Department of Mathematics and Statistics
Schramm-Loewner evolution, Fall 2011
Problem Sheet 6 (Oct 18)

1. Exponential Brownian motion

Let $\mu, \sigma \in \mathbb{R}, \sigma>0$, and let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be a standard one-dimensional Brownian motion. Solve the stochastic differential equation

$$
\mathrm{d} X_{t}=\mu X_{t} \mathrm{~d} t+\sigma X_{t} \mathrm{~d} B_{t}, \quad X_{0}=x_{0}>0
$$

by trying a solution of the form $X_{t}=f\left(t, B_{t}\right)$ where f is smooth enough function on $\mathbb{R}_{+} \times \mathbb{R}$.
Note. There is a theorem in the lecture notes which gives sufficient conditions guaranteeing the solution exists and is unique.

2. Orstein-Uhlenbeck process

Let $\alpha, \sigma \in \mathbb{R}$ be positive and let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be a standard one-dimensional Brownian motion. Solve the stochastic differential equation

$$
\mathrm{d} X_{t}=-\alpha X_{t} \mathrm{~d} t+\sigma \mathrm{d} B_{t}, \quad X_{0}=x_{0} \in \mathbb{R}
$$

by trying a solution of the form $X_{t}=a(t)\left(x_{0}+\int_{0}^{t} b(s) \mathrm{d} B_{s}\right)$ where a and b are smooth enough functions on \mathbb{R}_{+}. This form of the solution is motivated by the fact that we expect a Gaussian solution (see also Exercise 2 of Problem Sheet 5).
3. Let $x_{0}, x_{1} \in \mathbb{R}$ and let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be a standard one-dimensional Brownian motion. Find the solution of

$$
\mathrm{d} X_{t}=\frac{x_{1}-X_{t}}{1-t} \mathrm{~d} t+\mathrm{d} B_{t}, \quad t \in[0,1), \quad X_{0}=x_{0}
$$

by slightly adapting the guess solution of the previous exercise. Find the mean $\mathbb{E}\left(X_{t}\right)$ and the covariance $\mathbb{E}\left[\left(X_{s}-\mathbb{E}\left(X_{s}\right)\right)\left(X_{t}-\mathbb{E}\left(X_{t}\right)\right)\right]$ of this process.
4. If $A \in \mathbb{C}^{2 \times 2}$, $\operatorname{det} A \neq 0$, define a Möbius map by

$$
\phi_{A}(z)=\frac{a_{11} z+a_{12}}{a_{21} z+a_{22}}
$$

where $A_{i j}=a_{i j}$. Show that

$$
\phi_{A} \circ \phi_{B}=\phi_{A B}
$$

Use this to find the inverse map of any Möbius map.

5. The Riemann sphere $\hat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ and the spherical metric

Consider the complex plane as a subset of \mathbb{R}^{3} by associating \mathbb{C} with the the subspace of points $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ with $x_{3}=0$. A standard construction of the extended complex plane is through the stereographic projection: each point P on the sphere $S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}\right.$: $\left.x_{1}^{2}+x_{2}^{2}+\left(x_{3}-1 / 2\right)^{2}=1 / 4\right\} \subset \mathbb{R}^{3}$ other than $N=(0,0,1) \in S$ is projected to the complex plane by the taking the line going through P and N and finding the unique intersection point z_{P} of this line and the complex plane. As the point P approaches $N,\left|z_{P}\right|$ goes to infinity. This defines a mapping from the sphere S to the extended complex plane $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$.
(a) For each $z \in \mathbb{C} \subset \mathbb{R}^{3}$, find $v_{z} \in S$ of the form

$$
v_{z}=\lambda_{z} z+\left(1-\lambda_{z}\right) N
$$

where $0<\lambda_{z} \leq 1$. Show that the map $z \mapsto v_{z}$ defines a smooth map from \mathbb{C} onto $S \backslash\{N\}$ and that $v_{z} \rightarrow N$ as $|z| \rightarrow \infty$.
(b) Show that the map $z \mapsto v_{z}$ is conformal in the sense that the vectors $\partial_{x} v_{z}$ and $\partial_{y} v_{z}$ are orthogonal and have the same length. Here the partial derivatives are with respect to the real and imaginary parts of z.
(c) Find the spherical metric $\rho: \hat{C} \times \hat{C} \rightarrow \mathbb{R}$ defined by

$$
\rho(z, w)=\left|v_{z}-v_{w}\right|, z, w \in \mathbb{C}, \quad \rho(z, \infty)=\left|v_{z}-N\right|, z \in \mathbb{C}, \quad(\rho(\infty, \infty)=0)
$$

where $|\cdot|$ is the Euclidian norm in \mathbb{R}^{3}. Show that the spherical metric is invariant under any map ϕ_{A} (as in Exercise 4) where $A \in \mathbb{C}^{2 \times 2}$ is unitary, that is, $A A^{*}=I$ where A^{*} is the adjoint (conjugate transpose) of A.

Hint. For each $z \in \mathbb{C}$, define

$$
\tilde{z}=\left[\begin{array}{l}
z \\
1
\end{array}\right] \in \mathbb{C}^{2}
$$

and notice that

$$
\widetilde{\phi_{A}(z)}=\frac{1}{a_{21} z+a_{22}} A \tilde{z}
$$

What are the norms of \tilde{z} and $\tilde{z}-\tilde{w}$?

