Department of Mathematics and Statistics
Schramm-Loewner evolution, Fall 2011
Problem Sheet 5 (Oct 11)

1. We call a expression of the form

$$
\begin{equation*}
\mathrm{d} X_{t}=m_{t} \mathrm{~d} t+\sigma_{t} \mathrm{~d} B_{t} \tag{1}
\end{equation*}
$$

the Itô differential of X_{t}. Let $r, q \in \mathbb{N}$. Find the Itô differentials of the following processes:
(a) $X_{t}=B_{t}^{q}$,
(b) $X_{t}=\left(\sin B_{t}\right)^{r}$,
(c) $X_{t}=B_{t}^{q}\left(\sin B_{t}\right)^{r}$.
2. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a non-random square-integrable function. Show that

$$
X_{t}=\int_{0}^{t} f(s) \mathrm{d} B_{s}
$$

is normally distributed. Find the mean and the variance of X_{t}.

3. Integration by parts

(a) For for any semimartingales X_{t} and Y_{t}, show that the following integration by parts formula holds

$$
\int_{0}^{t} X_{s} \mathrm{~d} Y_{s}=X_{t} Y_{t}-X_{0} Y_{0}-\int_{0}^{t} Y_{s} \mathrm{~d} X_{s}-\langle X, Y\rangle_{t}
$$

Note. As implicitly defined in Itô's formula for semimartingales in the lecture notes, here the definition for the integrals $\int_{0}^{t} X_{s} \mathrm{~d} Y_{s}$ and $\int_{0}^{t} Y_{s} \mathrm{~d} X_{s}$ is such that

$$
\begin{equation*}
\int_{0}^{t} f_{s} \mathrm{~d} X_{s}=\int_{0}^{t} f_{s} m_{s} \mathrm{~d} s+\int_{0}^{t} f_{s} \sigma_{s} \mathrm{~d} B_{s} \tag{2}
\end{equation*}
$$

for the semimartingale of the form (1) whenever the two integrals on the right of (2) make sense. For more general semimartingales extend accordingly.
(b) Use Itô's formula for $B_{t} f(t)$ and $F\left(B_{t}\right)$, where f and F are smooth enough non-random functions, to find two integration by parts formulas for the integrals of types

$$
\int_{0}^{t} f(s) \mathrm{d} B_{s}, \quad \int_{0}^{t} f\left(B_{s}\right) \mathrm{d} B_{s}
$$

Note that this gives a way interpret these integrals in pathwise (ω-by- ω) sense. Why?
4. Let $\theta \in \mathbb{R}$ and $X_{t}=\exp \left(\theta B_{t}-\frac{\theta^{2}}{2} t\right)$. Show using Itô's formula that $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$is a local martingale. Is it also a martingale?
5. (a) Let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}, B_{t}=\left(B_{t}^{(1)}, \ldots, B_{t}^{(m)}\right)$, be m-dimensional standard Brownian motion, $m \geq 2$, started from $B_{0} \neq 0$. The Euclidian norm in \mathbb{R}^{m} is denoted by $|\cdot|$. Show using Itô's formula that $Y_{t}=\left|B_{t}\right|$ satisfies

$$
\mathrm{d} Y_{t}=\sum_{k} \frac{B_{t}^{(k)} \mathrm{d} B_{t}^{(k)}}{Y_{t}}+\frac{m-1}{2 Y_{t}} \mathrm{~d} t
$$

(b) Calculate $\langle Y\rangle_{t}$.

Note. You can use the following information about m-dimensional standard Brownian motion send away from the origin: when $m \geq 2$, almost surely $Y_{t}=\left|B_{t}\right|>0$ for all $t \in \mathbb{R}_{+}$, i.e. almost surely the Brownian motion doesn't hit the origin. Why is this important?

