Department of Mathematics and Statistics
Schramm-Loewner evolution, Fall 2011
Problem Sheet 3 (Sep 27)

1. Let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be a standard one-dimensional Brownian motion. Show that $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$satisfies Brownian scaling: if $r>0$ then the process $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$defined by $X_{t}=r^{-1 / 2} B_{r t}$ is a standard one-dimensional Brownian motion.
2. Show also that the process $\left(Y_{t}\right)_{t \in \mathbb{R}}$ defined by

$$
Y_{t}= \begin{cases}0 & \text { when } t=0 \\ t B_{1 / t} & \text { when } t>0\end{cases}
$$

is a standard one-dimensional Brownian motion.
Hint. The following result about Gaussian random variables might be useful: If the random variables $X_{1}, X_{2}, \ldots, X_{n}$ are jointly Gaussian (also called multivariate normal), then they are independent if and only if $\mathbb{E}\left(\left(X_{j}-\mathbb{E} X_{j}\right)\left(X_{k}-\mathbb{E} X_{k}\right)\right)=0$ for any $j \neq k$.
3. A standard d-dimensional Brownian motion is an \mathbb{R}^{d}-valued stochastic process $\left(B_{t}^{(1)}, \ldots, B_{t}^{(d)}\right)$ where $B_{t}^{(1)}, \ldots, B_{t}^{(d)}$ are independent standard one-dimensional Brownian motions.

Let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be a standard d-dimensional Brownian motion and let $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be an orthogonal transformation (a linear mapping $x \mapsto A x$ with $A^{T}=A^{-1}$). Show that the process $\left(Z_{t}\right)_{t \in \mathbb{R}_{+}}$defined by $Z_{t}=A B_{t}$ is a standard d-dimensional Brownian motion.
4. Let $X_{n}, n \in \mathbb{N}$, and X be random variables in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Show that the following statements are equivalent:
(1) $X_{n} \rightarrow X$ almost surely, i.e. $\mathbb{P}\left(\left\{\omega: \lim _{n} X_{n}(\omega)=X(\omega)\right\}\right)=1$.
(2) $\lim _{m \rightarrow \infty} \mathbb{P}\left(\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right|<\varepsilon\right.\right.$ for all $\left.n \geq m\right)=1$ for any $\varepsilon>0$.
(3) $\lim _{m \rightarrow \infty} \mathbb{P}\left(\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right| \geq \varepsilon\right.\right.$ for some $\left.n \geq m\right)=0$ for any $\varepsilon>0$.
5. Remember that we say that $X_{n} \rightarrow X$ in probability if and only if for each $\varepsilon>0$, $\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}-X\right| \geq \varepsilon\right)=0$.
(a) Show that if $X_{n} \rightarrow X$ almost surely, then $X_{n} \rightarrow X$ in probability.
(b) Show that if $X_{n} \rightarrow X$ in L^{p}, then $X_{n} \rightarrow X$ in probability. Show also that if $X_{n} \rightarrow X$ in probability and $\left|X_{n}\right| \leq Y$ for some non-negative random variable $Y \in L^{p}$, then $X_{n} \rightarrow X$ in L^{p}.
(c) Give an example of a sequence of random variables X_{n} which converges in L^{p}, but not almost surely.
(d) Show that if $X_{n} \rightarrow X$ in probability, then there exist a subsequence $X_{n_{j}}$ such that $X_{n_{j}} \rightarrow X$ almost surely.

