

Department of Mathematics and Statistics Schramm–Loewner evolution, Fall 2011 Problem Sheet 10 (Nov 22)

1. Define $m(z) = -\overline{z}$ which is an injective antiholomorphic self-map of \mathbb{H} . Show that $SLE(\kappa)$, $\kappa > 0$, is symmetric, i.e., $(m(K_t))_{t \in \mathbb{R}_+}$ and $(K_t)_{t \in \mathbb{R}_+}$ are equal in distribution. Is the random Loewner chain with the driving process $W_t = \sqrt{\kappa B_t} + \alpha t$ symmetric?

2. Time change of a semimartingale

(a) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with a filtration $(\mathcal{F}_t)_{t \in \mathbb{R}_+}$ and let $(B_t)_{t \in \mathbb{R}_+}$ be a standard one-dimensional Brownian motion with respect to $(\mathcal{F}_t)_{t \in \mathbb{R}_+}$. Let $a(t, \omega)$ be a continuous, positive, adepted process. Define a random time-change by setting:

$$S(t,\omega) = \int_0^t a(r,\omega)^2 \,\mathrm{d}r, \qquad \sigma(s,\omega) = \inf\{t \in \mathbb{R}_+ : S(t,\omega) \ge s\}$$

Let

$$\tilde{B}_s(\omega) = \int_0^{\sigma(s)} a(r,\omega) \,\mathrm{d}B_r(\omega)$$

By Theorem 1.6.8, $(\tilde{B}_s)_{s \in \mathbb{R}_+}$ is a standard one-dimensional Brownian motion with respect to $(\mathcal{F}_{\sigma(s)})_{s \in \mathbb{R}_+}$ and therefore we know how to construct Itô integral with respect to \tilde{B}_s . Show that the following time-change formula holds: for continuous, adapted process $v(t, \omega)$

$$\int_0^s v(\sigma(q),\omega) \,\mathrm{d}\tilde{B}_q(\omega) = \int_0^{\sigma(s)} v(r,\omega)a(r,\omega) \,\mathrm{d}B_r(\omega)$$

Hint. Check this first for $v(r, \omega) = \mathbb{1}_{[\sigma(s_1), \sigma(s_2))}(r)$.

(b) Let X_t be a semimartingale

$$dX_t(\omega) = u(t,\omega)dt + v(t,\omega)dB_t(\omega).$$

Show that the process $(\tilde{X}_s)_{s \in \mathbb{R}_+}$ defined by

$$\tilde{X}_s = X_{\sigma(s)}$$

is a semimartingale with respect to $(\mathcal{F}_{\sigma(s)})_{s\in\mathbb{R}_+}$ and $(\tilde{B}_s)_{s\in\mathbb{R}_+}$ and satisfies

$$\mathrm{d}\tilde{X}_s = \frac{u(\sigma(s))}{a(\sigma(s))^2} \mathrm{d}s + \frac{v(\sigma(s))}{a(\sigma(s))} \mathrm{d}\tilde{B}_s.$$

3. (a) Consider a strip $S_{\pi} = \{z \in \mathbb{C} : 0 < \text{Im } z < \pi\}$. Show that

$$\phi_c: z \mapsto \log(z-c)$$

is a conformal map from \mathbb{H} onto S_{π} . Show that the image of 0 is in \mathbb{R} if and only if c < 0.

(b) Let
$$K \subset \overline{\mathbb{H}}$$
 be a hull. Let $x \in \mathbb{R} \setminus K$ and $x' = g_K(x)$. Show that $G = \phi_{x'} \circ g_K \circ \phi_x^{-1}$

satisfies

$$G(z) = z - 2a_0 + o(1), \ z \to -\infty, \qquad G(z) = z + o(1), \ z \to +\infty.$$

Find a_0 in terms of g_K and x. Is a_0 positive?

(c) Show that the conformal onto maps $f: S_{\pi} \to S_{\pi}$ with $f(-\infty) = -\infty$ and $f(+\infty) = +\infty$ are of the form

$$f(z) = z + C$$

where $C \in \mathbb{R}$ is a constant.

(d) Let's call a compact $K \subset \overline{S_{\pi}}$ a *s*-hull or a hull in the strip if $S_{\pi} \setminus K$ is simply connected. Show that for any s-hull K, there exists a unique conformal map G_K from $S_{\pi} \setminus K$ onto S_{π} such that

$$G_K(z) = z - a_0 + o(1), \ z \to -\infty, \qquad G_K(z) = z + a_0 + o(1), \ z \to +\infty$$
(1)

for some constant $a_0 \in \mathbb{R}$. The constant a_0 could be called the *s*-capacity or the strip capasity of K. Show that it is additive when mappings with this form of expansion are composed.

4. Chordal SLE(κ) in the strip S_{π}

(a) Let c < 0. Let $(g_t)_{t \in \mathbb{R}_+}$ be a Loewner chain (in \mathbb{H}) with the driving term $(W_t)_{t \in \mathbb{R}_+}$. Motivated by the previous exercise define a time-change $\sigma(s)$ (which depends on c and $(W_t)_{t \in \mathbb{R}_+}$) such that

$$-\frac{1}{2}\log g_{\sigma(s)}'(c) = s$$

and define

$$G_{s}(z) = \log \left[g_{\sigma(s)} \left(c + |c|e^{z} \right) - g_{\sigma(s)} \left(c \right) \right] + s - \log |c|$$

Show that G_s is a conformal map from $S_{\pi} \setminus \tilde{K}_s$ onto S_{π} normalized as in (1) where $(\tilde{K}_S)_{s \in \mathbb{R}_+}$ is a growing family of s-hulls and $(G_s)_{s \in \mathbb{R}_+}$ satisfies the Loewner equation of S_{π} , i.e.,

$$\partial_s G_s(z) = \coth \frac{G_s(z) - \tilde{W}_s}{2}, \qquad G_0(z) = z \tag{2}$$

where $\tilde{W}_s = \log(W_{\sigma(s)} - g_{\sigma(s)}(c)) + s - \log |c|.$

(b) Show that when g_t is $SLE(\kappa)$, that is, $W_t = \sqrt{\kappa}B_t$, then \tilde{W}_s is a Brownian motion with drift.

5. Reverse the calculations of the previous problems: Suppose that G_s satisfies (2) with a driving process $\tilde{W}_s = \sqrt{\kappa}\tilde{B}_s + \alpha s$ (note that we have general $\kappa \geq 0$ and $\alpha \in \mathbb{R}$ here). Find the conformal transformation from S_{π} to \mathbb{H} and the correct time-change so that G_s is transformed to g_t which satisfies the Loewner equation of \mathbb{H} with a driving process W_t . Is g_t well-defined for all t?

Hint. You might need a similar calculation as in Exercise 2 of Problem sheet 9 for G_s to get the correct normalization for g_t . Also, the full answer to this exercise should show that W_t satisfies the following system of stochastic differential equations:

$$dW_t = \sqrt{\kappa} dB_t + \frac{\rho}{W_t - C_t} dt$$
$$dC_t = \frac{2}{C_t - W_t} dt$$

where $\rho = \rho(\kappa, \alpha) \in \mathbb{R}$ is a constant. Notice that the equation for dC_t is the Loewner equation of \mathbb{H} .