Department of Mathematics and Statistics
 Schramm-Loewner evolution, Fall 2011
 Problem Sheet 4 (Oct 4)

1. Modulus of continuity of Brownian motion

(a) This exercise continues the exercises 4 and 5 of Problem Sheet 2. Remember that there we made a construction of a Brownian motion on $[0,1]$ as a uniformly convergent series

$$
B_{t}=\sum_{n=0}^{\infty} Z_{t}^{(n)}
$$

where $\left(Z_{t}^{(n)}\right)_{t \in[0,1]}$ are some piecewise linear processes. Remember also that for each $c>$ $\sqrt{2 \log 2}$ there exist an almost surely finite random variable N such that for $n \geq N$,

$$
\left\|Z^{(n)}\right\|_{\infty} \leq c 2^{-\frac{n+1}{2}} \sqrt{n}
$$

Show that for any n and $h>0$ and $0 \leq t \leq 1-h$

$$
\left|Z_{t+h}^{(n)}-Z_{t}^{(n)}\right| \leq \min \left\{h \cdot 2^{n}, 2\right\}\left\|Z^{(n)}\right\|_{\infty}
$$

and use this bound to show that there exists a constant $C>0$ and a random variable $\Delta>0$ such that for any $0<h<\Delta$,

$$
\left|B_{t+h}-B_{t}\right| \leq C \sqrt{h \log (1 / h)}
$$

Hint. For the last claim, divide the sum $\sum_{n=0}^{\infty}\left|Z_{t+h}^{(n)}-Z_{t}^{(n)}\right|$ as $\sum_{n=0}^{N-1}+\sum_{n=N}^{l}+\sum_{n=l+1}^{\infty}$ where N is as above. Then choose $\Delta>0$ such that the first sum is less than $\sqrt{h \log (1 / h)}$ and after that optimize over l.
(b) Show that for each $0<\alpha<1 / 2$ there exists an almost surely finite random variable $C_{\alpha}>0$ such that for any $0 \leq s, t \leq 1$,

$$
\left|B_{t}-B_{s}\right| \leq C_{\alpha}|t-s|^{\alpha} .
$$

2. Doob's maximal inequality in discrete time

Let $\left(M_{n}\right)_{n \in \mathbb{Z}_{+}}$be a non-negative discrete-time submartingale with respect to a (discretetime) filtration $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{Z}_{+}}$.
(a) Show that

$$
\mathbb{E}\left[M_{m} \mathbb{1}_{A}\right] \leq \mathbb{E}\left[M_{n} \mathbb{1}_{A}\right]
$$

for all $A \in \mathcal{F}_{m}$ and all $n \geq m$.
(b) Let $\tau=\min \left\{m: M_{m} \geq \lambda\right\}$. Show that

$$
\lambda \mathbb{1}_{\tau \leq n} \leq \sum_{m=0}^{n} M_{m} \mathbb{1}_{\{\tau=m\}}
$$

(c) Show that

$$
\mathbb{P}\left(\max _{0 \leq m \leq n} M_{m} \geq \lambda\right) \leq \frac{1}{\lambda} \mathbb{E}\left(M_{n}\right)
$$

3. Doob's maximal inequality in continuous time

Let $\left(M_{t}\right)_{t \in \mathbb{R}_{+}}$be a continuous non-negative (continuous-time) submartingale with respect to a filtration $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$. Use the previous exercise to show that for any $T>0$

$$
\mathbb{P}\left(\sup _{0 \leq t \leq T} M_{t} \geq \lambda\right) \leq \frac{1}{\lambda} \mathbb{E}\left(M_{T}\right)
$$

Hint. Set $\pi_{n}=\left\{k T 2^{-n}: k=0,1,2, \ldots, 2^{n}\right\}$ for any $n \in \mathbb{N}$ and consider first $\sup _{t \in \pi_{n}} M_{t}$.
4. Let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be a standard one-dimensional Brownian motion with respect to a filtration $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$. Show that B_{t} and $B_{t}^{2}-t$ are martingales with respect to $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$.
5. Let $f \in \mathcal{L}^{2}$ be simple and bounded and define $X_{t}(\omega)=\int_{0}^{t} f(s, \omega) \mathrm{d} B_{s}(\omega)$ and $\langle X\rangle_{t}(\omega)=$ $\int_{0}^{t} f(s, \omega)^{2} \mathrm{~d} s$. Show that $X_{t}^{2}-\langle X\rangle_{t}$ is a martingale. Show also that $\langle X\rangle$ is the quadratic variation process $V_{X}^{(2)}$ in the sense of the definition in Section 1.3 in the lecture notes.

