Department of Mathematics and Statistics
 Schramm-Loewner evolution, Fall 2011
 Problem Sheet 12 (Dec 13)

1. Schwarzian derivative

Define the Schwarzian derivative of f at z as

$$
S f(z)=\frac{f^{\prime \prime \prime}(z)}{f^{\prime}(z)}-\frac{3}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}
$$

for any function f which is locally conformal near z, that is, f is holomorphic in a neighborhood of z with $f^{\prime}(z) \neq 0$.
(a) Show that S satisfies

$$
(S(f \circ g))(z)=g^{\prime}(z)^{2} S f(g(z))+S g(z)
$$

for any functions f and g that are locally conformal near $g(z)$ and z, respectively.
(b) Show that S satisfies

$$
(S(\phi \circ f \circ \psi))(z)=\psi^{\prime}(z)^{2} S f(\psi(z))
$$

for all Möbius maps ϕ and ψ.
(c) Let A be a hull with $0 \notin A$ and define $\Phi_{A}(z)=g_{A}(z)-g_{A}(0)$. Show that

$$
a_{1}(\tilde{A})=-\frac{1}{6} S \Phi_{A}(0)
$$

where $a_{1}(\tilde{A})$ is the half-plane capacity of the hull $\tilde{A}=\left\{-z^{-1}: z \in A\right\}$. Deduce that $S \Phi_{A}(0)<0$ unless Φ_{A} is a identity map.
2. Show using the Koebe distortion theorem that there exists constants C and r such that for any conformal map $f: \mathbb{H} \rightarrow \mathbb{C}$ and for any $x \in \mathbb{R}, y>0$ and $1 / 2 \leq s \leq 2$

$$
\begin{gathered}
C^{-1}\left|f^{\prime}(i y)\right| \leq\left|f^{\prime}(i s y)\right| \leq C\left|f^{\prime}(i y)\right| \\
C^{-1}\left(1+x^{2}\right)^{-r}\left|f^{\prime}(i y)\right| \leq\left|f^{\prime}(y(x+i))\right| \leq C\left(1+x^{2}\right)^{r}\left|f^{\prime}(i y)\right|
\end{gathered}
$$

What is the value of r that you get from the Koebe distortion theorem?
3. (a) Let g_{t} be a Loewner chain and $f_{t}=g_{t}^{-1}$. By differentiating the Loewner equation of f_{t} with respect to z, find a differential equation for $f_{t}^{\prime}(z)$. Show that for $x \in \mathbb{R}, y>0$

$$
\left|\partial_{t} f_{t}^{\prime}(x+i y)\right| \leq \frac{2\left|f_{t}^{\prime \prime}(x+i y)\right|}{y}+\frac{2\left|f_{t}^{\prime}(x+i y)\right|}{y^{2}}
$$

(b) Show using the special case $\left|a_{2}\right| \leq 2$ of the Bieberbach-de Branges theorem that there is a constant $c>0$ such that

$$
\left|f^{\prime \prime}(z)\right| \leq \frac{c}{\operatorname{Im} z}\left|f^{\prime}(z)\right|
$$

for any $f: \mathbb{H} \rightarrow \mathbb{C}$ conformal and for any $z \in \mathbb{H}$.
(c) Show that there are constants c_{1}, c_{2}, c_{3} such that following holds for any Loewner chain: for any $t \in \mathbb{R}_{+}, x \in \mathbb{R}$ and $y>0$

$$
\left|\partial_{t} f_{t}^{\prime}(x+i y)\right| \leq \frac{c_{1}\left|f_{t}^{\prime}(x+i y)\right|}{y^{2}}
$$

and if $0 \leq s \leq y^{2}$ then

$$
\begin{gathered}
\left|f_{t+s}^{\prime}(x+i y)\right| \leq c_{2}\left|f_{t}^{\prime}(x+i y)\right| \\
\left|f_{t+s}(x+i y)-f_{t}(x+i y)\right| \leq c_{3} y^{2}\left|f_{t}^{\prime}(x+i y)\right| .
\end{gathered}
$$

4. Let $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$be a standard one-dimensional Brownian motion and let $\alpha \in \mathbb{R}$. Define $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$by $X_{t}=B_{t}+\alpha t$.
(a) Let $0=t_{0}<t_{1}<\ldots<t_{n}=T$. Write the joint probability density of $X_{t}, t \in$ $\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$, with respect to the joint probability density of $B_{t}, t \in\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$.
(b) Let $T>0$. Show that the laws of $\left(B_{t}\right)_{t \in[0, T]}$ and $\left(X_{t}\right)_{t \in[0, T]}$ are absolutely continuous with respect to each other. Define $\left(Y_{t}\right)_{t \in \mathbb{R}_{+}}$by $Y_{t}=\sqrt{\kappa} B_{t}, \kappa \geq 0$. Show that the laws of $\left(B_{t}\right)_{t \in[0, T]}$ and $\left(Y_{t}\right)_{t \in[0, T]}$ are mutually singular unless $\kappa=1$. Remember that probability measures \mathbb{P} and \mathbb{Q} are mutually singular if there is an event E such that $\mathbb{P}(E)=1$ and $\mathbb{Q}(E)=0$.

Hint. For the second claim, consider the quadratic variation of these processes.
(c) Show that the laws of $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$and $\left(X_{t}\right)_{t \in \mathbb{R}_{+}}$are mutually singular when $\alpha \neq 0$.

Hint. When $\alpha>0$, consider the probabilities $\mathbb{P}\left(X_{t} \rightarrow \infty\right.$ as $\left.t \rightarrow \infty\right)$ and $\mathbb{P}\left(B_{t} \rightarrow \infty\right.$ as $t \rightarrow$ $\infty)$.

