Department of Mathematics and Statistics
Schramm-Loewner evolution, Fall 2011
Problem Sheet 8 (Nov 8)

1. Let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be a standard one-dimensional Brownian motion. For $x \in \mathbb{R}$ define $\tau_{x}=$ $\inf \left\{t \in \mathbb{R}_{+}: B_{t}=x\right\}$.
(a) Let $a<0<b$. Show that $\mathbb{P}\left(\tau_{a} \wedge \tau_{b}<\infty\right)=1$ by considering $\mathbb{P}\left(B_{t}<a\right.$ or $\left.B_{t}>b\right)$.
(b) Apply the optional stopping theorem to $\mathbb{E}\left(B_{\tau_{a} \wedge \tau_{b}}\right)$ and find the probabilities of the events $\left\{B_{\tau_{a} \wedge \tau_{b}}=a\right\}$ and $\left\{B_{\tau_{a} \wedge \tau_{b}}=b\right\}$ for $a<0<b$.
(c) Show that for all $x \in \mathbb{R}, \tau_{x}<\infty$ almost surely.
2. Let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be a standard one-dimensional Brownian motion and let $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$be a Brownian motion with drift defined by $X_{t}=\sigma B_{t}+\mu t$ where $\sigma>0$ and $\mu \geq 0$ are constants. Let $x>0$ and let $\tau_{x}=\inf \left\{t \in \mathbb{R}_{+}: X_{t}=x\right\}$.
(a) Let $\lambda>0$. Consider the process $\left(M_{t}\right)_{t \in \mathbb{R}_{t}}$ defined by

$$
M_{t}=\mathbb{E}\left(\exp \left(-\lambda \tau_{x}\right) \mid \mathcal{F}_{t}\right)
$$

Show that it is a martingale. Let $f(x)=\mathbb{E}\left(\exp \left(-\lambda \tau_{x}\right)\right)$. Show that $M_{t}=f\left(x-X_{t}\right) \exp (-\lambda t)$ for $t<\tau_{x}$.
(b) Assuming that f is smooth, find a second order differential operator L such that $L f=0$. Hint. A semimartingale $Y_{0}+\int_{0}^{t} u_{s} \mathrm{~d} s+\int_{0}^{t} v_{s} \mathrm{~d} B_{s}$ is a local martingale if and only if almost surely $u_{t}=0$ for all t.
(c) Solve the equation $L g=0$ with the following boundary conditions: $g(0)=1$ and $g(x)$ stays bounded as $x \rightarrow \infty$. Use the optional stopping theorem to show that $\tilde{M}_{t}=g(x-$ $\left.X_{t}\right) \exp (-\lambda t)$ indeed satisfies $\tilde{M}_{t}=M_{t}, t<\tau_{x}$. This justifies the smoothness assumption.
(d) Is $\mathbb{E}\left(\tau_{x}\right)<\infty$? Find the inverse Laplace transform of $\lambda \mapsto \mathbb{E}\left(\exp \left(-\lambda \tau_{x}\right)\right)$ (if you can).
3. Let \mathbb{P}^{z} be the law of a complex Brownian motion $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$sent from z. Let K be a hull and let $\tau_{K}=\inf \left\{t \in \mathbb{R}_{+}: B_{t} \in \mathbb{R} \cup K\right\}$. Show that for any $z \in \mathbb{H} \backslash K, \mathbb{P}^{z}\left(\tau_{K}<\infty\right)=1$ and

$$
a_{1}(K)=\lim _{y \nearrow \infty} y \mathbb{E}^{i y}\left(\operatorname{Im} B_{\tau_{K}}\right)
$$

4. Let $\delta \in \mathbb{R}, x>0$ and let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be a standard one-dimensional Brownian motion. A Bessel process with dimension δ started from x is the solution $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$of the stochastic differential equation

$$
\mathrm{d} X_{t}=\mathrm{d} B_{t}+\frac{\delta-1}{2 X_{t}} \mathrm{~d} t, \quad X_{0}=x
$$

The theorem about SDEs from the lecture notes can be applied to show that the solution exists and is unique at least up to the stopping time

$$
\tau=\sup \left\{t \in \mathbb{R}_{+}: \inf _{s \in[0, t]} X_{s}>0\right\}
$$

Denote the law of $\left(X_{t}\right)_{t \in[0, \tau)}$ by \mathbb{P}^{x}.
(a) Let $\lambda>0$. Show that the process $Y_{t}=\lambda X_{t / \lambda^{2}}$ is a Bessel process of dimension δ started from λx.
(b) For any $y>0$, let $\sigma_{y}=\inf \left\{t \in[0, \tau): X_{t}=y\right\}$ (here the infimum of an empty set is $+\infty$). Let $0<\varepsilon<x<L$. Find a local martingale of the form $f\left(X_{t}\right)$ such that f is twice differentiable, $f(\varepsilon)=1$ and $f(L)=0$. Show that $M_{t}=f\left(X_{t \wedge \sigma_{\varepsilon} \wedge \sigma_{L}}\right)$ is a bounded martingale.
(c) Consider $X_{t}-B_{t}$ and show that $\sigma_{\varepsilon} \wedge \sigma_{L}$ is almost surely finite. Find $\mathbb{P}^{x}\left(\sigma_{\varepsilon}<\sigma_{L}\right)$ by applying the optional stopping theorem to M_{t}.
(d) Use (c) to show that $\tau<\infty$ with positive probability if and only if $\delta<2$. Show also that in that case, $\mathbb{P}(\tau<\infty)=1$ and that $\lim _{t / \tau} X_{t}=0$ almost surely.

Hint. For the last claim, you might need the strong Markov property of diffusions: if τ is an almost surely finite stopping time, then $Y_{t}=X_{\tau+t}$ is the solution of the same SDE with the Brownian motion $W_{t}=B_{\tau+t}-B_{\tau}$ and with the initial value $Y_{0}=X_{\tau}$.

5. Girsanov transformation for random walk

Let $\Omega=\left\{\omega: \mathbb{Z}_{+} \rightarrow \mathbb{Z}: \omega(0)=0\right\}$. Let $X_{n}(\omega)=\omega(n), n \in \mathbb{Z}_{+}$, be the coordinate maps and let \mathcal{F} be the σ-algebra generated by $X_{n}, n \in \mathbb{Z}_{+}$. The space (Ω, \mathcal{F}) is the canonical space for \mathbb{Z}-valued discrete-time stochastic processes. Suppose that there is defined a family of probability measures $\mathbb{P}_{p}, 0<p<1$, on (Ω, \mathcal{F}) such that for any \mathbb{P}_{p} the increments $\xi_{n}=X_{n}-X_{n-1}, n \in \mathbb{N}$, are independent and identically distributed as

$$
\mathbb{P}_{p}\left(\xi_{n}=1\right)=p, \quad \mathbb{P}_{p}\left(\xi_{n}=-1\right)=1-p
$$

Define a filtration $\mathcal{F}_{n}=\sigma\left(X_{0}, \ldots, X_{n}\right)=\sigma\left(\xi_{1}, \ldots, \xi_{n}\right) \subset \mathcal{F}$.
(a) Let $\left.\mathbb{P}\right|_{\mathcal{A}}$ be the restriction of a probability measure \mathbb{P} on a σ-algebra \mathcal{A}. Find an explicit formula for the Radon-Nikodym derivative

$$
M_{n}=\frac{\mathrm{d} \mathbb{P}_{p} \mid \mathcal{F}_{n}}{\mathrm{~d} \mathbb{P}_{1 / 2} \mid \mathcal{F}_{n}}
$$

(b) Show that M_{n} is a martingale for the probability measure $\mathbb{P}_{1 / 2}$ and for the filtration $\left(\mathcal{F}_{n}\right)_{t \in \mathbb{Z}_{+}}$.
(c) Let $c \in \mathbb{R}$. For each $t \in \mathbb{R}_{+}$and $0<\varepsilon<|c|^{-1}$, define

$$
n^{(\varepsilon)}(t)=\left\lfloor\varepsilon^{-2} t\right\rfloor, \quad Y_{t}^{(\varepsilon)}=\varepsilon X_{n^{(\varepsilon)}(t)}, \quad p^{(\varepsilon)}=\frac{1}{2}(1+c \varepsilon)
$$

where $\lfloor x\rfloor$ is the largest integer less or equal to the real number x. Find the (scaling) limit of $M_{t}^{(\varepsilon)}=M_{n^{(\varepsilon)}(t)}$ as $\varepsilon \searrow 0$ in terms of $t, Y_{t}=\lim Y_{t}^{(\varepsilon)}$ and c.

