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1. Let (Bt)t∈R+ be a standard one-dimensional Brownian motion. For x ∈ R define τx =
inf{t ∈ R+ : Bt = x}.

(a) Let a < 0 < b. Show that P(τa ∧ τb <∞) = 1 by considering P(Bt < a or Bt > b).

(b) Apply the optional stopping theorem to E(Bτa∧τb) and find the probabilities of the
events {Bτa∧τb = a} and {Bτa∧τb = b} for a < 0 < b.

(c) Show that for all x ∈ R, τx <∞ almost surely.

2. Let (Bt)t∈R+ be a standard one-dimensional Brownian motion and let (Xt)t∈R+ be a Brow-
nian motion with drift defined by Xt = σBt +µt where σ > 0 and µ ≥ 0 are constants. Let
x > 0 and let τx = inf{t ∈ R+ : Xt = x}.

(a) Let λ > 0. Consider the process (Mt)t∈Rt defined by

Mt = E (exp(−λτx)| Ft) .

Show that it is a martingale. Let f(x) = E (exp(−λτx)). Show thatMt = f(x−Xt) exp(−λt)
for t < τx.

(b) Assuming that f is smooth, find a second order differential operator L such that Lf = 0.
Hint. A semimartingale Y0 +

∫ t
0 usds+

∫ t
0 vsdBs is a local martingale if and only if almost

surely ut = 0 for all t.

(c) Solve the equation Lg = 0 with the following boundary conditions: g(0) = 1 and g(x)
stays bounded as x → ∞. Use the optional stopping theorem to show that M̃t = g(x −
Xt) exp(−λt) indeed satisfies M̃t = Mt, t < τx. This justifies the smoothness assumption.

(d) Is E(τx) <∞? Find the inverse Laplace transform of λ 7→ E (exp(−λτx)) (if you can).

3. Let Pz be the law of a complex Brownian motion (Bt)t∈R+ sent from z. Let K be a hull
and let τK = inf{t ∈ R+ : Bt ∈ R ∪K}. Show that for any z ∈ H \K, Pz(τK < ∞) = 1
and

a1(K) = lim
y↗∞

y Eiy (ImBτK ) .

4. Let δ ∈ R, x > 0 and let (Bt)t∈R+ be a standard one-dimensional Brownian motion. A
Bessel process with dimension δ started from x is the solution (Xt)t∈R+ of the stochastic
differential equation

dXt = dBt +
δ − 1
2Xt

dt, X0 = x.

The theorem about SDEs from the lecture notes can be applied to show that the solution
exists and is unique at least up to the stopping time

τ = sup
{
t ∈ R+ : inf

s∈[0,t]
Xs > 0

}
.

Denote the law of (Xt)t∈[0,τ) by Px.
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(a) Let λ > 0. Show that the process Yt = λXt/λ2 is a Bessel process of dimension δ started
from λx.

(b) For any y > 0, let σy = inf{t ∈ [0, τ) : Xt = y} (here the infimum of an empty set
is +∞). Let 0 < ε < x < L. Find a local martingale of the form f(Xt) such that f is
twice differentiable, f(ε) = 1 and f(L) = 0. Show that Mt = f(Xt∧σε∧σL) is a bounded
martingale.

(c) Consider Xt − Bt and show that σε ∧ σL is almost surely finite. Find Px(σε < σL) by
applying the optional stopping theorem to Mt.

(d) Use (c) to show that τ < ∞ with positive probability if and only if δ < 2. Show also
that in that case, P(τ <∞) = 1 and that limt↗τ Xt = 0 almost surely.

Hint. For the last claim, you might need the strong Markov property of diffusions: if τ is
an almost surely finite stopping time, then Yt = Xτ+t is the solution of the same SDE with
the Brownian motion Wt = Bτ+t −Bτ and with the initial value Y0 = Xτ .

5. Girsanov transformation for random walk

Let Ω = {ω : Z+ → Z : ω(0) = 0}. Let Xn(ω) = ω(n), n ∈ Z+, be the coordinate maps and
let F be the σ-algebra generated by Xn, n ∈ Z+. The space (Ω,F) is the canonical space
for Z-valued discrete-time stochastic processes. Suppose that there is defined a family
of probability measures Pp, 0 < p < 1, on (Ω,F) such that for any Pp the increments
ξn = Xn −Xn−1, n ∈ N, are independent and identically distributed as

Pp(ξn = 1) = p, Pp(ξn = −1) = 1− p.

Define a filtration Fn = σ(X0, . . . , Xn) = σ(ξ1, . . . , ξn) ⊂ F .

(a) Let P|A be the restriction of a probability measure P on a σ-algebra A. Find an explicit
formula for the Radon-Nikodym derivative

Mn =
dPp|Fn

dP1/2|Fn

.

(b) Show that Mn is a martingale for the probability measure P1/2 and for the filtration
(Fn)t∈Z+ .

(c) Let c ∈ R. For each t ∈ R+ and 0 < ε < |c|−1, define

n(ε)(t) = bε−2tc, Y
(ε)
t = εXn(ε)(t), p(ε) =

1
2

(1 + cε)

where bxc is the largest integer less or equal to the real number x. Find the (scaling) limit
of M (ε)

t = Mn(ε)(t) as ε↘ 0 in terms of t, Yt = limY
(ε)
t and c.
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