Department of Mathematics and Statistics
Schramm-Loewner evolution, Fall 2011
Problem Sheet 2 (Sep 20)

1. Borel-Cantelli lemma

Let $A_{k}, k \in \mathbb{N}$ be a sequence of events. Define $\left\{\omega: \omega \in A_{k}\right.$ i.o. $\}$, where i.o. stands for infinitely often, as the event $\bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} A_{j}$. Show that if $\sum_{k=1}^{\infty} \mathbb{P}\left(A_{k}\right)<\infty$ then

$$
\mathbb{P}\left(A_{n} \text { i.o. }\right)=0
$$

Hint. Consider the random variable $N=\sum_{k=1}^{\infty} \mathbb{1}_{A_{k}}$.

2. Brownian bridge

(a) Let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be a standard one-dimensional Brownian motion. For any $0<t<s$, find the conditional density of B_{t} given B_{s} in the sense of Exercise 5 of Problem Sheet 1. Illustrate this distribution by drawing its mean and standard deviation as functions of t.
(b) Let $0 \leq t<s$. Show that for any $\lambda \in(0,1)$, the random variable

$$
Y_{\lambda}=B_{\lambda t+(1-\lambda) s}-\lambda B_{t}-(1-\lambda) B_{s}
$$

is independent from $\sigma\left(B_{u}, 0 \leq u \leq t\right)$ and $\sigma\left(B_{u}, u \geq s\right)$.
(c) Conclude from (a)-(b) that for any $0 \leq r<s$ and $x, y \in \mathbb{R}$, conditionally on $B_{r}=x$ and $B_{s}=y$ the processes $\left(B_{t}\right)_{t \in[0, r)},\left(B_{t}\right)_{t \in(r, s)}$ and $\left(B_{t}\right)_{t \in(s, \infty)}$ are independent. Furthermore, if $0=s_{0}<s_{1}<\ldots<s_{n}$ and $x_{k} \in \mathbb{R}$ and $t_{k} \in\left(s_{k-1}, s_{k}\right)$ for $k=1,2, \ldots, n$, then describe the law of $\left(B_{t_{1}}, B_{t_{2}}, \ldots, B_{t_{n}}\right)$ given $B_{s_{1}}=x_{1}, B_{s_{2}}=x_{2}, \ldots, B_{s_{n}}=x_{n}$.
3. (a) Let X be a Gaussian random variable with mean 0 and variance 1. Show that for any $x>0$,

$$
\mathbb{P}(X \geq x) \leq \frac{1}{\sqrt{2 \pi} x} \exp \left(-\frac{1}{2} x^{2}\right)
$$

(b) Let $X_{n} \sim N\left(\mu_{n}, \sigma_{n}^{2}\right)$ be a sequence of Gaussian random variables such that $X_{n} \rightarrow X$ almost surely and $\mu_{n} \rightarrow \mu$ and $\sigma_{n}^{2} \rightarrow \sigma^{2}$ as $n \rightarrow \infty$. Show that $X \sim N\left(\mu, \sigma^{2}\right)$. (Here, as usual, $X \sim N\left(\mu, \sigma^{2}\right)$ means that X is distributed normally with mean μ and variance σ^{2}.)

4. A construction of Brownian motion on $[0,1]$

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with a countably infinite set $(\xi(t))_{t \in \mathcal{D}}$ of independent $N(0,1)$ random variables, where $\mathcal{D}=\bigcup \mathcal{D}_{n}$ and $\mathcal{D}_{n}=\left\{k 2^{-n}: k=0,1,2, \ldots, 2^{n}\right\}$ are the sets of dyadic rationals. (Such probability space can be constructed, for example, as a product space.)
(a) We are first going to construct a process $B(t), t \in \mathcal{D}$, such that it agrees with the distribution of Brownian motion on the dyadic points.

On $\mathcal{D}_{0}=\{0,1\}$, define $B(0)=0$ and $B(1)=c_{0} \xi(1)$. Define then recursively $B(t)$ on $t \in \mathcal{D}_{n} \backslash \mathcal{D}_{n-1}$ for $n \geq 1$, by setting

$$
B(t)=a_{n} B\left(t-2^{-n}\right)+b_{n} B\left(t+2^{-n}\right)+c_{n} \xi(t)
$$

for any $t \in \mathcal{D}_{n} \backslash \mathcal{D}_{n-1}$. Find the real numbers $c_{0}, a_{n}, b_{n}, c_{n}, n \geq 1$ such that $B(1)$ has the correct distribution (Brownian motion at time 1) and the conditional distribution of $B(t), t \in$ $\mathcal{D}_{n} \backslash \mathcal{D}_{n-1}$, given $B(t), t \in \mathcal{D}_{n-1}$, is the correct one (the Brownian bridge distribution from Exercise 3(c)).
(b) Now we extend the process $B(t)$ to the whole interval $[0,1]$.

Let $\left.B\right|_{\mathcal{D}_{n}}$ be the restriction of B to \mathcal{D}_{n} and define $B^{(n)}(t)$ as the extension of $\left.B\right|_{\mathcal{D}_{n}}$ by linear interpolation to $[0,1]$. Define piecewice linear processes $Z^{(0)}=B^{(0)}$ and $Z^{(n)}=$ $B^{(n)}-B^{(n-1)}, n \geq 1$. Show that

$$
\sum_{n=0}^{\infty} \mathbb{P}\left(\text { for some } t \in \mathcal{D}_{n},|\xi(t)| \geq c \sqrt{n}\right)<\infty
$$

when $c>\sqrt{2 \log 2}$. Use Borel-Cantelli lemma (Exercise 1) to conclude that the sum $\sum_{n=0}^{\infty}\left\|Z^{(n)}\right\|_{\infty}$ is almost surely finite and that almost surely the series

$$
B(t)=\sum_{n=0}^{\infty} Z^{(n)}(t)
$$

converges uniformly in $[0,1]$.
5. Let $\left(B_{t}\right)_{t \in[0,1]}$ be the process constructed in the previous exercise. Prove that the increments of B_{t} are independent and that $B_{s+t}-B_{s}$ is normally distributed with mean 0 and variance t.

