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Introduction



Example of a model of statistical physics: Percolation

• The simplest model to formulate. I.i.d. coin flips.
• Each site is either open or closed. A parameter p ∈ [0, 1] is the
probability that a given site is open. The state of each site is chosen
independently.
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Example of a model of statistical physics: Ising model

• The simplest model with “physical” interaction. Ferromagnetism.
• Each site has a state which is ±1. A parameter β > 0 is the inverse
temperature. The state of the system is σ ∈ {−1, +1}sites

• Energy: H(σ) = −
∑

i ,j neighbours σi · σj

• Propability distribution: P(σ) = 1
Z exp(−βH(σ))
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Origin of conformal invariance in physics

• In ordered phase there are typical length scales:
ξ1 = correlation length, ξ2 = size of fluctuations of interface, . . .

• As β↘ βc , ξ1 →∞
• “ξ1 = ∞” ≈ no typical length scale ≈ scale invariance
• Under some additional hypothesis, the continuum limit should be
invariant under transformations which are locally dilations.

• If a transformation is locally combination of rotation, translation and
scaling, it is conformal ⇔ preserves angles.

• Conformal symmetry is very strong in two dimensions.
• In physics: ⇒ Conformal field theories
• In mathematics: ⇒ Schramm–Loewner evolution
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Schramm’s principle

• Let PU,a,b be the law of a random curve in the domain U ⊂ C
connecting the points a and b.

• Schramm’s principle: if (PU,a,b) satisfies

conformal invariance

−→

and domain Markov property

then (PU,a,b) is Schramm–Loewner evolution SLE(κ) for some κ > 0.
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Elements of SLE

• Random motion on the real axis, stochastic process
• Family of conformal maps associated to the process, Loewner chain

0

γ(t)

H \ γ[0, t]

Wt = gt(γ(t))

H

gt

∂gt

∂t
(z) =

2
gt(z) − Wt
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Contents

The lectures will cover (tentatively) the following list topics:

1 Stochastic analysis
2 Conformal mappings and complex analysis
3 Loewner equation
4 Schramm’s principle
5 Definition of Schramm–Loewner evolution
6 Example calculations using SLE
7 SLE is a random curve
8 Fractal properties of SLE
9 Symmetries of SLE (“time reversal” symmetry)
10 On the connection between statistical physics and SLE
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Measure theory and probability = Probability theory



Measure theory

• (X , A) a measurable space: X is set, A its σ-algebra
• measurable function f , measure µ, integral

∫
f dµ

• Monotone convergence theorem: If fn are measurable functions such that
0 6 fn ↗ f , then

∫
f dµ = limn→∞ ∫

fndµ
• Dominated convergence theorem: If fn are measurable functions and

f = limn→∞ fn exists almost everywhere and ∃g > 0 such that |fn| 6 g for
all n and

∫
gdµ < ∞, then

∫
f dµ = limn→∞ ∫

fndµ.
• Lp(µ) space: Measurable f is in Lp(µ) if

∫
|f |pdµ < ∞. Notation:

‖f ‖p = (
∫

|f |pdµ)1/p.
• Product measures: If (X , A,µ) and (Y , B,ν) are measure spaces, then
their product space is (X × Y , A×B,µ× ν) where X × Y is Cartesian
product, A×B the σ-algebra generated by A× B , A ∈ A and B ∈ B, and
µ× ν the unique extension of A× B 7→ µ(A)ν(B).

• Fubini’s theorem: Let f ∈ A×B. If f > 0 or
∫

|f |d(µ× ν) < ∞ then∫
X (

∫
Y f dν)dµ =

∫
X×Y f d(µ× ν) =

∫
Y (

∫
X f dµ)dν.

• Radon–Nikodym theorem: if ν is a signed measure and µ is a measure on
(X , A) and ν(A) = 0 whenever µ(A) = 0, then exist g ∈ F such that
ν(A) =

∫
A gdµ.
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Probability theory

• A probability space is a measure space (Ω, F, P) such that P is a probability
measure, i.e., P(Ω) = 1. Ω “outcomes”, F “events”

• A random variable is a F-measurable function X : Ω→ R. H-valued
random variable is a measurable function X : Ω→ H (H is a measurable
space).

• The expected value of X is E(X ) =
∫

XdP ∈ [−∞, ∞], which makes sense
when X > 0 or when either

∫
X+dP < ∞ or

∫
X−dP < ∞, X = X+ − X−.

• Lp(P) space: ‖X‖p = (E(|X |p))1/p < ∞. By Hölder inequality,
‖X‖p 6 ‖X‖q for 1 6 p 6 q and hence Lq(P) ⊂ Lp(P).

• Independence: sub-σ-algebras A1, . . . ,An of F are independent if

P(A1, A2, . . . , An) = P(A1) · P(A2) · . . . · P(An) for Ak ∈ Ak .

Random variables X1, X2, . . . , Xn are independent if σ-algebras
σ(X1),σ(X2), . . . ,σ(Xn) are independent

⇔P({X1 ∈ B1} ∩ {X2 ∈ B2} ∩ . . . ∩ {Xn ∈ Bn})

= P(X1 ∈ B1) · P(X2 ∈ B2) · . . . · P(Xn ∈ Bn) for Bk ∈ BR.

• Notation: E(X ; E ) =
∫

E XdP =
∫
1EXdP.
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