Department of Mathematics and Statistics Schramm-Loewner evolution, Fall 2011 Problem Sheet 11 (Nov 29)

- 1. Let f be holomorphic and $Z_t = X_t + iY_t$ be a complex semimartingale, i.e. the real and imaginary parts X_t and Y_t are semimartingales.
 - (a) Show that if $\langle Y \rangle_t = 0$ for all t, then

$$df(Z_t) = f'(Z_t)dZ_t + \frac{1}{2}f''(Z_t)d\langle X \rangle_t.$$

(b) Show that if $\langle X \rangle_t = \langle Y \rangle_t$ and $\langle X, Y \rangle_t = 0$ for all t, then

$$\mathrm{d}f(Z_t) = f'(Z_t)\mathrm{d}Z_t.$$

(c) In the general case, find an expression for $\langle Z \rangle_t$ so that Itô's formula can be written as

$$df(Z_t) = f'(Z_t)dZ_t + \frac{1}{2}f''(Z_t)d\langle Z \rangle_t.$$

2. Let's deal with both the forward and reverse Schramm-Loewner evolution by fixing $\nu = \pm 1$ and letting $g_t(z)$ be the solution of the following equation

$$\partial_t g_t(z) = \nu \frac{2}{g_t(z) - W_t}, \qquad g_0(z) = z$$

where $W_t = -\sqrt{\kappa}B_t$. Let $Z_t = g_t(z) - W_t$ and let X_t and Y_t be the real and imaginary parts of Z_t , respectively. Verify all the following formulas

$$dX_{t} = 2\nu \frac{X_{t}}{X_{t}^{2} + Y_{t}^{2}} dt + \sqrt{\kappa} dB_{t}, \qquad \partial_{t} Y_{t} = -2\nu \frac{Y_{t}}{X_{t}^{2} + Y_{t}^{2}}, \qquad \partial_{t} \frac{|g'_{t}(z)|}{Y_{t}} = 4\nu \frac{|g'_{t}(z)|}{Y_{t}} \frac{Y_{t}^{2}}{(X_{t}^{2} + Y_{t}^{2})^{2}} dt + \sqrt{\kappa} \frac{Y_{t}}{X_{t}^{2} + Y_{t}^{2}} dB_{t},$$

$$d \log |Z_{t}| = -\frac{1}{2} (\kappa - 4\nu) \frac{X_{t}^{2} - Y_{t}^{2}}{(X_{t}^{2} + Y_{t}^{2})^{2}} dt + \sqrt{\kappa} \frac{X_{t}}{X_{t}^{2} + Y_{t}^{2}} dB_{t},$$

$$d \sin \arg Z_{t} = (\sin \arg Z_{t}) \left[\frac{(\kappa - 4\nu)X_{t}^{2} - \frac{\kappa}{2}Y_{t}^{2}}{(X_{t}^{2} + Y_{t}^{2})^{2}} dt - \sqrt{\kappa} \frac{X_{t}}{X_{t}^{2} + Y_{t}^{2}} dB_{t} \right]$$

3. Let $U \subset \mathbb{C}$ be a simply connected domain with $U \neq \mathbb{C}$ and let $z_0 \in U$. Let ψ be the unique conformal map from U onto \mathbb{D} such that $\psi(z_0) = 0$ and $\psi'(z_0) > 0$. Then the *conformal radius of U from* z_0 is defined as

$$\rho(z_0, U) = \frac{1}{\psi'(z_0)}.$$

- (a) Show that if ϕ is a conformal map from U onto \mathbb{D} with $\phi(z_0) = 0$ then $\rho(z_0, U) = |\phi'(z_0)|^{-1}$. Show also that $\rho(\lambda z_0, \lambda U) = \lambda \rho(z_0, U)$ for $\lambda > 0$ and $\rho(f(z_0), f(U)) = |f'(z_0)| \rho(z_0, U)$ for any conformal map $f: U \to \mathbb{C}$.
- (b) Show using the Koebe distortion theorem that

$$\operatorname{dist}(z_0, \partial U) \le \rho(z_0, U) \le 4 \operatorname{dist}(z_0, \partial U).$$

(c) Let g be a conformal map from U onto \mathbb{H} . Show that

$$\rho(z_0, U) = \frac{2 \operatorname{Im} g(z_0)}{|g'(z_0)|}.$$

4. Dimension of SLE(κ) is $1 + \frac{\kappa}{8}$

Consider SLE(κ). Let's assume that there is some $\mu > 0$ such that the limit

$$h(z) = \lim_{\varepsilon \searrow 0} \varepsilon^{-\mu} \, \mathbb{P}(\rho(z, U_z) \le \varepsilon)$$

exists and h is smooth and positive in \mathbb{H} . Here U_z is the connected component of z in $\mathbb{H} \setminus \gamma[0,\infty)$.

- (a) Show that $h(\lambda z) = \lambda^{-\mu} h(z)$. Write $h(x+iy) = y^{-\mu} \tilde{h}(x/y)$.
- (b) Find a second order differential operator \mathcal{D} such that $\mathcal{D}\tilde{h} = 0$. Hint. $\mathbb{P}(\rho(z, U_z) \leq \varepsilon \mid \mathcal{F}_t)$ is a martingale. You can assume that convergence in the definition of h is sufficiently uniform so that $\lim_{\varepsilon \searrow 0} \varepsilon^{-\mu} \mathbb{P}(\rho(z, U_z) \leq \varepsilon \mid \mathcal{F}_t)$ is a local martingale.
- (c) Find a positive solution of $\mathcal{D}\tilde{h}=0$ by trying a solution of the form $\tilde{h}(u)=(1+u^2)^{\alpha}$. What is the value of μ ?

5. For $\kappa > 4$, almost surely $\tau(z) < \infty$

- (a) Let $\nu \in \mathbb{C}$ with $|\nu| = 1$ and let $0 < \alpha < 1$. Show that $z \mapsto \nu z^{\alpha}$ defines a conformal conformal map from \mathbb{H} to \mathbb{C} (for any choice of the branch, if you wish). Find $\nu = \nu(\alpha)$ such that the image domain is symmetric with respect to the y-axis and lies in \mathbb{H} .
- (b) Let $h(z) = \operatorname{Im}(\nu z^{\alpha})$ where $\nu = \nu(\alpha)$ is as above. Show that there is a constant $C = C(\alpha) \ge 1$ such that $C^{-1}|z|^{\alpha} \le h(z) \le C|z|^{\alpha}$ for all $z \in \overline{\mathbb{H}}$.
- (c) Consider $\mathrm{SLE}(\kappa)$ with $\kappa > 4$ and let $\alpha = \alpha(\kappa) = 1 4/\kappa$. Show that the real and imaginary parts of Z_t^{α} are local martingales where $Z_t = g_t(z) W_t$, $z \in \mathbb{H}$, and $W_t = -\sqrt{\kappa}B_t$. Conclude that $h(Z_t)$ is a local martingale.
- (d) For any R>0, define $\sigma_R=\tau(z)\wedge\inf\{t\in[0,\tau(z)):|Z_t|=R\}$. We make the assumption that $\sigma_R<\infty$ almost surely. (See Rohde&Schramm, Basic properties of SLE, Lemma 6.5., for the proof of this fact.) What is the geometric description of σ_R , that is, it is the exit time of Z_t from which set? Show that $h(Z_{t\wedge\sigma_R})$ is a martingale and show that there exist a constant $\tilde{C}=\tilde{C}(\kappa)\geq 1$ such that

$$\tilde{C}^{-1} \left(\frac{|z|}{R} \right)^{\alpha} \le \mathbb{P} \left(|Z_{\sigma_R}| = R \right) \le \tilde{C} \left(\frac{|z|}{R} \right)^{\alpha}.$$

 $\mathbf{2}$

Hint. Use the optional stopping theorem.

(e) Deduce that for $\kappa > 4$ and for any $z \in \mathbb{H}$, almost surely $\tau(z) < \infty$.