Department of Mathematics and Statistics
Schramm-Loewner evolution, Fall 2011
Problem Sheet 1 (Sep 13)

1. Let X be a non-negative random variable, and let h be continuously differentiable and nondecreasing function on $\mathbb{R}_{+}=[0, \infty)$ such that $h(0)=0$ (for example, $h(x)=x^{p}, p>0$). Show that

$$
\mathbb{E}(h(X))=\int_{0}^{\infty} h^{\prime}(y) \mathbb{P}(X \geq y) \mathrm{d} y
$$

2. Show that for any random variable $X \geq 0$ and any real number $x>0$

$$
\mathbb{P}(X \geq x) \leq \frac{\mathbb{E}(X)}{x}
$$

3. Let \mathcal{A} be a σ-algebra such that for each $A \in \mathcal{A}, \mathbb{P}(A)=0$ or 1 . Show that $\mathbb{E}(X \mid \mathcal{A})=\mathbb{E}(X)$ for each $X \in L^{1}$.
4. Let $\Omega_{1}, \Omega_{2}, \ldots$ be a finite or countably infinite partition of Ω into \mathcal{F}-measurable sets, i.e., $\Omega_{j} \cap \Omega_{k}=\emptyset$ when $j \neq k$ and $\bigcup_{k=1}^{\infty} \Omega_{k}=\Omega$. Assume that each Ω_{k} has positive probability. Let \mathcal{G} be the σ-algebra generated by $\Omega_{1}, \Omega_{2}, \ldots$ Show that

$$
\mathbb{E}(X \mid \mathcal{G})=\frac{\mathbb{E}\left(X ; \Omega_{k}\right)}{\mathbb{P}\left(\Omega_{k}\right)} \quad \text { on } \Omega_{k}
$$

Here we use the standard notation $\mathbb{E}(X ; E)=\int_{E} X d \mathbb{P}$.
5. Let X and Y be two random variables that have a joint density $f(x, y)$ in the sense that for any bounded, Borel (measurable) function ϕ on \mathbb{R}^{2}

$$
\mathbb{E}(\phi(X, Y))=\int_{\mathbb{R}^{2}} \phi(x, y) f(x, y) \mathrm{d} x \mathrm{~d} y
$$

Define the marginal density of Y by

$$
f_{Y}(y)=\int_{\mathbb{R}} f(x, y) \mathrm{d} x
$$

and let

$$
f(x \mid y)= \begin{cases}\frac{f(x, y)}{f_{Y}(y)} & , \text { if } f_{Y}(y)>0 \\ 0 & , \text { if } f_{Y}(y)=0\end{cases}
$$

(a) Show that $f(x \mid y) f_{Y}(y)=f(x, y)$ for almost every (x, y) with respect to the Lebesgue measure on \mathbb{R}^{2}. Hint: Prove first that the Lebesgue measure of $\left\{x: f(x \mid y) f_{Y}(y) \neq f(x, y)\right\}$ is zero for each y and then use Fubini's theorem.
(b) Show that $f(x \mid y)$ can be seen as the conditional density of X given that $Y=y$ in the sense that

$$
\mathbb{E}(h(X) \mid Y)(\omega)=\int_{\mathbb{R}} h(x) f(x \mid Y(\omega)) \mathrm{d} x
$$

for any bounded Borel function h on \mathbb{R}.

