Note: you do not need to follow the hints.

1. Show directly from the definition that the following functions are locally Lipschitz continuous (with respect to the second argument).
(a) $f(t, x)=t \cos (x)-\sin (x)$.
(b) $f(t, x)=t^{2}|x+1|$.

Hint: For (a), the mean value theorem from calculus should be useful. For (b), the so-called reverse triangle inequality: $||a|-|b|| \leq|a-b|$, for $a, b \in \mathbb{R}$, should be useful.
2.
(a) Show that the function $f(t, x)=(x-1)^{1 / 3},(t, x) \in(-\infty, \infty) \times \mathbb{R}$, is not locally Lipschitz continuous (with respect to the second argument).

Hint:

(1) Show that $|f(t, x)-f(t, 1)|=\left|(x-1)^{-2 / 3}\right| \cdot|x-1|$ for $x \neq 1, t \in(-\infty, \infty)$.
(2) Show that for any $\varepsilon>0$, there is no finite $\Lambda>0$ such that $\left|f(t, x)-f\left(t, x^{\prime}\right)\right| \leq \Lambda\left|x-x^{\prime}\right|$ for all $t \in(-\varepsilon,+\varepsilon)$ and all $x, x^{\prime} \in(1-\varepsilon, 1+\varepsilon)$.
(3) Explain why this implies that f is not locally Lipschitz continuous.
(b) Find at least 3 solutions of the initial value problem $\dot{x}=(x-1)^{1 / 3}, x(0)=1$.

3.

(a) Let $I=(-\infty, \infty)$ and $D=(0, \infty)$. Define a function $f: I \times D \rightarrow \mathbb{R}$ by $f(t, x)=x^{m+1}$ where m is a positive real number. Find a solution to the initial value problem $\dot{x}=f(t, x), x(0)=a, a \in D$. Determine the maximal interval on which the solution is defined. Describe how the solution behaves at the endpoint of the interval and how the endpoint depends on m and a.
(b) Let $I=(-\infty, \infty)$ and $D=(0, \infty)$. Define a function $f: I \times D \rightarrow \mathbb{R}$ by $f(t, x)=-x^{1-m}$ where m is an even positive integer. Find a solution to the initial value problem $\dot{x}=f(t, x), x(0)=a, a \in D$. Determine the maximal interval on which the solution is defined. Describe how the solution behaves at the endpoint of the interval and how the endpoint depends on m and a.
4. [Simple SIRS model] Consider the following initial value problem:

$$
\begin{aligned}
& \frac{\mathrm{d} S}{\mathrm{~d} t}=-\sigma S I+\beta R \\
& \frac{\mathrm{~d} I}{\mathrm{~d} t}=\sigma S I-\gamma I \\
& \frac{\mathrm{~d} R}{\mathrm{~d} t}=\gamma I-\beta R
\end{aligned}
$$

with $S(0) \geq 0, I(0) \geq 0, R(0) \geq 0$. Here, β is the per-capita rate of losing immunity. Assume that the parameters σ, γ, and β are all strictly positive. Show that:
(a) There is a solution defined on $t \in[0, b)$ for some $0<b \leq \infty$.
(b) There can be only one solution on $t \in[0, b)$.
(c) If $S(t), I(t), R(t)$ is a solution defined on $t \in[0, b)$, then $S(t) \geq 0, I(t) \geq 0$, and $R(t) \geq 0$ for all $t \in[0, b)$, and $S(t)+I(t)+R(t)$ is constant on $[0, b)$.
Hint: First show that $I(t) \geq 0$. Then show that $R(t) \geq 0$ because $\frac{\mathrm{d} R}{\mathrm{~d} t} \geq-\beta R$. Then show that $S(t) \geq 0$ because $\frac{\mathrm{d} S}{\mathrm{~d} t} \geq-\sigma S I$.
(d) There exists a unique non-negative solution defined for all non-negative time, i.e., we can have $b=\infty$.

