \alpha \dot{I} + \delta \dot{N} \leq \alpha \left(C(N)\frac{SI}{N} + (\gamma + \alpha)I\right) + \delta\left(\alpha I + \gamma(N_0 - N)\right) \leq \alpha \left(C(N_0)N_0 + (\gamma + \alpha)N_0\right) + \delta\left(\alpha N_0 + \gamma N_0\right) < \infty$. We can apply Barbalat's Lemma and conclude that $\lim_{t\to\infty} \dot{N} = 0$. Since we know from the last paragraph that $\lim_{t\to\infty} I = 0$, we have $\lim_{t\to\infty} (N_0 - N(t)) = \lim_{t\to\infty} \frac{1}{\delta} (\dot{N}(t) + \alpha I(t)) = 0$.

(f) Assume that C(N)/N is a decreasing function of N. Show that S_{∞} satisfies the final size inequality:

$$\log S_0 - \log S_\infty \ge \frac{C(N_0)}{N_0} \frac{S_0 + I_0 - S_\infty}{\gamma + \alpha}$$

Solution. Since $\dot{S} + \dot{I} = -(\gamma + \alpha)I$, we have $S(t) + I(t) - S_0 - I_0 = -(\gamma + \alpha)\int_0^t I(s) ds$. Since $\frac{\dot{S}}{S} = -C(N)\frac{I}{N}$, we have

$$\log \frac{S_0}{S(t)} = \int_0^t C(N(s)) \frac{I(s)}{N(s)} \, \mathrm{d}s \ge \frac{C(N_0)}{N_0} \int_0^t I(s) \, \mathrm{d}s$$

Last updated: December 15, 2011, 04:34:53 UTC

$$= \frac{C(N_0)}{N_0} \frac{S_0 + I_0 - S(t) - I(t)}{\gamma + \alpha}$$

We know that S_{∞} exists because S(t) is a bounded decreasing function. The expression $\frac{C(N_0)}{N_0} \frac{S_0 + I_0 - S(t) - I(t)}{\gamma + \alpha}$ converges to a finite limit as $t \to \infty$, and this means that $\log \frac{S_0}{S(t)}$ is bounded from above, and hence $S_{\infty} > 0$. Now we can take the limit of above and get

$$\log \frac{S_0}{S_\infty} \ge \frac{C(N_0)}{N_0} \frac{S_0 + I_0 - S_\infty}{\gamma + \alpha}$$

(g) What is a formula of \mathcal{R}_0 for this model?

Solution. From (8), we have $\dot{I} = (C(N)\frac{S}{N} - (\gamma + \alpha))I$, Hence the mean infectious period for an infective individual is $\frac{1}{\gamma + \alpha}$. At the beginning, the rate of new infections per unit time per the density of infective individuals is $\frac{C(N_0)S_0}{N_0}$. Hence $\mathcal{R}_0 = \frac{C(N_0)S_0}{N_0(\gamma + \alpha)}$.

The final size inequality can then be written as

$$\frac{S_{\infty}}{S_0} - \frac{1}{\mathcal{R}_0} \log \frac{S_{\infty}}{S_0} \ge 1 + \frac{I_0}{S_0}$$

2. Suppose that the probability distribution of the number of secondary infections that a single infective make in its infection period is $\{q_k\}_{k=0}^{\infty}$. Assume that we are interested in the initial phase of the outbreak and so the density of susceptibles and of total population are approximately constant.

(a) Let $q_0 = 1/5$, $q_1 = 1/5$ $q_2 = 2/5$, $q_3 = 1/5$, and $q_k = 0$ for $k \ge 4$. Calculate \mathcal{R}_0 and the probability that a single infective introduced into the population will cause an outbreak.

Solution. The probability generating function is

$$g(z) = \sum_{k=0}^{\infty} q_k z^k = \frac{1}{5} + \frac{1}{5}z + \frac{2}{5}z^2 + \frac{1}{5}z^3.$$

The probability z_{∞} that an outbreak will *not* occur is the smallest solution in [0, 1] of the equation

$$z_{\infty} = g(z_{\infty}) = \frac{1}{5} + \frac{1}{5}z_{\infty} + \frac{2}{5}z_{\infty}^2 + \frac{1}{5}z_{\infty}^3$$

which can be rewritten as

$$0 = \frac{1}{5} - \frac{4}{5}z_{\infty} + \frac{2}{5}z_{\infty}^2 + \frac{1}{5}z_{\infty}^3 = \frac{1}{5}(z_{\infty} - 1)(z_{\infty}^2 + 3z_{\infty} - 1)$$

The solution of $z^2 + 3z - 1 = 0$ is $-\frac{3}{2} + \frac{\sqrt{13}}{2}, -\frac{3}{2} - \frac{\sqrt{13}}{2} \approx 0.303, -3.303$. Hence $z_{\infty} = -\frac{3}{2} + \frac{\sqrt{13}}{2} \approx 0.303$. The probability of an outbreak is $1 - z_{\infty} = \frac{5}{2} - \frac{\sqrt{13}}{2} \approx 0.697$.

(b) Do the same for $q_0 = 2/5$, $q_1 = 2/5$ $q_2 = 1/10$, $q_3 = 1/10$, and $q_k = 0$ for $k \ge 4$.

Solution. The probability generating function is

$$_{g}(z) = \sum_{k=0}^{\infty} q_{k} z^{k} = \frac{2}{5} + \frac{2}{5}z + \frac{1}{10}z^{2} + \frac{1}{10}z^{3}$$

Last updated: December 15, 2011, 04:34:53 UTC

The probability z_{∞} that an outbreak will not occur is the smallest solution in [0, 1] of the equation

$$z_{\infty} = g(z_{\infty}) = \frac{2}{5} + \frac{2}{5}z_{\infty} + \frac{1}{10}z_{\infty}^2 + \frac{1}{10}z_{\infty}^3$$

which can be rewritten as

$$0 = \frac{2}{5} - \frac{3}{5}z_{\infty} + \frac{1}{10}z_{\infty}^{2} + \frac{1}{10}z_{\infty}^{3} = \frac{1}{10}(z_{\infty} - 1)(z_{\infty}^{2} + 2z_{\infty} - 4).$$

The solution of $z^2 + 2z - 4 = 0$ is $-1 + \sqrt{5}$, $-1 - \sqrt{5} \approx 1.236$, -3.236, both of which lie outside [0, 1]. Hence $z_{\infty} = 1$. The probability of an outbreak is $1 - z_{\infty} = 0$ (no possibility of an outbreak).

3. Suppose that the probability distribution of the number of secondary infections that a single infective make in its infectious period is $\{q_k\}_{k=0}^{\infty}$. Assume that the infectious period have a fixed length T > 0, and that the contact process can be described by a Poisson process with rate c, i.e.,

Prob{k secondary infections caused by a single infective during the time period τ } = $\frac{(c\tau)^k}{k!}e^{-c\tau}$.

Assume that we are interested in the initial phase of the outbreak and so the density of susceptibles and of total population are approximately constant. Find explicit formula for each q_k . Also find explicit formula for \mathcal{R}_0 . Show that the probability of an outbreak is $1 - z_{\infty}$, where z_{∞} satisfies the equation $z_{\infty} = e^{\mathcal{R}_0(z_{\infty}-1)}$.

Solution. The number of secondary infections that a single infective make in its (fixed length) infection period has a probability distribution $\{q_k\}_{k=0}^{\infty}$ where

$$q_k = \frac{(cT)^k}{k!} e^{-cT}.$$

The basic reproductive number \mathcal{R}_0 is the expected number of secondary infections that a single infective make in its infection period, and so has the value

$$\mathcal{R}_0 = \sum_{k=1}^{\infty} kq_k = \sum_{k=1}^{\infty} k \frac{(cT)^k}{k!} e^{-cT} = cT e^{-cT} \sum_{k=1}^{\infty} \frac{(cT)^{k-1}}{(k-1)!} = cT e^{-cT} \sum_{k=0}^{\infty} \frac{(cT)^k}{k!} = cT e^{-cT} e^{cT} = cT.$$

The probability of an outbreak is $1 - z_{\infty}$, where z_{∞} satisfies the equation

$$z_{\infty} = \sum_{k=0}^{\infty} q_k z_{\infty}^k = \sum_{k=0}^{\infty} \frac{(cTz_{\infty})^k}{k!} e^{-cT} = e^{-cT} \sum_{k=0}^{\infty} \frac{(cTz_{\infty})^k}{k!} = e^{-cT} e^{cTz_{\infty}} = e^{cT(z_{\infty}-1)} = e^{\mathcal{R}_0(z_{\infty}-1)}$$