Department of Mathematics and Statistics Schramm-Loewner evolution, Fall 2011 Problem Sheet 11 (Nov 29)

1. Let f be holomorphic and $Z_{t}=X_{t}+i Y_{t}$ be a complex semimartingale, i.e. the real and imaginary parts X_{t} and Y_{t} are semimartingales.
(a) Show that if $\langle Y\rangle_{t}=0$ for all t, then

$$
\mathrm{d} f\left(Z_{t}\right)=f^{\prime}\left(Z_{t}\right) \mathrm{d} Z_{t}+\frac{1}{2} f^{\prime \prime}\left(Z_{t}\right) \mathrm{d}\langle X\rangle_{t}
$$

(b) Show that if $\langle X\rangle_{t}=\langle Y\rangle_{t}$ and $\langle X, Y\rangle_{t}=0$ for all t, then

$$
\mathrm{d} f\left(Z_{t}\right)=f^{\prime}\left(Z_{t}\right) \mathrm{d} Z_{t}
$$

(c) In the general case, find an expression for $\langle Z\rangle_{t}$ so that Itô's formula can be written as

$$
\mathrm{d} f\left(Z_{t}\right)=f^{\prime}\left(Z_{t}\right) \mathrm{d} Z_{t}+\frac{1}{2} f^{\prime \prime}\left(Z_{t}\right) \mathrm{d}\langle Z\rangle_{t}
$$

2. Let's deal with both the forward and reverse Schramm-Loewner evolution by fixing $\nu= \pm 1$ and letting $g_{t}(z)$ be the solution of the following equation

$$
\partial_{t} g_{t}(z)=\nu \frac{2}{g_{t}(z)-W_{t}}, \quad g_{0}(z)=z
$$

where $W_{t}=-\sqrt{\kappa} B_{t}$. Let $Z_{t}=g_{t}(z)-W_{t}$ and let X_{t} and Y_{t} be the real and imaginary parts of Z_{t}, respectively. Verify all the following formulas

$$
\begin{gathered}
\mathrm{d} X_{t}=2 \nu \frac{X_{t}}{X_{t}^{2}+Y_{t}^{2}} \mathrm{~d} t+\sqrt{\kappa} \mathrm{d} B_{t}, \quad \partial_{t} Y_{t}=-2 \nu \frac{Y_{t}}{X_{t}^{2}+Y_{t}^{2}}, \quad \partial_{t} \frac{\left|g_{t}^{\prime}(z)\right|}{Y_{t}}=4 \nu \frac{\left|g_{t}^{\prime}(z)\right|}{Y_{t}} \frac{Y_{t}^{2}}{\left(X_{t}^{2}+Y_{t}^{2}\right)^{2}} \\
\mathrm{~d} \arg Z_{t}=(\kappa-4 \nu) \frac{X_{t} Y_{t}}{\left(X_{t}^{2}+Y_{t}^{2}\right)^{2}} \mathrm{~d} t-\sqrt{\kappa} \frac{Y_{t}}{X_{t}^{2}+Y_{t}^{2}} \mathrm{~d} B_{t} \\
\mathrm{~d} \log \left|Z_{t}\right|=-\frac{1}{2}(\kappa-4 \nu) \frac{X_{t}^{2}-Y_{t}^{2}}{\left(X_{t}^{2}+Y_{t}^{2}\right)^{2}} \mathrm{~d} t+\sqrt{\kappa} \frac{X_{t}}{X_{t}^{2}+Y_{t}^{2}} \mathrm{~d} B_{t} \\
\mathrm{~d} \sin \arg Z_{t}=\left(\sin \arg Z_{t}\right)\left[\frac{(\kappa-4 \nu) X_{t}^{2}-\frac{\kappa}{2} Y_{t}^{2}}{\left(X_{t}^{2}+Y_{t}^{2}\right)^{2}} \mathrm{~d} t-\sqrt{\kappa} \frac{X_{t}}{X_{t}^{2}+Y_{t}^{2}} \mathrm{~d} B_{t}\right]
\end{gathered}
$$

3. Let $U \subset \mathbb{C}$ be a simply connected domain with $U \neq \mathbb{C}$ and let $z_{0} \in U$. Let ψ be the unique conformal map from U onto \mathbb{D} such that $\psi\left(z_{0}\right)=0$ and $\psi^{\prime}\left(z_{0}\right)>0$. Then the conformal radius of U from z_{0} is defined as

$$
\rho\left(z_{0}, U\right)=\frac{1}{\psi^{\prime}\left(z_{0}\right)}
$$

(a) Show that if ϕ is a conformal map from U onto \mathbb{D} with $\phi\left(z_{0}\right)=0$ then $\rho\left(z_{0}, U\right)=$ $\left|\phi^{\prime}\left(z_{0}\right)\right|^{-1}$. Show also that $\rho\left(\lambda z_{0}, \lambda U\right)=\lambda \rho\left(z_{0}, U\right)$ for $\lambda>0$ and $\rho\left(f\left(z_{0}\right), f(U)\right)=\left|f^{\prime}\left(z_{0}\right)\right| \rho\left(z_{0}, U\right)$ for any conformal map $f: U \rightarrow \mathbb{C}$.
(b) Show using the Koebe distortion theorem that

$$
\operatorname{dist}\left(z_{0}, \partial U\right) \leq \rho\left(z_{0}, U\right) \leq 4 \operatorname{dist}\left(z_{0}, \partial U\right)
$$

(c) Let g be a conformal map from U onto \mathbb{H}. Show that

$$
\rho\left(z_{0}, U\right)=\frac{2 \operatorname{Im} g\left(z_{0}\right)}{\left|g^{\prime}\left(z_{0}\right)\right|}
$$

4. Dimension of $\operatorname{SLE}(\kappa)$ is $1+\frac{\kappa}{8}$

Consider $\operatorname{SLE}(\kappa)$. Let's assume that there is some $\mu>0$ such that the limit

$$
h(z)=\lim _{\varepsilon \backslash 0} \varepsilon^{-\mu} \mathbb{P}\left(\rho\left(z, U_{z}\right) \leq \varepsilon\right)
$$

exists and h is smooth and positive in \mathbb{H}. Here U_{z} is the connected component of z in $\mathbb{H} \backslash \gamma[0, \infty)$.
(a) Show that $h(\lambda z)=\lambda^{-\mu} h(z)$. Write $h(x+i y)=y^{-\mu} \tilde{h}(x / y)$.
(b) Find a second order differential operator \mathcal{D} such that $\mathcal{D} \tilde{h}=0$. Hint. $\mathbb{P}\left(\rho\left(z, U_{z}\right) \leq \varepsilon \mid \mathcal{F}_{t}\right)$ is a martingale. You can assume that convergence in the definition of h is sufficiently uniform so that $\lim _{\varepsilon \backslash 0} \varepsilon^{-\mu} \mathbb{P}\left(\rho\left(z, U_{z}\right) \leq \varepsilon \mid \mathcal{F}_{t}\right)$ is a local martingale.
(c) Find a positive solution of $\mathcal{D} \tilde{h}=0$ by trying a solution of the form $\tilde{h}(u)=\left(1+u^{2}\right)^{\alpha}$. What is the value of μ ?
5. For $\kappa>4$, almost surely $\tau(z)<\infty$
(a) Let $\nu \in \mathbb{C}$ with $|\nu|=1$ and let $0<\alpha<1$. Show that $z \mapsto \nu z^{\alpha}$ defines a conformal conformal map from \mathbb{H} to \mathbb{C} (for any choice of the branch, if you wish). Find $\nu=\nu(\alpha)$ such that the image domain is symmetric with respect to the y-axis and lies in \mathbb{H}.
(b) Let $h(z)=\operatorname{Im}\left(\nu z^{\alpha}\right)$ where $\nu=\nu(\alpha)$ is as above. Show that there is a constant $C=C(\alpha) \geq 1$ such that $C^{-1}|z|^{\alpha} \leq h(z) \leq C|z|^{\alpha}$ for all $z \in \overline{\mathbb{H}}$.
(c) Consider $\operatorname{SLE}(\kappa)$ with $\kappa>4$ and let $\alpha=\alpha(\kappa)=1-4 / \kappa$. Show that the real and imaginary parts of Z_{t}^{α} are local martingales where $Z_{t}=g_{t}(z)-W_{t}, z \in \mathbb{H}$, and $W_{t}=-\sqrt{\kappa} B_{t}$. Conclude that $h\left(Z_{t}\right)$ is a local martingale.
(d) For any $R>0$, define $\sigma_{R}=\tau(z) \wedge \inf \left\{t \in[0, \tau(z)):\left|Z_{t}\right|=R\right\}$. We make the assumption that $\sigma_{R}<\infty$ almost surely. (See Rohde\&Schramm, Basic properties of SLE, Lemma 6.5., for the proof of this fact.) What is the geometric description of σ_{R}, that is, it is the exit time of Z_{t} from which set? Show that $h\left(Z_{t \wedge \sigma_{R}}\right)$ is a martingale and show that there exist a constant $\tilde{C}=\tilde{C}(\kappa) \geq 1$ such that

$$
\tilde{C}^{-1}\left(\frac{|z|}{R}\right)^{\alpha} \leq \mathbb{P}\left(\left|Z_{\sigma_{R}}\right|=R\right) \leq \tilde{C}\left(\frac{|z|}{R}\right)^{\alpha}
$$

Hint. Use the optional stopping theorem.
(e) Deduce that for $\kappa>4$ and for any $z \in \mathbb{H}$, almost surely $\tau(z)<\infty$.

