Linear algebra and matrices II Department of mathematics and statistics Autumn 2011 Exercise sheet 3

Exercises due date: Mon 21.11.2011 at 16.00Corrections due date: Fri 25.11.2011 at 17.00

The core ideas in these exercises are

- Definition of linear mapping
- Matrix of a linear mapping
- Kernel of a linear mapping

Exercise I

Find out whether f is linear when

- 1. $f: \mathbb{R} \to \mathbb{R}, f(x) = 2x + 1$ for each $x \in \mathbb{R}$.
- 2. $f : \mathbb{R} \to \mathbb{R}, f(x) = 5x$ for each $x \in \mathbb{R}$.
- 3. $f: \mathbb{R}^2 \to \mathbb{R}^3, f(\bar{x}) = \begin{bmatrix} 7x_1 & x_1 + x_2 & 3x_2 x_1 \end{bmatrix}^T$ for each $\bar{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T \in \mathbb{R}^2.$
- 4. $f: \mathbb{R}^2 \to \mathbb{R}^2, f(\bar{x}) = [x_1 4 \quad 6x_2]^T$ for each $\bar{x} = [x_1 \ x_2]^T \in \mathbb{R}^2$.
- 5. $f: \mathbb{R}^2 \to \mathbb{R}^2$ is a mapping such that

$$f([1 \ 0]^T) = [-2 \ 3]^T, \quad f([0 \ 1]^T) = [3 \ 1]^T \text{ ja } f([-3 \ -2]^T) = [0 \ -12]^T.$$

Exercise II

Let $L \colon \mathbb{R}^2 \to \mathbb{R}^2$ be a linear mapping.

- 6. Let $L([1 \ 0]^T) = [1 \ 1]^T$ and $L([0 \ 1]^T) = [-1 \ 1]^T$. Find the image vectors $L([1 \ 4]^T)$ and $L([-2 \ 3]^T)$.
- 7. Let $L([1 \ 0]^T) = [-2 \ 0]^T$ and $L([0 \ 1]^T) = [0 \ 2]^T$. Find the image vector $L(\bar{x})$ of vector $\bar{x} \in \mathbb{R}^2$.

Exercise III

8. Show that the mapping $f : \mathbb{R} \to \mathbb{R}$ is linear if and only if there exists a real number a such that f(x) = ax for each $x \in \mathbb{R}$. Write a your proof carefully and in a refined mathematical style.

Exercise IV

Let

$$A = \begin{bmatrix} -1 & 2 & -1 & 0 \\ 1 & -5 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}.$$

From this matrix we get the linear mapping $L_A \colon \mathbb{R}^4 \to \mathbb{R}^3$ such that $L_A(\bar{x}) = A\bar{x}$ for each $\bar{x} \in \mathbb{R}^4$.

9. Find the images through L_A of the vectors $\{\bar{e}_1, \bar{e}_2, \bar{e}_4, \bar{e}_4\}$ of the natural basis. How can you spot them straight by looking at A?

Exercise V

Let $L: \mathbb{R}^n \to \mathbb{R}^n$ be a linear mapping. It can be proven that there exist a matrix $A \in \mathbb{R}^{n \times n}$ such that $L(\bar{x}) = A\bar{x}$ for each $\bar{x} \in \mathbb{R}^n$. The matrix A is called the matrix of the linear mapping L.

If A is the matrix of mapping L, the images of the vectors of the natural basis through L are just the columns of A. This information is useful upon finding the matrix of a linear mapping.

10. Find the matrix of linear mapping

$$L: \mathbb{R}^2 \to \mathbb{R}^3, \quad f(\bar{x}) = [7x_1 \quad x_1 + x_2 \quad 3x_2 - x_1]^T$$

matriisi.

Let $\bar{v} = [2 \ -1]^T$. Find the matrix of the linear mapping $L \colon \mathbb{R}^2 \to \mathbb{R}^2$ in the following cases and draw a picture of vectors \bar{v} and $L(\bar{v})$.

- 11. Mapping L stretches a vector three times as long and turns it into the opposite direction.
- 12. Mapping L returns the orthogonal projection of a vector onto subspace span{ \bar{e}_2 }, where $\bar{e}_2 = [0 \ 1]^T$.
- 13. Mapping L mirrors a vector with respect to line y = x.

Exercise VI

The kernel of a linear mapping $L: V \to W$ is the set

$$\operatorname{Ker}(L) = \{ \bar{v} \in V \mid L(\bar{v}) = \bar{0} \}.$$

In other words, it is the pre-image $f \leftarrow \{\bar{0}\}$ of the set $\{\bar{0}\}$.

14. Find the kernel of mapping L_A in exercise IV.

15. Below is an attempt to prove that the kernel of a linear mapping is a subspace. However the proof is missing some details. Fix the proof using an appropriate mathematical fashion.

Claim: Let $L: V \to W$ be a linear mapping. Then the set Ker(L) is a subspace of vector space V.

Proof:

1)
$$L(\bar{a} + \bar{b}) = L(\bar{a}) + L(\bar{b}) = \bar{0} + \bar{0} = \bar{0}$$

2) $L(k\bar{a}) = kL(\bar{b}) = k \cdot \bar{0} = \bar{0}$

 $3) \quad L(\bar{0}) = \bar{0}$

Exercise VII

Let

 $P_2 = \{ f : [0,1] \to \mathbb{R} \mid f \text{ is a polynomial function and } \deg f \leq 2 \}.$

We can define an addition and a scalar multiplication on the set P_2 . If $f \in P_2$, $g \in P_2$ and $a \in \mathbb{R}$, then mappings f + g and af can be defined as follows:

$$f + g: [0, 1] \to \mathbb{R}, \quad x \mapsto f(x) + g(x) \quad \text{and}$$

 $af: [0, 1] \to \mathbb{R}, \quad x \mapsto af(x).$

The set P_2 , equipped with these operations, is a vector space (check page 34). For instance let us check the functions

$$f: [0,1] \to \mathbb{R}, \ f(x) = x^2 + 1 \text{ and } g: [0,1] \to \mathbb{R}, \ g(x) = -4x.$$

Now functions f + g and 3f look like this:

$$f + g: [0,1] \to \mathbb{R}, \quad x \mapsto x^2 - 4x + 1 \quad \text{and} \quad 3f: [0,1] \to \mathbb{R} \quad x \mapsto 3x^2 + 3.$$

We can define an inner product on the space P_2 as

$$\langle f,g\rangle = \int_0^1 f(x)g(x)\,dx.$$

16. Find the norm ||g|| of function g as defined above.

17. Let f and g be as above. calculate the projection $\operatorname{proj}_q f$.

18. Give two non-zero items of P_2 perpendicular to each other.