
Homework #2 solutions Mathematics of infectious diseases, fall 2011.

1. Consider the simplified Kermark-McKendrick model:

dS

dt
= −σSI, dI

dt
= σSI − γI, (1)

with S(0) > 0,I(0) > 0, σ > 0, γ > 0.

Define R(S) = σS
γ

and note that R0 = R(S(0)) is the basic reproductive number of the model.

Suppose that R0 > 1, i.e., there is an outbreak of the epidemic. Show that the density of infectives
reaches the maximum value exactly at time t′ where t′ > 0 is the unique real number such that R(S(t′)) = 1.
Can you see why this should make biological sense? Write out the explicit formula for the maximum density
of infectives.

We can think of R(S) as the expected number of secondary cases produced by one infective individual
if the density of susceptible individuals is fixed at S. Hence the disease cannot spread if R(S) ≤ 1.

Recall that S(t) is a strictly decreasing function of t and that S∞ < γ
σ
, here S∞ := limt→∞ S(t) is the

final size of the epidemic. Hence R(S(t)) is a strictly decreasing function of t, R(S(0)) = R0 > 1, and
R(S∞) = σS∞

γ
< 1. Therefore, there is a unique t′ > 0 such that R(S(t′)) = 1.

Since the function V (S, I) = S + I − γ
σ

logS is constant along the solution of (1), the solution lies on
the curve

I = −S +
γ

σ
logS + C

in (S, I) plane, where C = S(0) + I(0) − γ
σ

logS(0). The function S 7→ −S + γ
σ

logS + C has a unique
maximum when S = γ

σ
(why?), and this is equivalent to R(S) = 1, i.e., the maximum happens at the time

t′ such that R(S(t′)) = 1. We have

Imax = −γ
σ

+
γ

σ
log

γ

σ
+ C

= −γ
σ

+
γ

σ
log

γ

σ
+ S(0) + I(0)− γ

σ
logS(0)

= S(0)− γ

σ
+
γ

σ
log

( γ

σS(0)

)
+ I(0)

= S(0)
(

1− 1

R0

+
1

R0

log
( 1

R0

))
+ I(0).

2. [an SI epidemic model] Consider the simplified Kermark-McKendrick model, as above. If we assume that
γ = 0, so no individual can move out of the I class. Then once an individual is in the I class (is infected),
it will remain capable of spreading the disease for all future time. The reduced model is then:

dS

dt
= −σSI,

dI

dt
= σSI,

(2)

with S(0) ≥ 0, I(0) ≥ 0, σ > 0. Show that:

(a) There is a unique non-negative solution of (2) defined on t ∈ [0,∞).

We can see that the vector field f(S, I) =
(
− σSI, σSI) is a continuously differentiable function of

(S, I) ∈ R2. Hence there exists a unique solution to the initial value problem (2) defined on some
maximal interval t ∈ [0, b). Since Ṡ(t) + İ(t) = 0, and so S(t) + I(t) = S(0) + I(0) for all t ∈ [0, b), we
have b =∞. Since S(t) = S(0)e−σI(t) and I(t) = I(0)e−σS(t), we have S(t), I(t) ≥ 0 for all t ∈ [0,∞).
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(b) (1) If I(0) = 0, then I(t) = 0 and S(t) = S(0) for all t ∈ [0,∞).

The above is clearly a solution of (2), and the solution is unique.

(2) If S(0) = 0, then I(t) = I(0) and S(t) = 0 for all t ∈ [0,∞).

Same as (1).

(3) If S(0) > 0 and I(0) > 0, then S(t) decreases monotonically toward 0 as t→∞ and I(t) increases
monotonically toward S(0) + I(0) as t→∞. This means that every individual in the population
eventually becomes infective.

If S(0), I(0) > 0, then we must have S(t), I(t) > 0 for all t ∈ [0,∞) (why?). Since Ṡ(t) =
−σS(t)I(t) < 0 and İ(t) = σS(t)I(t) > 0, S(t) is a strictly decreasing function of t and I(t)
is a strictly increasing function of t. Let S∞ := limt→∞ S(t). Suppose, to get a contradiction,
that S∞ > 0. Then İ(t) = σS(t)I(t) ≥ σS∞I(t), and so I(t) ≥ I(0)eσS∞t. This implies that
I(t)→∞ as t→∞, but this is a contradiction since 0 < I(t) ≤ S(t)+I(t) = S(0)+I(0). Hence
S∞ = 0, i.e., S(t)→ 0 as t→∞. Since S(t) + I(t) = S(0) + I(0) for all t ∈ [0,∞), we must have
limt→∞ I(t) = S(0) + I(0).

Incidentally, if we let N = S(t) + I(t), then we can rewrite the differential for I as

dI

dt
= σ(N − I)I.

This scalar differential equation can be solved explicitly (by, e.g., separation of variables tech-
nique), and we have

I(t) =
I(0)N

I(0) + (N − I(0))e−σNt
.

(c) Do you think this is a good model? Why or why not?

This is an open-ended question. We may argue that the assumption that infectives stay infected
forever is not a good assumption, since every individual must die eventually. Also, on the longer time
scale, we have to take birth and death of the population into account. Recall that we choose to ignore
birth and (non-disease related) death in the simplified Kermark-McKendrick model because of the
assumption that the epidemic dies out within a short period of time (the mean infectious period is
1/γ for the simplified Kermark-McKendrick model).

3. Recall the equation for the final size, S∞, of the simplified Kermark-McKendrick model,

S∞ −
γ

σ
logS∞ = S(0) + I(0)− γ

σ
logS(0). (3)

Suppose S(0), I(0), σ, γ > 0 are given. Show that there are two values of S∞ > 0 that satisfies (3), and that
the final size is the smaller of the two.

Let f(x) = x− γ
σ

log x, x > 0. Then f ′(x) = 1− γ
σx

and f ′′(x) = γ
σx2

. Hence f(x) is concave upward and
has a unique minimum at xmin = γ

σ
. Let ymin = f(xmin). It also follows from the concavity of f(x) that, for

every y > ymin, the equation f(x) = y always has exactly two solutions x1 and x2 with 0 < x1 < xmin < x2.

Since S(0) + I(0)− γ
σ

logS(0) > S(0)− γ
σ

logS(0) ≥ ymin (why?), there are two S∞ > 0 that satisfies (3),
with one being strictly smaller than γ

σ
and the other one being strictly larger than S(0). But since the final

size must be less than γ
σ

(and also since S∞ must be less than S(0)), it has to be the smaller of the two.
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4. There was an outbreak of an infectious disease in a city of 1 million inhabitants. The average length of
infectious period of the disease was 7 days. At the end of the epidemic, there were 70, 000 people that didn’t
contact the disease. Assume that the outbreak can be describe by the simplified Kermark-McKendrick
model, and that the initial number of infectives was so small that it can be neglected. Find the basic
reproductive number, R0, for this outbreak.

From the final size equation (3) with S(0) = 1000000, S∞ = 70000, and I(0) = 0, we have

70000− γ

σ
log 70000 = 1000000− γ

σ
log 1000000.

This implies γ
σ
≈ 349721, and so R0 = σS(0)

γ
≈ 2.86. Note that we do not really need the information about

the average length of infectious period.
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