

Department of Mathematics and Statistics Schramm–Loewner evolution, Fall 2011 Problem Sheet 1 (Sep 13)

1. Let X be a non-negative random variable, and let h be continuously differentiable and nondecreasing function on $\mathbb{R}_+ = [0, \infty)$ such that h(0) = 0 (for example, $h(x) = x^p$, p > 0). Show that

$$\mathbb{E}(h(X)) = \int_0^\infty h'(y) \mathbb{P}(X \ge y) \mathrm{d}y.$$

2. Show that for any random variable $X \ge 0$ and any real number x > 0

$$\mathbb{P}(X \ge x) \le \frac{\mathbb{E}(X)}{x}$$

- **3.** Let \mathcal{A} be a σ -algebra such that for each $A \in \mathcal{A}$, $\mathbb{P}(A) = 0$ or 1. Show that $\mathbb{E}(X|\mathcal{A}) = \mathbb{E}(X)$ for each $X \in L^1$.
- **4.** Let $\Omega_1, \Omega_2, \ldots$ be a finite or countably infinite partition of Ω into \mathcal{F} -measurable sets, i.e., $\Omega_j \cap \Omega_k = \emptyset$ when $j \neq k$ and $\bigcup_{k=1}^{\infty} \Omega_k = \Omega$. Assume that each Ω_k has positive probability. Let \mathcal{G} be the σ -algebra generated by $\Omega_1, \Omega_2, \ldots$ Show that

$$\mathbb{E}(X|\mathcal{G}) = \frac{\mathbb{E}(X;\Omega_k)}{\mathbb{P}(\Omega_k)} \quad \text{on } \Omega_k$$

Here we use the standard notation $\mathbb{E}(X; E) = \int_E X d\mathbb{P}$.

5. Let X and Y be two random variables that have a joint density f(x, y) in the sense that for any bounded, Borel (measurable) function ϕ on \mathbb{R}^2

$$\mathbb{E}(\phi(X,Y)) = \int_{\mathbb{R}^2} \phi(x,y) f(x,y) \, \mathrm{d}x \, \mathrm{d}y.$$

Define the marginal density of Y by

$$f_Y(y) = \int_{\mathbb{R}} f(x, y) \,\mathrm{d}x$$

and let

$$f(x|y) = \begin{cases} \frac{f(x,y)}{f_Y(y)} & , \text{ if } f_Y(y) > 0\\ 0 & , \text{ if } f_Y(y) = 0 \end{cases}$$

(a) Show that $f(x|y)f_Y(y) = f(x,y)$ for almost every (x,y) with respect to the Lebesgue measure on \mathbb{R}^2 . *Hint:* Prove first that the Lebesgue measure of $\{x : f(x|y)f_Y(y) \neq f(x,y)\}$ is zero for each y and then use Fubini's theorem.

(b) Show that f(x|y) can be seen as the conditional density of X given that Y = y in the sense that

$$\mathbb{E}(h(X)|Y)(\omega) = \int_{\mathbb{R}} h(x)f(x|Y(\omega))dx$$

for any bounded Borel function h on \mathbb{R} .