1. Show directly from the definition that the following functions are locally Lipschitz continuous (with respect to the second argument).
(a) $f(t, x)=t \cos (x)-\sin (x)$.

Let $\left(t_{0}, x_{0}\right) \in(-\infty, \infty) \times \mathbb{R}$. Let ε be any positive number, and let $\Lambda=\max \left(\left|t_{0}-\varepsilon\right|,\left|t_{0}+\varepsilon\right|\right)+1$. Then for any $t \in\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right)$ and $x, x^{\prime} \in \mathbb{R}$ such that $\left|x-x_{0}\right|,\left|x^{\prime}-x_{0}\right|<\varepsilon$, we have

$$
\begin{aligned}
\left|f(t, x)-f\left(t, x^{\prime}\right)\right| & =\left|t \cos (x)-\sin (x)-t \cos \left(x^{\prime}\right)+\sin \left(x^{\prime}\right)\right| \\
& \leq|t| \cdot\left|\cos (x)-\cos \left(x^{\prime}\right)\right|+\left|\sin (x)-\sin \left(x^{\prime}\right)\right| .
\end{aligned}
$$

By the mean value theorem, there exist c_{1} and c_{2} such that $\cos (x)-\cos \left(x^{\prime}\right)=-\sin \left(c_{1}\right)\left(x-x^{\prime}\right)$ and $\sin (x)-\sin \left(x^{\prime}\right)=\cos \left(c_{2}\right)\left(x-x^{\prime}\right)$, and so we have

$$
\begin{aligned}
\left|f(t, x)-f\left(t, x^{\prime}\right)\right| & \leq|t| \cdot\left|\cos (x)-\cos \left(x^{\prime}\right)\right|+\left|\sin (x)-\sin \left(x^{\prime}\right)\right| \\
& =|t| \cdot\left|\sin \left(c_{1}\right)\right| \cdot\left|x-x^{\prime}\right|+\left|\cos \left(c_{2}\right)\right| \cdot\left|x-x^{\prime}\right| \\
& \leq(|t|+1) \cdot\left|x-x^{\prime}\right| \\
& \leq \Lambda\left|x-x^{\prime}\right| .
\end{aligned}
$$

(b) $f(t, x)=t^{2}|x+1|$.

Let $\left(t_{0}, x_{0}\right) \in(-\infty, \infty) \times \mathbb{R}$. Let ε be any positive number, and let $\Lambda=\max \left(\left(t_{0}-\varepsilon\right)^{2},\left(t_{0}+\varepsilon\right)^{2}\right)$. Then for any $t \in\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right)$ and $x, x^{\prime} \in \mathbb{R}$ such that $\left|x-x_{0}\right|,\left|x^{\prime}-x_{0}\right|<\varepsilon$, we have

$$
\begin{aligned}
\left|f(t, x)-f\left(t, x^{\prime}\right)\right| & =\left|t^{2}\right| x+1\left|-t^{2}\right| x^{\prime}+1| | \\
& =t^{2}| | x+1\left|-\left|x^{\prime}+1\right|\right| \\
& \leq t^{2}\left|x+1-x^{\prime}-1\right| \\
& \leq \Lambda\left|x-x^{\prime}\right| .
\end{aligned}
$$

2.

(a) Show that the function $f(t, x)=(x-1)^{1 / 3},(t, x) \in(-\infty, \infty) \times \mathbb{R}$, is not locally Lipschitz continuous (with respect to the second argument).

From the definition of locally Lipschitz continuity, a function is not locally Lipschitz continuous if (and only if) there exists $\left(t_{0}, x_{0}\right) \in(-\infty, \infty) \times \mathbb{R}$ such that for every $\varepsilon>0$ and any $\Lambda>0$, there exist $t \in\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right), x, x^{\prime} \in \mathbb{R}$ with $\left|x-x_{0}\right|,\left|x^{\prime}-x_{0}\right|<\varepsilon$ and $\left|f(t, x)-f\left(t, x^{\prime}\right)\right|>\Lambda\left|x-x^{\prime}\right|$.
Let $\left(t_{0}, x_{0}\right)=(0,1)$ and let $t=t_{0}=0, x=x_{0}=1$. For any $\varepsilon>0$ and any $\Lambda>0$, we let $a=\min \left(1, \varepsilon^{2 / 3}\right)$ and let $x^{\prime}=1+(a /(\Lambda+1))^{3 / 2}$. Then $\left|x^{\prime}-x_{0}\right|=\left|x^{\prime}-1\right|=(a /(\Lambda+1))^{3 / 2}<a^{3 / 2} \leq \varepsilon$ and

$$
\begin{aligned}
\left|f\left(t, x^{\prime}\right)-f(t, x)\right| & =\left|\left(x^{\prime}-1\right)^{1 / 3}\right| \\
& =\left|\left(x^{\prime}-1\right)^{-2 / 3}\right| \cdot\left|x^{\prime}-1\right| \\
& =(a /(\Lambda+1))^{-1} \cdot\left|x^{\prime}-x\right| \\
& =((\Lambda+1) / a) \cdot\left|x^{\prime}-x\right| \\
& >\Lambda\left|x^{\prime}-x\right|
\end{aligned}
$$

(b) Find at least 3 solutions of the initial value problem $\dot{x}=(x-1)^{1 / 3}, x(0)=1$.

For each $b \in\{-1,1\}$ and $c \geq 0$, define $y_{b c}: \mathbb{R} \rightarrow \mathbb{R}$ as

$$
y_{b c}(t)= \begin{cases}1 & , t<c \\ b\left(\frac{2}{3}(t-c)\right)^{3 / 2}+1 & , t \geq c\end{cases}
$$

Then $y_{b c}$ is a solution of $\dot{x}=(x-1)^{1 / 3}, x(0)=1$. Also $y(t)=1, t \in \mathbb{R}$, is a solution of $\dot{x}=$ $(x-1)^{1 / 3}, x(0)=1$.
3.
(a) Let $I=(-\infty, \infty)$ and $D=(0, \infty)$. Define a function $f: I \times D \rightarrow \mathbb{R}$ by $f(t, x)=x^{m+1}$ where m is a positive real number. Find a solution to the initial value problem $\dot{x}=f(t, x), x(0)=a, a \in D$. Determine the maximal interval on which the solution is defined. Describe how the solution behaves at the endpoint of the interval and how the endpoint depends on m and a.

The solution is $x(t)=\frac{1}{\left(a^{-m}-m t\right)^{1 / m}}$, which is defined on $t \in\left(-\infty, \frac{1}{m a^{m}}\right)$. We note that this is the only solution since f is locally Lipschitz continuous on $I \times D$. We have $x(t) \nearrow \infty$ as $t \nearrow \frac{1}{m a^{m}}$. The "blow up time" is a decreasing function of both m and a.
(b) Let $I=(-\infty, \infty)$ and $D=(0, \infty)$. Define a function $f: I \times D \rightarrow \mathbb{R}$ by $f(t, x)=-x^{1-m}$ where m is an even positive integer. Find a solution to the initial value problem $\dot{x}=f(t, x), x(0)=a, a \in D$. Determine the maximal interval on which the solution is defined. Describe how the solution behaves at the endpoint of the interval and how the endpoint depends on m and a.

The solution is $x(t)=\left(a^{m}-m t\right)^{1 / m}$, which, for even positive integer m, is defined on $t \in\left(-\infty, \frac{a^{m}}{m}\right)$. Again, this is the only solution since f is locally Lipschitz continuous on $I \times D$. As $t \nearrow \frac{a^{m}}{m}$, we have $x(t) \searrow 0$, and 0 is not in D, i.e., the solution "slips out" of the domain of the vector field.
Incidentally, we do not really require that m is an even positive integer, any real number $m>1$ will give us the same result, i.e., $x(t) \searrow 0$ as $t \nearrow \frac{a^{m}}{m}$. Notice that if $m=3$, the expression $x(t)=\left(a^{m}-m t\right)^{1 / m}$ is defined for all $t \in(-\infty, \infty)$, but is only a solution of the initial value problem on $t \in\left(-\infty, \frac{a^{m}}{m}\right)$!.
4. [Simple SIRS model] Consider the following initial value problem:

$$
\begin{aligned}
& \frac{\mathrm{d} S}{\mathrm{~d} t}=-\sigma S I+\beta R, \\
& \frac{\mathrm{~d} I}{\mathrm{~d} t}=\sigma S I-\gamma I, \\
& \frac{\mathrm{~d} R}{\mathrm{~d} t}=\gamma I-\beta R,
\end{aligned}
$$

with $S(0) \geq 0, I(0) \geq 0, R(0) \geq 0$. Here, β is the per-capita rate of losing immunity. Assume that the parameters σ, γ, and β are all strictly positive. Show that:
(a) There is a solution defined on $t \in[0, b)$ for some $0<b \leq \infty$.

Here, the vector field is $f:(-\infty, \infty) \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
f(t, S, I, R)=\left(\begin{array}{c}
-\sigma S I+\beta R \\
\sigma S I-\gamma I \\
\gamma I-\beta R .
\end{array}\right)
$$

It is easy to see that f is continuous, and so there exists a solution $S(t), I(t), R(t)$ defined on some open interval containing 0 .
(b) There can be only one solution on $t \in[0, b)$.

Since the vector field f is continuously differentiable with respect to $(S, I, R) \in \mathbb{R}^{3}$, we know that f is locally Lipschitz continuous, and so the initial value problem has a unique solution.
(c) If $S(t), I(t), R(t)$ is a solution defined on $t \in[0, b)$, then $S(t) \geq 0, I(t) \geq 0$, and $R(t) \geq 0$ for all $t \in[0, b)$, and $S(t)+I(t)+R(t)$ is constant on $[0, b)$.

We know that $S(t)+I(t)+R(t)$ is constant since $\frac{\mathrm{d}}{\mathrm{d} t}(S(t)+I(t)+R(t))=0$. From the equation $\frac{\mathrm{d} I}{\mathrm{dt} t}(t)=(\sigma S(t)-\gamma) I(t), I(0) \geq 0$, we have $I(t)=I(0) e^{\int_{0}^{t}(\sigma S(\tau)-\gamma) \mathrm{d} \tau} \geq 0$. Since $I(t) \geq 0$, we have $\frac{\mathrm{d} R}{\mathrm{~d} t}(t)=\gamma I(t)-\beta R(t) \geq-\beta R(t), R(0) \geq 0$, and so $R(t) \geq R(0) e^{-\beta t} \geq 0$. Since $R(t) \geq 0$, we have $\frac{\mathrm{d} S}{\mathrm{~d} t}(t)=-\sigma S(t) I(t)+\beta R(t) \geq-\sigma S(t) I(t), S(0) \geq 0$, and so $S(t) \geq S(0) e^{-\sigma \int_{0}^{t} I(\tau) \mathrm{d} \tau} \geq 0$.
(d) There exists a unique non-negative solution defined for all non-negative time, i.e., we can have $b=\infty$.

Suppose that we cannot have $b=\infty$. Let $b<\infty$ be such that the solution on $[0, b)$ cannot be extended further to the right, i.e., there is not solution on $[0, c)$ for any $c>b$. Then, since the vector field is defined on $(-\infty, \infty) \times \mathbb{R}^{3}$, the solution cannot "slip out" of the domain of the vector field. Hence, we must have $\lim _{\sup _{t}{ }_{7 b}(|S(t)|+|I(t)|+|R(t)|)=\infty \text {. But since } 0 \leq S(t)+I(t)+R(t) \leq S(0)+I(0)+R(0) ~}^{\text {. }}$ for $t \in[0, b)$ by part (c), this is impossible.

