
Homework #3 solutions Mathematics of infectious diseases, fall 2011.

Consider an age-of-infection epidemic model with mass-action incidence:

Ṡ(t) = −φ(t)S(t), t ≥ 0, S(0) = S0 (1)

i(t, τ) =

{
−Ṡ(t− τ)F(τ) , 0 ≤ τ < t,

i0(τ − t) F(τ)
F(τ−t) , 0 ≤ t ≤ τ,

(2)

φ(t) =

∫ ∞
0

σ(τ)i(t, τ) dτ, t ≥ 0, (3)

where S0 and i0 are the initial conditions, and σ and F are the model’s parameters. We make the following
the assumptions:

(i) S0 > 0,

(ii) i0(τ) ≥ 0,∀τ ∈ [0,∞), 0 <
∫∞

0
i0(τ) dτ <∞,

(iii) σ : [0,∞)→ [0,∞) is bounded,

(iv) F : [0,∞)→ [0, 1] is non-increasing, F(0) = 1, and
∫∞

0
F(τ) dτ <∞,

(v)
∫∞

0
σ(τ)F(τ) dτ > 0,

(vi) if F(c) = 0 for some c > 0, and so F(τ) = 0 for τ ≥ c, then i0(τ) = 0 for τ ≥ c, and

(vii) we define i0(τ)
F(τ)

= 0 if i0(τ) = F(τ) = 0, and also i(t,τ)
F(τ)

= 0 if i(t, τ) = F(τ) = 0.

Note that:

• τ is the infection age, i.e., the amount of time since an individual first entered the infective class.

•
∫ b
a
i(t, τ) dτ is the density of infectives, at time t, that have infection age between a and b.

• F(τ) is the probability that an individual with infection age τ is still in the infective class.

•
∫∞

0
F(τ) dτ is the expected amount time that an infective individual spends in the infective class, and

we require that this amount is finite.

• σ(τ) is the “infection rate” of an individual with infection age τ . More precisely, S(t)
∫ b
a
σ(τ)i(t, τ) dτ

is the rate of new infections, at time t, caused by infectives that have infection age between a and b.

• φ(t) is the so-called force of infection at time t: the per-capita rate at time t that susceptible individuals

contract the diseases). Since φ(t) = −
∫ t

0
σ(τ)Ṡ(t− τ)F(τ) dτ +

∫∞
t
σ(τ)i0(τ − t) F(τ)

F(τ−t) dτ , we require

that
∫∞

0
σ(τ)F(τ) dτ > 0. Otherwise we have φ(t) = 0 for all t ≥ 0, and the disease cannot spread at

all.

• S0 is the initial density of susceptibles, and
∫ b
a
i0(τ) dτ is the initial density of infectives with infection

age between a and b.

A (non-negative) solution of (1)–(3) is given by two functions, S : [0,∞) → [0,∞) and i : [0,∞) ×
[0,∞) → [0,∞), such that the function φ is continuous (and so S is continuously differentiable),∫∞

0
i(t, τ) dτ <∞ for each t ≥ 0, and such that (1)–(3) are satisfied.

In this homework, you can assume that there always exists a unique solution of (1)–(3).

Last updated: October 19, 2011, 17:45:34utc Page 1 of 8



Homework #3 solutions Mathematics of infectious diseases, fall 2011.

1. Suppose that F(c) = 0 for some c > 0 (and so F(τ) = 0 for all τ ≥ c). Show that i(t, τ) = 0 for all
t ≥ 0 and all τ ≥ c.

We fix τ ≥ c. Hence F(τ) = 0. From (2), if τ < t, then i(t, τ) = −Ṡ(t− τ)F(τ) = 0, and if 0 ≤ t ≤ τ ,

then i(t, τ) = i0(τ − t) F(τ)
F(τ−t) = 0. Recall that i0(τ−t)

F(τ−t) is defined even when F(τ − t) = 0 by the assumptions

(vi) and (vii).

2. Recall the equation for the final size S∞ of the epidemic model (1)–(3):

S∞ −
1

κ
logS∞ = S0 −

1

κ
logS0 + y0 (4)

where

κ =

∫ ∞
0

σ(τ)F(τ) dτ > 0, and (5)

y0 =
1

κ

∫ ∞
0

i0(τ)

F(τ)

∫ ∞
τ

σ(r)F(r) dr dτ. (6)

Here, S∞ := limt→∞ S(t). We define

R0 = S0κ. (7)

Show that

(a) If R0 ≤ 1, then S∞ → S0 as y0 → 0.

Since S0κ = R0 ≤ 1, we have S0 ≤ 1
κ
. Define the function f(x) = x− 1

κ
log x on x ∈ (0, 1

κ
]. Then f is

strictly decreasing and has continuous inverse. The equation (4) can be written as

f(S∞) = f(S0) + y0,

and so

S∞ = f−1(f(S∞)) = f−1(f(S0) + y0).

Hence

lim
y0→0

S∞ = lim
y0→0

f−1(f(S0) + y0) = f−1(f(S0)) = S0.

(b) If R0 > 1, then S0 − S∞ stays bounded away from 0 as y0 → 0.

Since S0κ = R0 > 1, we have S0 >
1
κ
. Define the function f(x) = x− 1

κ
log x on x ∈ (0,∞). Then f

is concave up and has a unique minimum at x = 1
κ
. The equation (4) can be written as

f(S∞) = f(S0) + y0,

and S∞ is a unique real number in (0, 1
κ
) that satisfies this equation (cf. Homework #2, Problem

3). Let x ∈ (0, 1
κ
) be such that f(x) = f(S0). We then have S∞ < x < 1

κ
< S0 (since f is strictly

decreasing on (0, 1
κ
]). Let a = S0 − x > 0. Note that the value of a does not depend on the value of

y0. Hence S0 − S∞ = (S0 − x) + (x− S∞) > a for all y0 > 0.
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3. Assume that F is continuously differentiable and denote its derivative by F ′. Let R : [0,∞) → [0,∞)
be a solution of the initial value problem:

Ṙ(t) = −
∫ ∞

0

i(t, τ)
F ′(τ)

F(τ)
dτ, R(0) = 0. (8)

The function R(t) gives the density of individuals at time t that are recovered or removed. Assume that

the function t 7→
∫∞

0
i(t, τ)F

′(τ)
F(τ)

dτ is continuous, and so the function R is well-defined and is continuously

differentiable (in fact, R(t) = −
∫ t

0

∫∞
0
i(s, τ)F

′(τ)
F(τ)

dτ ds).

Show that N := S(t) +
∫∞

0
i(t, τ) dτ +R(t) is constant. Feel free to take derivatives under integral signs,

if needed.

We have ∫ ∞
0

i(t, τ) dτ = −
∫ t

0

Ṡ(t− τ)F(τ) dτ +

∫ ∞
t

i0(τ − t) F(τ)

F(τ − t)
dτ

= −
∫ t

0

Ṡ(τ)F(t− τ) dτ +

∫ ∞
0

i0(τ)
F(t+ τ)

F(τ)
dτ,

and so

d

dt

∫ ∞
0

i(t, τ) dτ = −Ṡ(t)F(0)−
∫ t

0

Ṡ(τ)F ′(t− τ) dτ +

∫ ∞
0

i0(τ)
F ′(t+ τ)

F(τ)
dτ

= −Ṡ(t)−
∫ t

0

Ṡ(t− τ)F ′(τ) dτ +

∫ ∞
t

i0(τ − t) F
′(τ)

F(τ − t)
dτ.

From (2), we have −Ṡ(t− τ) = i(t,τ)
F(τ)

for 0 ≤ τ < t and i0(τ−t)
F(τ−t) = i(t,τ)

F(τ)
for 0 ≤ t ≤ τ Hence

d

dt

∫ ∞
0

i(t, τ) dτ = −Ṡ(t) +

∫ t

0

i(t, τ)
F ′(τ)

F(τ)
dτ +

∫ ∞
t

i(t, τ)
F ′(τ)

F(τ)
dτ

= −Ṡ(t) +

∫ ∞
0

i(t, τ)
F ′(τ)

F(τ)
dτ

= −Ṡ(t)− Ṙ(t).

4. [An epidemic model with fixed latent period] Let c > 0 and σ̄ > 0 be fixed positive real numbers. Let

F(τ) =

{
1 , 0 ≤ τ ≤ c,

e−γ(τ−c) , τ > c,
(9)

and

σ(τ) =

{
0 , 0 ≤ τ ≤ c,

σ̄ , τ > c.
(10)

We interpret c as the length of latent (exposed) period where an individual is infected but is still not capable
of spreading the diseases. After the latent period, the infective individual spreads the disease with the (mass-
action) rate σ̄, and the probability that the individual still stays infective is exponentially distributed with
the parameter −γ.
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(a) Calculate the expected amount of time that an infective individual spends in the infective class, and
also the expected amount of time that an infective individual is capable of spreading the disease.

The expected amount time that an infective individual spends in the infective class is given by∫ ∞
0

F(τ) dτ =

∫ c

0

F(τ) dτ +

∫ ∞
c

F(τ) dτ = c+

∫ ∞
c

e−γ(τ−c) dτ = c+

∫ ∞
0

e−γτ dτ = c+
1

γ
.

The expected amount time that an infective individual spends spreading the disease is given by∫ ∞
c

F(τ) dτ =

∫ ∞
c

e−γ(τ−c) dτ =

∫ ∞
0

e−γτ dτ =
1

γ
.

(b) Calculate the explicit expressions for κ and y0 in (4), simplify the expressions as much as you can.
What is this model’s R0?

We have

κ =

∫ ∞
0

σ(τ)F(τ) dτ = σ̄

∫ ∞
c

e−γ(τ−c) dτ = σ̄

∫ ∞
0

e−γτ dτ =
σ̄

γ
,

and

y0 =
1

κ

∫ ∞
0

i0(τ)

F(τ)

∫ ∞
τ

σ(r)F(r) dr dτ

=
1

κ

∫ c

0

i0(τ)

F(τ)

∫ ∞
τ

σ(r)F(r) dr dτ +
1

κ

∫ ∞
c

i0(τ)

F(τ)

∫ ∞
τ

σ(r)F(r) dr dτ

=
σ̄

κ

∫ c

0

i0(τ)

e−γ(τ−c)

∫ ∞
c

e−γ(r−c) dr dτ +
σ̄

κ

∫ ∞
c

i0(τ)

e−γ(τ−c)

∫ ∞
τ

e−γ(r−c) dr dτ

=
σ̄

κ

∫ c

0

i0(τ)

e−γ(τ−c)
1

γ
dτ +

σ̄

κ

∫ ∞
c

i0(τ)

e−γ(τ−c)
e−γ(τ−c)

γ
dτ

=
σ̄

κγ

∫ c

0

i0(τ)eγ(τ−c) dτ +
σ̄

κγ

∫ ∞
c

i0(τ) dτ

=

∫ c

0

i0(τ)eγ(τ−c) dτ +

∫ ∞
c

i0(τ) dτ.

The model’s R0 is S0κ = σ̄S0

γ
. Note that this is exactly the same R0 as in the simplified Kermack-

McKendrick model. Does this seem reasonable to you?

(c) Define a function E : [0,∞)→ [0,∞) by

E(t) =

∫ c

0

i(t, τ) dτ, t ≥ 0. (11)

The function E(t) gives the density of individuals at time t that are infected but are still not capable
of spreading the diseases (the “exposed” class).

Define a function I : [0,∞)→ [0,∞) by

I(t) =

∫ ∞
c

i(t, τ) dτ, t ≥ 0, (12)

(13)
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The function I(t), for t ≥ 0, gives the density of individuals at time t that are infected and are capable
of spreading the diseases.

Define R : [0,∞)→ [0,∞) to be the solution of the initial value problem:

Ṙ(t) = −
∫ ∞
c

i(t, τ)
F ′(τ)

F(τ)
dτ, R(0) = 0. (14)

The function R(t) gives the density of individuals at time t that are recovered or removed.

Assume that the function E and I are continuous. Assume that the function t 7→
∫∞
c
i(t, τ)F

′(τ)
F(τ)

dτ

is continuous, and so the function R is well-defined and is continuously differentiable (in fact, R(t) =

−
∫ t

0

∫∞
c
i(s, τ)F

′(τ)
F(τ)

dτ ds).

Show that, for t ≥ 0, the solution of (1)–(3) satisfies the system of delay differential equations:

Ṡ(t) = −σ̄S(t)I(t), (15)

Ė(t) =

{
σ̄S(t)I(t)− σ̄S(t− c)I(t− c) , t > c,

σ̄S(t)I(t)− i0(c− t) , t < c,
(16)

İ(t) =

{
σ̄S(t− c)I(t− c)− γI(t) , t > c

−γI(t) + i0(c− t) , t < c,
(17)

Ṙ(t) = γI(t). (18)

We have

φ(t) =

∫ ∞
0

σ(τ)i(t, τ) dτ = σ̄

∫ ∞
c

i(t, τ) dτ = σ̄I(t), t ≥ 0,

and so

Ṡ(t) = −φ(t)S(t) = −σ̄S(t)I(t), t ≥ 0.

We have

Ṙ(t) = −
∫ ∞
c

i(t, τ)
F ′(τ)

F(τ)
dτ = γ

∫ ∞
c

i(t, τ)
e−γ(τ−c)

e−γ(τ−c) dτ = γI(t), t ≥ 0.

We now calculate I(t), and then İ(t):

I(t) =

∫ ∞
c

i(t, τ) dτ =

{∫ t
c
i(t, τ) dτ +

∫∞
t
i(t, τ) dτ , t ≥ c∫∞

c
i(t, τ) dτ , t < c

=

{
−
∫ t
c
Ṡ(t− τ)F(τ) dτ +

∫∞
t
i0(τ − t) F(τ)

F(τ−t) dτ , t ≥ c∫∞
c
i0(τ − t) F(τ)

F(τ−t) dτ , t < c

=

{
−
∫ t
c
Ṡ(t− τ)F(τ) dτ +

∫∞
0
i0(τ)F(τ+t)

F(τ)
dτ , t ≥ c∫∞

c−t i0(τ)F(τ+t)
F(τ)

dτ , t < c.

=

{
−
∫ t
c
Ṡ(t− τ)F(τ) dτ +

∫∞
0
i0(τ)F(τ+t)

F(τ)
dτ , t ≥ c∫∞

0
i0(τ)F(τ+t)

F(τ)
dτ −

∫ c−t
0

i0(τ)F(τ+t)
F(τ)

dτ , t < c,
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=

{
−
∫ t
c
Ṡ(t− τ)F(τ) dτ +

∫∞
0
i0(τ)F(τ+t)

F(τ)
dτ , t ≥ c∫∞

0
i0(τ)F(τ+t)

F(τ)
dτ −

∫ c−t
0

i0(τ) dτ , t < c.

Let x(t) = −
∫ t
c
Ṡ(t− τ)F(τ) dτ , for t ≥ c, and let y(t) =

∫∞
0
i0(τ)F(τ+t)

F(τ)
dτ , for t ≥ 0. Then

I(t) =

{
x(t) + y(t) , t ≥ c

y(t)−
∫ c−t

0
i0(τ) dτ , t < c.

We calculate x(t) and ẋ(t):

x(t) = −
∫ t

c

Ṡ(t− τ)e−γ(τ−c) dτ = −
∫ t−c

0

Ṡ(τ)e−γ(t−τ−c) dτ = −e−γ(t−c)
∫ t−c

0

Ṡ(τ)eγτ dτ,

and so

ẋ(t) = γe−γ(t−c)
∫ t−c

0

Ṡ(τ)eγτ dτ − e−γ(t−c)Ṡ(t− c)eγ(t−c) = −γx(t) + σ̄S(t− c)I(t− c), t > c.

And we calculate y(t) and ẏ(t):

y(t) =

∫ ∞
0

i0(τ)
F(τ + t)

F(τ)
dτ

=

{∫ c
0
i0(τ)F(τ+t)

F(τ)
dτ +

∫∞
c
i0(τ)F(τ+t)

F(τ)
dτ , t ≥ c∫ c−t

0
i0(τ)F(τ+t)

F(τ)
dτ +

∫ c
c−t i0(τ)F(τ+t)

F(τ)
dτ +

∫∞
c
i0(τ)F(τ+t)

F(τ)
dτ , t < c

=

{∫ c
0
i0(τ)e−γ(τ+t−c) dτ +

∫∞
c
i0(τ) e

−γ(τ+t−c)

e−γ(τ−c)
dτ , t ≥ c∫ c−t

0
i0(τ) dτ +

∫ c
c−t i0(τ)e−γ(τ+t−c) dτ +

∫∞
c
i0(τ) e

−γ(τ+t−c)

e−γ(τ−c)
dτ , t < c

=

{
e−γ(t−c) ∫ c

0
i0(τ)e−γτ dτ + e−γt

∫∞
c
i0(τ) dτ , t ≥ c∫ c−t

0
i0(τ) dτ + e−γ(t−c) ∫ c

c−t i0(τ)e−γτ dτ + e−γt
∫∞
c
i0(τ) dτ , t < c,

and so

ẏ(t) =

{
−γe−γ(t−c) ∫ c

0
i0(τ)e−γτ dτ − γe−γt

∫∞
c
i0(τ) dτ , t > c

−i0(c− t)− γe−γ(t−c) ∫ c
c−t i0(τ)e−γτ dτ + e−γ(t−c)i0(c− t)e−γ(c−t) − γe−γt

∫∞
c
i0(τ) dτ , t < c

=

{
−γ
(
e−γ(t−c) ∫ c

0
i0(τ)e−γτ dτ + e−γt

∫∞
c
i0(τ) dτ

)
, t > c

−γ
(
e−γ(t−c) ∫ c

c−t i0(τ)e−γτ dτ + e−γt
∫∞
c
i0(τ) dτ

)
, t < c

=

{
−γy(t) , t > c

−γ
(
y(t)−

∫ c−t
0

i0(τ) dτ
)

, t < c.

Since

I(t) =

{
x(t) + y(t) , t ≥ c

y(t)−
∫ c−t

0
i0(τ) dτ , t < c,

we have

İ(t) =

{
ẋ(t) + ẏ(t) , t > c

ẏ(t) + i0(c− t) , t < c
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=

{
σ̄S(t− c)I(t− c)− γ(x(t) + y(t)) , t > c

−γ
(
y(t)−

∫ c−t
0

i0(τ) dτ
)

+ i0(c− t) , t < c

=

{
σ̄S(t− c)I(t− c)− γI(t) , t > c

−γI(t) + i0(c− t) , t < c.

We now calculate E(t) + I(t), and then Ė(t) + İ(t):

E(t) + I(t) =

∫ ∞
0

i(t, τ) dτ =

∫ t

0

i(t, τ) dτ +

∫ ∞
t

i(t, τ) dτ

= −
∫ t

0

Ṡ(t− τ)F(τ) dτ +

∫ ∞
t

i0(τ − t) F(τ)

F(τ − t)
dτ

= −
∫ t

0

Ṡ(t− τ)F(τ) dτ +

∫ ∞
0

i0(τ)
F(τ + t)

F(τ)
dτ.

Let z(t) = −
∫ t

0
Ṡ(t− τ)F(τ) dτ . Then

E(t) + I(t) = z(t) + y(t).

We calculate z(t) and ż(t):

z(t) = −
∫ t

0

Ṡ(t− τ)F(τ) dτ

=

{
−
∫ c

0
Ṡ(t− τ)F(τ) dτ −

∫ t
c
Ṡ(t− τ)F(τ) dτ , t ≥ c

−
∫ t

0
Ṡ(t− τ)F(τ) dτ , t < c

=

{
−
∫ c

0
Ṡ(t− τ)F(τ) dτ + x(t) , t ≥ c

−
∫ t

0
Ṡ(t− τ)F(τ) dτ , t < c

=

{
−
∫ c

0
Ṡ(t− τ) dτ + x(t) , t ≥ c

−
∫ t

0
Ṡ(t− τ) dτ , t < c

=

{
−
∫ t
t−c Ṡ(τ) dτ + x(t) , t ≥ c

−
∫ t

0
Ṡ(τ) dτ , t < c,

and so

ż(t) =

{
−Ṡ(t) + Ṡ(t− c) + ẋ(t) , t > c

−Ṡ(t) , t < c

=

{
σ̄S(t)I(t)− σ̄S(t− c)I(t− c)− γx(t) + σ̄S(t− c)I(t− c) , t > c

σ̄S(t)I(t) , t < c

=

{
σ̄S(t)I(t)− γx(t) , t > c

σ̄S(t)I(t) , t < c.

Hence

Ė(t) + İ(t) = ż(t) + ẏ(t)

=

{
σ̄S(t)I(t)− γ

(
(x(t) + y(t)

)
, t > c

σ̄S(t)I(t)− γ
(
y(t)−

∫ c−t
0

i0(τ) dτ
)

, t < c
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=

{
σ̄S(t)I(t)− γI(t) , t > c

σ̄S(t)I(t)− γI(t) , t < c,

= σ̄S(t)I(t)− γI(t) t 6= c.

Finally, we have

Ė(t) =
(
Ė(t) + İ(t)

)
− İ(t) =

{
σ̄S(t)I(t)− σ̄S(t− c)I(t− c) , t > c

σ̄S(t)I(t)− i0(c− t) , t < c.
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