Linear algebra and matrices II

Department of mathematics and statistics
Autumn 2011
Exercise sheet 3
Exercises due date: Mon 21.11.2011 at 16.00
Corrections due date: Fri 25.11.2011 at 17.00

The core ideas in these exercises are

- Definition of linear mapping
- Matrix of a linear mapping
- Kernel of a linear mapping

Exercise I

Find out whether f is linear when

1. $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=2 x+1$ for each $x \in \mathbb{R}$.
2. $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=5 x$ for each $x \in \mathbb{R}$.
3. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, f(\bar{x})=\left[\begin{array}{lll}7 x_{1} & x_{1}+x_{2} & 3 x_{2}-x_{1}\end{array}\right]^{T}$ for each $\bar{x}=\left[x_{1} x_{2}\right]^{T} \in \mathbb{R}^{2}$.
4. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(\bar{x})=\left[\begin{array}{ll}x_{1}-4 & 6 x_{2}\end{array}\right]^{T}$ for each $\bar{x}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T} \in \mathbb{R}^{2}$.
5. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a mapping such that

$$
f\left(\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{T}\right)=\left[\begin{array}{ll}
-2 & 3
\end{array}\right]^{T}, \quad f\left(\left[\begin{array}{ll}
0 & 1
\end{array}\right]^{T}\right)=\left[\begin{array}{lll}
3 & 1
\end{array}\right]^{T} \quad \text { ja } \quad f\left([-3-2]^{T}\right)=\left[\begin{array}{ll}
0 & -12
\end{array}\right]^{T} .
$$

Exercise II

Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear mapping.
6. Let $L\left(\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}\right)=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ and $L\left(\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}\right)=\left[\begin{array}{ll}-1 & 1\end{array}\right]^{T}$. Find the image vectors $L\left(\left[\begin{array}{ll}1 & 4\end{array}\right]^{T}\right)$ and $L\left(\left[\begin{array}{ll}-2 & 3\end{array}\right]^{T}\right)$.
7. Let $L\left(\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}\right)=[-20]^{T}$ and $L\left(\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}\right)=\left[\begin{array}{ll}0 & 2\end{array}\right]^{T}$. Find the image vector $L(\bar{x})$ of vector $\bar{x} \in \mathbb{R}^{2}$.

Exercise III

8. Show that the mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ is linear if and only if there exists a real number a such that $f(x)=a x$ for each $x \in \mathbb{R}$. Write a your proof carefully and in a refined mathematical style.

Exercise IV

Let

$$
A=\left[\begin{array}{rrrr}
-1 & 2 & -1 & 0 \\
1 & -5 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right]
$$

From this matrix we get the linear mapping $L_{A}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ such that $L_{A}(\bar{x})=$ $A \bar{x}$ for each $\bar{x} \in \mathbb{R}^{4}$.
9. Find the images through L_{A} of the vectors $\left\{\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{4}, \bar{e}_{4}\right\}$ of the natural basis. How can you spot them straight by looking at A ?

Exercise V

Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear mapping. It can be proven that there exist a matrix $A \in \mathbb{R}^{n \times n}$ such that $L(\bar{x})=A \bar{x}$ for each $\bar{x} \in \mathbb{R}^{n}$. The matrix A is called the matrix of the linear mapping L.

If A is the matrix of mapping L, the images of the vectors of the natural basis through L are just the columns of A. This information is useful upon finding the matrix of a linear mapping.
10. Find the matrix of linear mapping

$$
L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad f(\bar{x})=\left[\begin{array}{lll}
7 x_{1} & x_{1}+x_{2} & 3 x_{2}-x_{1}
\end{array}\right]^{T}
$$

matriisi.
Let $\bar{v}=[2-1]^{T}$. Find the matrix of the linear mapping $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ in the following cases and draw a picture of vectors \bar{v} and $L(\bar{v})$.
11. Mapping L stretches a vector three times as long and turns it into the opposite direction.
12. Mapping L returns the orthogonal projection of a vector onto subspace $\operatorname{span}\left\{\bar{e}_{2}\right\}$, where $\bar{e}_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}$.
13. Mapping L mirrors a vector with respect to line $y=x$.

Exercise VI

The kernel of a linear mapping $L: V \rightarrow W$ is the set

$$
\operatorname{Ker}(L)=\{\bar{v} \in V \mid L(\bar{v})=\overline{0}\} .
$$

In other words, it is the pre-image $f \leftarrow\{\overline{0}\}$ of the set $\{\overline{0}\}$.
14. Find the kernel of mapping L_{A} in exercise IV.
15. Below is an attempt to prove that the kernel of a linear mapping is a subspace. However the proof is missing some details. Fix the proof using an appropriate mathematical fashion.
Claim: Let $L: V \rightarrow W$ be a linear mapping. Then the set $\operatorname{Ker}(L)$ is a subspace of vector space V.

Proof:

$$
\begin{aligned}
& \text { 1) } L(\bar{a}+\bar{b})=L(\bar{a})+L(\bar{b})=\overline{0}+\overline{0}=\overline{0} \\
& \text { 2) } \\
& L(k \bar{a})=k L(\bar{b})=k \cdot \overline{0}=\overline{0} \\
& \text { 3) } \\
& L(\overline{0})=\overline{0}
\end{aligned}
$$

Exercise VII

Let

$$
P_{2}=\{f:[0,1] \rightarrow \mathbb{R} \mid f \text { is a polynomial function and } \operatorname{deg} f \leq 2\} .
$$

We can define an addition and a scalar multiplication on the set P_{2}. If $f \in P_{2}$, $g \in P_{2}$ and $a \in \mathbb{R}$, then mappings $f+g$ and $a f$ can be defined as follows:

$$
\begin{aligned}
& f+g:[0,1] \rightarrow \mathbb{R}, \quad x \mapsto f(x)+g(x) \quad \text { and } \\
& a f:[0,1] \rightarrow \mathbb{R}, \quad x \mapsto a f(x) .
\end{aligned}
$$

The set P_{2}, equipped with these operations, is a vector space (check page 34). For instance let us check the functions

$$
f:[0,1] \rightarrow \mathbb{R}, f(x)=x^{2}+1 \quad \text { and } \quad g:[0,1] \rightarrow \mathbb{R}, g(x)=-4 x
$$

Now functions $f+g$ and $3 f$ look like this:

$$
f+g: \quad[0,1] \rightarrow \mathbb{R}, \quad x \mapsto x^{2}-4 x+1 \quad \text { and } \quad 3 f: \quad[0,1] \rightarrow \mathbb{R} \quad x \mapsto 3 x^{2}+3 .
$$

We can define an inner product on the space P_{2} as

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

16. Find the norm $\|g\|$ of function g as defined above.
17. Let f and g be as above. calculate the projection $\operatorname{proj}_{g} f$.
18. Give two non-zero items of P_{2} perpendicular to each other.
