

Department of Mathematics and Statistics Schramm–Loewner evolution, Fall 2011 Problem Sheet 7 (Nov 1)

1. Koebe distortion and growth theorem

(a) Remember that the class S consists of univalent functions $f : \mathbb{D} \to \mathbb{C}$ such that f(0) = 0and f'(0) = 1. Define for any fixed $f \in S$ and $w \in \mathbb{D}$, a function

$$h(z) = \frac{f\left(\frac{z+w}{1+\overline{w}z}\right) - f(w)}{(1-|w|^2)f'(w)}.$$

Show that $h \in S$ and that

$$h(z) = z + \left(\frac{1}{2}(1 - |w|^2)\frac{f''(w)}{f'(w)} - \overline{w}\right)z^2 + \dots$$

Show (using the special case of the Bieberbach–de Branges-theorem given in the lecture notes) that

$$\left|\frac{zf''(z)}{f'(z)} - \frac{2|z|^2}{1 - |z|^2}\right| \le \frac{4|z|}{1 - |z|^2}.$$
(1)

(b) Use the inequality (1) on the radial line $z = x \in (0, 1)$ to show that

$$\frac{1-x}{(1+x)^3} \le |f'(x)| \le \frac{1+x}{(1-x)^3}.$$

(c) Use the previous inequality to show that

$$\frac{x}{(1+x)^2} \le |f(x)| \le \frac{x}{(1-x)^2}$$

2. Let A be the set of all holomorphic $g: D_g \to \mathbb{C}$ such that the domain D_g of g contains a neighborhood of ∞ and that g has near ∞ an expansion of the form

$$g(z) = z + \sum_{k=1}^{\infty} a_k(g) \, z^{-k}$$

Let $g, \hat{g} \in A$.

- (a) Show that $g \circ \hat{g} \in A$ and that $a_1(g \circ \hat{g}) = a_1(g) + a_1(\hat{g})$.
- (b) Show that $g_{\lambda}(z) = \lambda g(z\lambda^{-1}), \lambda > 0$, is in A and that $a_1(g_{\lambda}) = \lambda^2 a_1(g)$.
- (c) Show that $g_{(x)}(z) = x + g(z x)$ is in A and that $a_1(g_{(x)}) = a_1(g)$.

(d) It follows from the form of the expansion that $g \in A$ is injective in a neighborhood of ∞ . Find the inverse $f = g^{-1}$ which has an expansion

$$f(z) = b_{-1}z + b_0 + b_1 z^{-1} + \dots$$

near ∞ by giving a (semi-explicit) recursion for the coefficients b_k and calculate explicitly b_{-1}, b_0, \ldots, b_3 in terms of $a_k(g)$'s.

3. Poisson kernel in $\mathbb{H} \setminus \overline{B(0,R)}$

(a) Let R > 0 and let $H_R = \mathbb{H} \setminus \overline{B(0,R)}$. Show that any continuous bounded function $u : \overline{H_R} \to \mathbb{R}$ which is harmonic in H_R and satisfies $u(x) = 0, x \in \mathbb{R} \setminus (-R,R)$, can be represented as an integral

$$u(z) = \frac{2R}{\pi} \int_0^{\pi} \frac{\text{Im}(z + R^2 z^{-1}) \sin \theta}{|z + R^2 z^{-1} - 2R \cos \theta|^2} u(Re^{i\theta}) \,\mathrm{d}\theta$$

for any $z \in H_R$. *Hint*. Make a conformal transformation to \mathbb{H} and use the Poisson kernel of \mathbb{H} .

(b) Show that

$$\lim_{y \nearrow \infty} y \, u(iy) = \frac{2R}{\pi} \int_0^{\pi} u(Re^{i\theta}) \, \sin \theta \, \mathrm{d}\theta$$