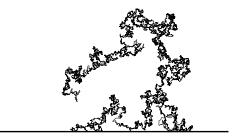
Introduction to Mathematical Physics: Schramm–Loewner evolution

Antti Kemppainen

University of Helsinki

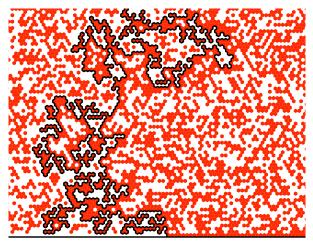
September 8th 2011



Introduction

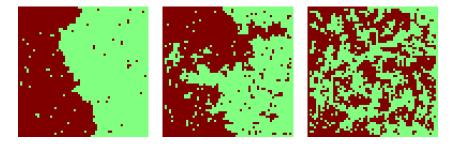
Example of a model of statistical physics: Percolation

- The simplest model to formulate. I.i.d. coin flips.
- Each site is either open or closed. A parameter p ∈ [0, 1] is the probability that a given site is open. The state of each site is chosen independently.



Example of a model of statistical physics: Ising model

- The simplest model with "physical" interaction. Ferromagnetism.
- Each site has a state which is ± 1 . A parameter $\beta>0$ is the inverse temperature. The state of the system is $\sigma\in\{-1,+1\}^{sites}$
- Energy: $H(\sigma) = -\sum_{i,j \text{ neighbours }} \sigma_i \cdot \sigma_j$
- Propability distribution: $\mathbb{P}(\sigma) = \frac{1}{Z} \exp(-\beta H(\sigma))$



Origin of conformal invariance in physics

- In ordered phase there are typical length scales:
 - $\xi_1=\mbox{correlation}$ length, $\xi_2=\mbox{size}$ of fluctuations of interface, \ldots

Origin of conformal invariance in physics

- In ordered phase there are typical length scales: $\xi_1 = \text{correlation length}, \ \xi_2 = \text{size of fluctuations of interface}, \ldots$
- As $\beta \searrow \beta_c$, $\xi_1 \rightarrow \infty$
- " $\xi_1 = \infty$ " \approx no typical length scale \approx scale invariance

- In ordered phase there are typical length scales: $\xi_1 = \text{correlation length}, \ \xi_2 = \text{size of fluctuations of interface}, \ldots$
- As $\beta \searrow \beta_c$, $\xi_1 \rightarrow \infty$
- " $\xi_1 = \infty$ " \approx no typical length scale \approx scale invariance
- Under some additional hypothesis, the continuum limit should be invariant under transformations which are locally dilations.
- If a transformation is locally combination of rotation, translation and scaling, it is *conformal* ⇔ preserves angles.

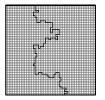
- In ordered phase there are typical length scales: $\xi_1 = \text{correlation length}, \ \xi_2 = \text{size of fluctuations of interface}, \ldots$
- As $\beta \searrow \beta_c$, $\xi_1 \rightarrow \infty$
- " $\xi_1 = \infty$ " \approx no typical length scale \approx scale invariance
- Under some additional hypothesis, the continuum limit should be invariant under transformations which are locally dilations.
- If a transformation is locally combination of rotation, translation and scaling, it is *conformal* ⇔ preserves angles.
- Conformal symmetry is very strong in two dimensions.

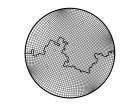
- In ordered phase there are typical length scales: $\xi_1 = \text{correlation length}, \ \xi_2 = \text{size of fluctuations of interface}, \ldots$
- As $\beta \searrow \beta_c$, $\xi_1 \rightarrow \infty$
- " $\xi_1 = \infty$ " \approx no typical length scale \approx scale invariance
- Under some additional hypothesis, the continuum limit should be invariant under transformations which are locally dilations.
- If a transformation is locally combination of rotation, translation and scaling, it is *conformal* ⇔ preserves angles.
- Conformal symmetry is very strong in two dimensions.
 - In physics: \Rightarrow Conformal field theories

- In ordered phase there are typical length scales: $\xi_1 = \text{correlation length}, \ \xi_2 = \text{size of fluctuations of interface}, \ldots$
- As $\beta \searrow \beta_c$, $\xi_1 \rightarrow \infty$
- " $\xi_1 = \infty$ " \approx no typical length scale \approx scale invariance
- Under some additional hypothesis, the continuum limit should be invariant under transformations which are locally dilations.
- If a transformation is locally combination of rotation, translation and scaling, it is *conformal* ⇔ preserves angles.
- Conformal symmetry is very strong in two dimensions.
 - In physics: \Rightarrow Conformal field theories
 - In mathematics: ⇒ Schramm–Loewner evolution

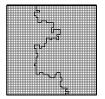
- Let P^{U,a,b} be the law of a random curve in the domain U ⊂ C connecting the points a and b.
- Schramm's principle: if $(\mathbb{P}^{U,a,b})$ satisfies

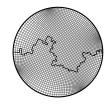
- Let P^{U,a,b} be the law of a random curve in the domain U ⊂ C connecting the points a and b.
- Schramm's principle: if $(\mathbb{P}^{U,a,b})$ satisfies *conformal invariance*





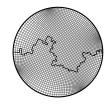
- Let P^{U,a,b} be the law of a random curve in the domain U ⊂ C connecting the points a and b.
- Schramm's principle: if $(\mathbb{P}^{U,a,b})$ satisfies *conformal invariance*





and domain Markov property

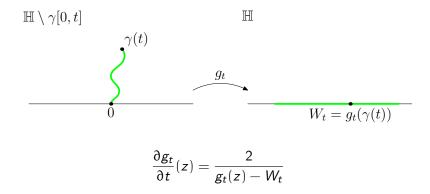
- Let P^{U,a,b} be the law of a random curve in the domain U ⊂ C connecting the points a and b.
- Schramm's principle: if $(\mathbb{P}^{U,a,b})$ satisfies *conformal invariance*

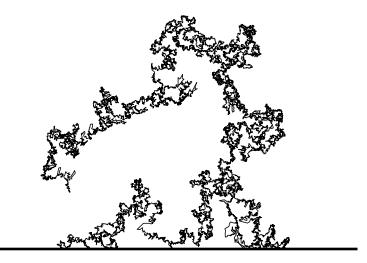


and domain Markov property

then $(\mathbb{P}^{U,a,b})$ is Schramm–Loewner evolution SLE(κ) for some $\kappa \ge 0_{6/12}$

- Random motion on the real axis, stochastic process
- Family of conformal maps associated to the process, Loewner chain





The lectures will cover (tentatively) the following list topics:

- Stochastic analysis
- ② Conformal mappings and complex analysis
- B Loewner equation
- 4 Schramm's principle
- 5 Definition of Schramm–Loewner evolution
- 6 Example calculations using SLE
- SLE is a random curve
- 8 Fractal properties of SLE
- 9 Symmetries of SLE ("time reversal" symmetry)
- ${f I}{f 0}$ On the connection between statistical physics and SLE

Measure theory and probability = Probability theory

- (X, \mathcal{A}) a measurable space: X is set, \mathcal{A} its σ -algebra
- measurable function f, measure μ , integral $\int f d\mu$

- (X, A) a measurable space: X is set, A its σ -algebra
- measurable function f, measure μ , integral $\int f d\mu$
- Monotone convergence theorem: If f_n are measurable functions such that $0 \leq f_n \nearrow f$, then $\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$
- Dominated convergence theorem: If f_n are measurable functions and $f = \lim_{n \to \infty} f_n$ exists almost everywhere and $\exists g \ge 0$ such that $|f_n| \le g$ for all n and $\int g d\mu < \infty$, then $\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$.

- (X, A) a measurable space: X is set, A its σ -algebra
- measurable function f, measure μ , integral $\int f d\mu$
- Monotone convergence theorem: If f_n are measurable functions such that $0 \leq f_n \nearrow f$, then $\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$
- Dominated convergence theorem: If f_n are measurable functions and $f = \lim_{n \to \infty} f_n$ exists almost everywhere and $\exists g \ge 0$ such that $|f_n| \le g$ for all n and $\int g d\mu < \infty$, then $\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$.
- $L^{p}(\mu)$ space: Measurable f is in $L^{p}(\mu)$ if $\int |f|^{p} d\mu < \infty$. Notation: $||f||_{p} = (\int |f|^{p} d\mu)^{1/p}$.

- (X, A) a measurable space: X is set, A its σ -algebra
- measurable function f, measure μ , integral $\int f d\mu$
- Monotone convergence theorem: If f_n are measurable functions such that $0 \leq f_n \nearrow f$, then $\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$
- Dominated convergence theorem: If f_n are measurable functions and $f = \lim_{n \to \infty} f_n$ exists almost everywhere and $\exists g \ge 0$ such that $|f_n| \le g$ for all n and $\int g d\mu < \infty$, then $\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$.
- $L^{p}(\mu)$ space: Measurable f is in $L^{p}(\mu)$ if $\int |f|^{p} d\mu < \infty$. Notation: $||f||_{p} = (\int |f|^{p} d\mu)^{1/p}$.
- Product measures: If (X, A, μ) and (Y, B, ν) are measure spaces, then their product space is (X × Y, A × B, μ × ν) where X × Y is Cartesian product, A × B the σ-algebra generated by A × B, A ∈ A and B ∈ B, and μ × ν the unique extension of A × B → μ(A)ν(B).

- (X, A) a measurable space: X is set, A its σ -algebra
- measurable function f, measure μ , integral $\int f d\mu$
- Monotone convergence theorem: If f_n are measurable functions such that $0 \leq f_n \nearrow f$, then $\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$
- Dominated convergence theorem: If f_n are measurable functions and $f = \lim_{n \to \infty} f_n$ exists almost everywhere and $\exists g \ge 0$ such that $|f_n| \le g$ for all n and $\int g d\mu < \infty$, then $\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$.
- $L^{p}(\mu)$ space: Measurable f is in $L^{p}(\mu)$ if $\int |f|^{p} d\mu < \infty$. Notation: $||f||_{p} = (\int |f|^{p} d\mu)^{1/p}$.
- Product measures: If (X, A, μ) and (Y, B, ν) are measure spaces, then their product space is (X × Y, A × B, μ × ν) where X × Y is Cartesian product, A × B the σ-algebra generated by A × B, A ∈ A and B ∈ B, and μ × ν the unique extension of A × B → μ(A)ν(B).
- Fubini's theorem: Let $f \in \mathcal{A} \times \mathcal{B}$. If $f \ge 0$ or $\int |f| d(\mu \times \nu) < \infty$ then $\int_X (\int_Y f d\nu) d\mu = \int_{X \times Y} f d(\mu \times \nu) = \int_Y (\int_X f d\mu) d\nu$.

- (X, A) a measurable space: X is set, A its σ -algebra
- measurable function f, measure μ , integral $\int f d\mu$
- Monotone convergence theorem: If f_n are measurable functions such that $0 \leq f_n \nearrow f$, then $\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$
- Dominated convergence theorem: If f_n are measurable functions and $f = \lim_{n \to \infty} f_n$ exists almost everywhere and $\exists g \ge 0$ such that $|f_n| \le g$ for all n and $\int g d\mu < \infty$, then $\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$.
- $L^{p}(\mu)$ space: Measurable f is in $L^{p}(\mu)$ if $\int |f|^{p} d\mu < \infty$. Notation: $\|f\|_{p} = (\int |f|^{p} d\mu)^{1/p}$.
- Product measures: If (X, A, μ) and (Y, B, ν) are measure spaces, then their product space is (X × Y, A × B, μ × ν) where X × Y is Cartesian product, A × B the σ-algebra generated by A × B, A ∈ A and B ∈ B, and μ × ν the unique extension of A × B ↦ μ(A)ν(B).
- Fubini's theorem: Let $f \in \mathcal{A} \times \mathcal{B}$. If $f \ge 0$ or $\int |f| d(\mu \times \nu) < \infty$ then $\int_X (\int_Y f d\nu) d\mu = \int_{X \times Y} f d(\mu \times \nu) = \int_Y (\int_X f d\mu) d\nu$.
- Radon–Nikodym theorem: if ν is a signed measure and μ is a measure on (X, \mathcal{A}) and $\nu(A) = 0$ whenever $\mu(A) = 0$, then exist $g \in \mathcal{F}$ such that $\nu(A) = \int_{\mathcal{A}} g d\mu$.

Probability theory

- A probability space is a measure space $(\Omega, \mathcal{F}, \mathbb{P})$ such that \mathbb{P} is a probability measure, i.e., $\mathbb{P}(\Omega) = 1$. Ω "outcomes", \mathcal{F} "events"
- A random variable is a \mathcal{F} -measurable function $X : \Omega \to \mathbb{R}$. *H*-valued random variable is a measurable function $X : \Omega \to H$ (*H* is a measurable space).
- The expected value of X is $\mathbb{E}(X) = \int X d\mathbb{P} \in [-\infty, \infty]$, which makes sense when $X \ge 0$ or when either $\int X^+ d\mathbb{P} < \infty$ or $\int X^- d\mathbb{P} < \infty$, $X = X^+ X^-$.
- $L^{p}(\mathbb{P})$ space: $||X||_{p} = (\mathbb{E}(|X|^{p}))^{1/p} < \infty$. By Hölder inequality, $||X||_{p} \leq ||X||_{q}$ for $1 \leq p \leq q$ and hence $L^{q}(\mathbb{P}) \subset L^{p}(\mathbb{P})$.

Probability theory

- A probability space is a measure space $(\Omega, \mathcal{F}, \mathbb{P})$ such that \mathbb{P} is a probability measure, i.e., $\mathbb{P}(\Omega) = 1$. Ω "outcomes", \mathcal{F} "events"
- A random variable is a \mathcal{F} -measurable function $X : \Omega \to \mathbb{R}$. *H*-valued random variable is a measurable function $X : \Omega \to H$ (*H* is a measurable space).
- The expected value of X is $\mathbb{E}(X) = \int X d\mathbb{P} \in [-\infty, \infty]$, which makes sense when $X \ge 0$ or when either $\int X^+ d\mathbb{P} < \infty$ or $\int X^- d\mathbb{P} < \infty$, $X = X^+ X^-$.
- $L^{p}(\mathbb{P})$ space: $||X||_{p} = (\mathbb{E}(|X|^{p}))^{1/p} < \infty$. By Hölder inequality, $||X||_{p} \leq ||X||_{q}$ for $1 \leq p \leq q$ and hence $L^{q}(\mathbb{P}) \subset L^{p}(\mathbb{P})$.
- Independence: sub- σ -algebras A_1, \ldots, A_n of \mathfrak{F} are *independent* if

$$\mathbb{P}(A_1, A_2, \dots, A_n) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2) \cdot \ldots \cdot \mathbb{P}(A_n) \quad \text{for } A_k \in \mathcal{A}_k.$$

Random variables X_1, X_2, \ldots, X_n are independent if σ -algebras $\sigma(X_1), \sigma(X_2), \ldots, \sigma(X_n)$ are independent

$$\Rightarrow \mathbb{P}(\{X_1 \in B_1\} \cap \{X_2 \in B_2\} \cap \ldots \cap \{X_n \in B_n\})$$

= $\mathbb{P}(X_1 \in B_1) \cdot \mathbb{P}(X_2 \in B_2) \cdot \ldots \cdot \mathbb{P}(X_n \in B_n) \text{ for } B_k \in \mathcal{B}_{\mathbb{R}}.$

Probability theory

- A probability space is a measure space $(\Omega, \mathcal{F}, \mathbb{P})$ such that \mathbb{P} is a probability measure, i.e., $\mathbb{P}(\Omega) = 1$. Ω "outcomes", \mathcal{F} "events"
- A random variable is a \mathcal{F} -measurable function $X : \Omega \to \mathbb{R}$. *H*-valued random variable is a measurable function $X : \Omega \to H$ (*H* is a measurable space).
- The expected value of X is $\mathbb{E}(X) = \int X d\mathbb{P} \in [-\infty, \infty]$, which makes sense when $X \ge 0$ or when either $\int X^+ d\mathbb{P} < \infty$ or $\int X^- d\mathbb{P} < \infty$, $X = X^+ X^-$.
- $L^{p}(\mathbb{P})$ space: $||X||_{p} = (\mathbb{E}(|X|^{p}))^{1/p} < \infty$. By Hölder inequality, $||X||_{p} \leq ||X||_{q}$ for $1 \leq p \leq q$ and hence $L^{q}(\mathbb{P}) \subset L^{p}(\mathbb{P})$.
- Independence: sub- σ -algebras A_1, \ldots, A_n of \mathfrak{F} are *independent* if

$$\mathbb{P}(A_1, A_2, \dots, A_n) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2) \cdot \dots \cdot \mathbb{P}(A_n) \quad \text{for } A_k \in \mathcal{A}_k.$$

Random variables X_1, X_2, \ldots, X_n are independent if σ -algebras $\sigma(X_1), \sigma(X_2), \ldots, \sigma(X_n)$ are independent

$$\Rightarrow \mathbb{P}(\{X_1 \in B_1\} \cap \{X_2 \in B_2\} \cap \ldots \cap \{X_n \in B_n\})$$

= $\mathbb{P}(X_1 \in B_1) \cdot \mathbb{P}(X_2 \in B_2) \cdot \ldots \cdot \mathbb{P}(X_n \in B_n) \text{ for } B_k \in \mathcal{B}_{\mathbb{R}}.$

• Notation: $\mathbb{E}(X; E) = \int_E X d\mathbb{P} = \int \mathbb{1}_E X d\mathbb{P}$.