
Chapter 4

Schramm–Loewner evolution

4.1 Definition of Schramm–Loewner evolution and some sim-
ple properties

4.1.1 Schramm’s principle

In this section, we present Schramm’s principle which is a small calculation which shows which kind of
random Loewner chains have connection to statistical physics. We present this principle in a heuristical
level, but with some additional definitions and conditions this could be made a theorem that states
“Schramm–Loewner evolutions (as defined below) are the only random curves satisfying conformal
invariance and the domain Markov property (as defined below)”. We expect those two properties to
be satisfied by scaling limits of random interfaces of statistical physics models at criticality. The crucial
invention of Oded Schramm (1961–2008) was in his paper released in 1999 that random curves can
be described using the Loewner equation with a random driving term. This enabled him to define
Schramm–Loewner evolutions.

Assume that we are given a collection of probability measures (PU,a,b) indexed by the set all triplets
(U, a, b) where U is any simply connected domain and a 6= b are any two boundary points of U . Assume
that PU,a,b is the law of a random curve γ : [0,∞) → C (the parametrization is arbitrary) such that
γ([0,∞)) ⊂ U and γ(0) = a, γ(∞) = b. We assume that the family (P(U,a,b)) satisfies the following
properties:

• Let φ∗ denote the pushforward defined by φ∗P = P◦φ−1. The family (P(U,a,b)) satisfies conformal
invariance (CI):

φ∗P(U,a,b) = P(φ(U),φ(a),φ(b))

• Let Ft = σ(γ|[0,t]). The family (P(U,a,b)) satisfies domain Markov property (DMP):

P(U,a,b)(γ|[t,∞) ∈ B | Ft) = P(U\γ([0,t]),γ(t),b)(γ ∈ B)

for any measurable set B in the space of curves (in what ever way that space is defined. . . ).

We also assume that we can describe the curve γ by the Loewner equation in the sense that P(H,0,∞)

is supported on curves which satisfy Theorem 3.2.7.
We now investigate the consequences of these assumptions. The first observation is that we need

to describe only one of the measures in the family. CI fixes the rest of them. Hence let’s investigate
P(H,0,∞). By Theorem 3.2.7 for each realization of γ there is a driving term (Wt(γ))t∈R+ such that the
corresponding conformal maps gt satisfy the Loewner equation. Here we also make a reparametrization
with the half-plane capacity. Let’s call the random driving term (Wt)t∈R+ as driving process of the
random curve γ.

Fix some t ∈ R+. Define γ̂(s) = gt(γ(t + s)) −Wt, s ∈ Rt. By CI and the DMP, γ̂ is distributed
as γ and independent of the realization of γ|[0,t]. The conformal map associated to the hull γ̂([0, s]) is

ĝs(z) = g̃t,s(z +Wt)−Wt = gt+s ◦ g−1
t (z +Wt)−Wt.
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Now by differentiating this in s

∂sĝs(z) = (∂sgt+s)(g−1
t (z +Wt))

=
2

gt+s(g−1
t (z +Wt))−Wt+s

=
2

ĝs(z)− (Wt+s −Wt)

Hence
Ŵs = Wt+s −Wt

is the driving process of γ̂ and since γ̂ is distributed as γ, Ŵs is independent of Ft and it is distributed
as Ws. Hence the continuous stochastic process (Wt)t∈R+ has independent and stationary increments.
The next theorem shows that (Wt)t∈R+ is a Brownian motion with drift. After the proof of that
theorem we’ll show that actually there is no drift in our case.

Theorem 4.1.1. If (Xt)t∈R+ , X0 = 0, is a continuous stochastic process which has independent and
stationary increments, then there exists a standard one-dimensional Brownian motion (Bt)t∈R+ and
real numbers κ ≥ 0 and α such that Xt =

√
κBt + αt.

Remark. The process of the form Xt =
√
κBt +αt is called Brownian motion with drift. Since the law

of Brownian motion is invariant in the reflection Bt → −Bt, we can choose the constant in front of the
Brownian motion non-negative. The above parametrization is such that EXt = αt and VarXt = κt.

Remark. A counterexample to this theorem is a Poisson process. It has independent and stationary
increments, but it is not continuous.

Remark. We do not assume a priori that Xt has finite moments, otherwise this is a simple application
of a central limit theorem.

Sketch of proof. For more details, see Kallenberg’s book [7] Theorems 5.15 and 13.4. It is enough to
prove that Xt is Gaussian for any t. The rest then follows from linearity of the expected value and the
variance. Also without loss of generality, we can restrict to t = 1 and prove that X1 is Gaussian.

For each n ∈ N, write X1 =
∑n
j=1 ξn,j where

ξn,j = X j
n
−X j−1

n
.

By continuity of t 7→ Xt,
max
j

(ξn,j)→ 0 (4.1)

almost surely as n→∞.
Let Yn,j = ξn,j1|ξn,j |≤1. Then

∑n
j=1 Yn,j → X1 almost surely by (4.1). Let Ỹn,j be a symmetrization

of Yn,j , that is, take two independent copies Y (1)
n,j and Y

(2)
n,j of Yn,j , j = 1, . . . , n, and set Ỹn,j =

Y
(1)
n,j − Y

(2)
n,j . Now Yn,j and Ỹn,j have finite moments and hence

mn =
n∑
j=1

EYn,j , sn =
n∑
j=1

VarYn,j (4.2)

are finite. In addition
n∑
j=1

E Ỹn,j = 0, s−1
n

n∑
j=1

E
(
Ỹ 2
n,j

)
= 2. (4.3)

Since
∑n
j=1 Ỹn,j converges almost surely to the symmetrization of X1, sn has to be bounded. Otherwise

along some subsequence snk ↗∞ and s−1/2
nk

∑nk
j=1 Ỹnk,j converges weakly (in distribution) to a N(0, 2)

distributed random variable by a version of central limit theorem (CLT). This is a contradiction. When
using the CLT we need both (4.1) and (4.3), see Kallenberg [7] Theorem 5.15.

Since sn is bounded we can choose a subsequence snk which converges to s ≥ 0. Then again
by CLT,

∑nk
j=1(Ynk,j − EYnk,j) converges to a N(0, s) distributed random variable. Therefore mnk

converges to some m. Hence X1 is distributed according to the normal distribution N(m, s).
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Now the driving process of a random curve γ distributed according to P(H,0,∞) is

Wt =
√
κBt + αt

for some κ ≥ 0 and α ∈ R. We will show that α = 0. We apply once more CI and note that P(H,0,∞)

is invariant under the scaling z 7→ λz, λ > 0, that is, γ(λ)(t) = λγ(t/λ2) is distributed as γ. Note that
the correct parametrization of γ(λ) follows from the scaling property of the half-plane capacity. Now
by a similar calculation as above, it follows that the driving process of γ(λ) is (W (λ)

t )t∈R+ is

W
(λ)
t = λWt/λ2 .

Since (W (λ)
t )t∈R+ is distributed as (Wt)t∈R+ , the driving process satisfies the Brownian scaling and

hence α = 0 and
Wt =

√
κBt.

To conclude this section, we have shown that the only families (PU,a,b) satisfying CI and the DMP are
those where the measure P(H,0,∞) is the law of a random curve with a Loewner driving process equal
to a constant multiple of a one-dimensional Brownian motion.

4.1.2 Definition of SLE as a stochastic Loewner chain

By Lemma 3.2.6, the mapping from the continuous functions (Wt)t∈R+ to the Loewner chains (gt)t∈R+

is continuous in the following sense (the type of convergence giving the topology for the conformal
maps is called Carathéodory convergence): if a sequence (W (n)

t )t∈R+ converges to (Wt)t∈R+ in the
sense that for each T > 0, sup0≤t≤T |W

(n)
t −Wt| → 0 as n → ∞, then for each T > 0, and for each

compact J ⊂ H \ KT , g(n)
t (z) converges to gt(z) uniformly in z ∈ J and t ∈ [0, T ]. Especially that

map from driving terms to the Loewner chains is measurable and hence if we have probability space
(Ω,F ,P) with a continuous stochastic process (Wt)t∈R+ , we can define a Loewner chain valued random
variable (gt)t∈R+ correponding to the driving term (Wt)t∈R+ .

Next definition is the simplest version of the definition of SLE. We will later redefine SLE as soon
as we know that SLE is a random curve

Definition 4.1.2. Let κ ≥ 0. A chordal Schramm–Loewner evolution SLE(κ) is a random Loewner
chain (the solution of (3.11)) with a driving process (Wt)t∈R+ equal to a Brownian motion with variance
parameter κ, that is, Wt =

√
κBt where (Bt)t∈R+ is a standard one-dimensional Brownian motion.

Figure 4.1: Realizations of hulls of SLE(3) and SLE(6) drawn up to a finite time. As it turns out these
curves will tend to infinity as the time tends infinity.

Remark. We call this kind of SLEs chordal because we expect that they will be random curves that
connect two boundary points, namely, 0 and ∞. A radial SLE would be a random curve connecting a
boundary point to an interior point.
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Example 4.1.3. Consider SLE(0). Then gt is the solution of the equation

∂tgt(z) =
2

gt(z)
, g0(z) = z

which can be integrated to give gt(z) =
√
z2 + 4t. Therefore SLE(0) is the vertical line segment

t 7→ 2
√
t. See also Example 3.2.5. Since this example is trivial, we assume now always that κ > 0.

Theorem 4.1.4. Let (Kt)t∈R+ be SLE(κ), κ > 0, and (Wt)t∈R+ the corresponding driving process
which is a Brownian motion with respect to a filtration (Ft)t∈R+ . SLE(κ) satisfies the following prop-
erties.

• Scale invariance: For any λ > 0, (λKt/λ2)t∈R+

d= (Kt)t∈R+ .

• Conformal Markov property: For any s ∈ R+, the family of hulls

(K̂s,t)t∈R+ =
(
gs(Ks+t \Ks)−Ws

)
t∈R+

is independent of Fs and (K̂s,t)t∈R+

d= (Kt)t∈R+ .

• Strong conformal Markov property: For any almost surely finite stopping time τ with respect
to (Ft)t∈R+ , the family of hulls

(K̂τ,t)t∈R+ =
(
gτ (Kτ+t \Kτ )−Wτ

)
t∈R+

is independent of Fτ and (K̂τ,t)t∈R+

d= (Kt)t∈R+ .

Proof. The conformal maps associated to the hulls

λKt/λ2 , gs(Ks+t \Ks)−Ws, gτ (Kτ+t \Kτ )−Wτ

are
λgt/λ2(z/λ), ĝs,t(z), ĝτ,t(z),

respectively, where
ĝs,t(z) = gs+t ◦ g−1

s (z +Ws)−Ws.

By differentiating these functions with respect to t, we find that they satisfy the Loewner equation
with the driving processes

λWt/λ2 , Ws+t −Ws, Wτ+t −Wτ ,

respectively. The claims now follow from the scaling property, the Markov property and the strong
Markov property of Brownian motion.

Exercise. Define m(z) = −z which is an injective antiholomorphic self-map of H. Show that SLE(κ),
κ > 0, is symmetric, i.e., (m(Kt))t∈R+

d= (Kt)t∈R+ . Is the random Loewner chain with the driving
process Wt =

√
κBt + αt symmetric?

Guided by the Schramm’s principle, now that we know how to define P(H,0,∞) we would like to
define P(U,a,b). It is natural to use the conformal invariance requirement for doing this and define
SLE(κ) in other domains by the conformal image of a SLE(κ) in H. Actually this definition relies on
the fact that SLE(κ) in H started from W0 = 0 has scale invariance, otherwise the law of SLE(κ) in
the other domain would depend on the choice of the conformal map.

Definition 4.1.5. Let (Kt)t∈R+ be a (chordal) SLE(κ) and let U be a simply connected domain and
a and b two boundary points of U with a 6= b. We define (chordal) SLE(κ) in a domain U going from
a to b to be the image of (Kt)t∈R+ under any conformal onto map φ : H → U with φ(0) = a and
φ(∞) = b.
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Remark. This definition is unique only up to a linear time change, because all the conformal onto maps
from H to U with the above properties are of the form z 7→ φ(λz) where λ > 0 is a constant. By the
scaling property of SLE, the choice of this conformal map only affects the time parametrization of the
hulls in U .

Remark. If the boundary of U is not locally connected and φ doesn’t extend continuously to the
boundary, a and b has to be understood as “generalized boundary points”, more specifically as prime
ends.

Naturally we make here the exception that SLE(κ) in H from x to∞ will always have parametriza-
tion with the half-plane capacity and therefore it is defined as the solution of the Loewner equation
with the driving process Wt = x+

√
κBt.

4.2 Phases of SLE

In this section we assume that SLE(κ) is a random curve. More precisely, almost surely there is a
curve γ, such that H \Kt is the unbounded component of H \ γ[0, t] for all t ∈ R+. We will prove this
result later, see Theorem 4.3.1 below.

The next theorem summarizes the important facts about the random curve γ. We will prove those
statements at least partly in this section and we are going to do it in several stages.

Theorem 4.2.1. Let the random curve γ : [0,∞) → H be SLE(κ) (in the sense of Theorem 4.3.1).
Then

• For all 0 < κ ≤ 4, γ is simple, γ(0,∞) ∩ R = ∅.

• For all 4 < κ < 8, γ is not simple:

for any 0 ≤ t1 < t2 there exists t1 < s1 < s2 < t2 such that γ(s1) = γ(s2). (4.4)

However, γ is not space-filling: for any z ∈ H, P(dist(z, γ[0,∞)) > 0) = P(z /∈ γ[0,∞)) = 1.

• For all κ ≥ 8, γ is not simple, it satisfies 4.4, but γ is space-filling: P(z ∈ γ[0,∞)) = 1.

Moreover, γ is transient in the sense that |γ(t)| → ∞ as t→∞.

Remark. Again, there is a connection from the transience of γ to Schramm’s principle where we
assumed that P(U,a,b) is the law of a random curve such that γ(0) = a and limt→∞ γ(t) = b.

4.2.1 Phase transition at κ = 4

Actually, many of the properties stated in the previous theorem are consequences of a simple obser-
vation. Fix z ∈ H with z 6= 0 for a moment. Let gt be SLE(κ) with a driving process Wt = −

√
κBt.

Define
Ẑt = gt(z)−Wt, Zt = Ẑt/

√
κ.

By the Loewner equation, these processes have the Itô differentials

dẐt =
2
Ẑt

dt+
√
κdBt, dZt =

2/κ
Zt

dt+ dBt.

Therefore (Zt)t∈[0,τ(z)), where τ(z) is as in the section 3.2.2, could be called as a δ(κ)-dimensional
complex Bessel process sent from z/

√
κ where

δ(κ) = 1 +
4
κ
∈ (1,∞).

In the next, proposition we list some properties of the (real) Bessel process.
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Proposition 4.2.2. Let δ ∈ R and let (Xt)t∈[0,T ) be a δ-dimensional Bessel process sent from x > 0,
that is, (Xt)t∈[0,T ) is the unique solution of

dXt =
δ − 1
2Xt

dt+ dBt, X0 = x

and T ∈ (0,∞] is the maximal time such that the solution exists and is positive. Then

• P(T <∞) = 1 if and only if δ < 2,

• P(T =∞) = 1 if and only if δ ≥ 2,

• P(inf0≤t<T Xt > 0) = 1 if and only if δ > 2.

Remark. As we saw earlier, the Euclidian norm of a d-dimensional Brownian motion (sent away from
the origin) is a d-dimensional Bessel process. In the case δ = 2, the Bessel process will get arbitrarily
large and small values, but it won’t hit zero.

Proof. These claim can be proven for instance based on the fact that X2−δ
t , δ 6= 2, is a local martingale

and for δ = 2, logXt is a martingale. We leave the details as an exercise.

Since x ∈
⋃
t∈R+

Kt if and only if τ(x) < ∞ where τ(x) is as in the section 3.2.2, if we apply the
previous result for (gt(x)−Wt)/

√
κ, x ∈ R \ {0}, we see the following properties hold.

Proposition 4.2.3. For 0 < κ ≤ 4, (
⋃
t∈R+

Kt) ∩ R = {0} and for κ > 4, R ⊂
⋃
t∈R+

Kt.

Let’s first show that SLE(κ), 0 < κ ≤ 4, is simple, based on this result. Let s > 0 and let x− and
x+ be the two images of 0 under the map gs −Ws. By the previous proposition and by the conformal
Markov property, γ̂(t) = gs(γ(s + t)) −Ws, t ∈ R+, intersect the real axis only at 0. Especially it
doesn’t intersect [x−, 0) ∪ (0, x+]. Since fs = g−1

s is continuous to the boundary, this implies that

γ[0, s] ∩ γ[s,∞) = {γ(s)} (4.5)

almost surely. In fact this holds almost surely for all s (we can show it first for all rational s and
then by continuity to all s). If t1 < t2 are such that γ(t1) = γ(t2), then pick t1 < s < t2 such that
γ(s) 6= γ(t1) which contradicts (4.5). Hence γ is simple.

Let’s then show that SLE(κ), κ > 4, is not simple. Let 0 ≤ s1 < u < s2. Let x̂− ≤ 0 ≤ x̂+ be such
that the image of γ[s1, u] under gu −Wu is [x̂−, x̂+]. Since for fixed t > 0, P(τ(x) ≤ t)→ 1 as x↘ 0,

P(γ[0, t] ∩ (0, x] 6= ∅) = 1

for all t > 0 and x > 0. Hence we can find u < t2 < s2 such that gu(γ(t2)) −Wu ∈ [x̂−, 0) ∪ (0, x̂+].
And hence there exists s1 ≤ t1 < u such that γ(t1) = γ(t2) and we have shown the property (4.4).

Now we have shown the claims in Theorem 4.2.1 about the “phase transition” at κ = 4. We will
verify the claims about whether or not γ is the space-filling, in later sections. We conclude this section
by proving the transience of γ in the case 0 < κ ≤ 4.

Let 0 < κ ≤ 4. Since γ doesn’t hit interval [1, 2], say, it is clear that dist(γ[0, t], [1, 2]) > 0 for any
t > 0, but it might be possible that γ(tk)→ [1, 2] along some sequence tk →∞. The next result shows
that this doesn’t happen.

Proposition 4.2.4. When 0 < κ ≤ 4, P(dist(γ[0,∞), [x, x′]) > 0) = 1 for any 0 < x < x′ or
x < x′ < 0.

Proof. By symmetry and the scale invariance of SLE(κ), it is enough to show that P(dist(γ[0,∞), [1, x]) >
0) = 1 for all x > 1. Let 0 < δ < 1/4 and define

σδ = inf{t ∈ R+ : dist(γ(t), [1, x]) ≤ δ}. (4.6)

Let’s consider the event σδ <∞. Let R > 2x be such that γ[0, σδ] ⊂ B(0, R). Let h(z) be the bounded
harmonic function on H \ γ[0, σδ] that gets value 1 on the right-hand side of γ[0, σδ] and on [0, 1/2]
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1
2

1 x

gσδ−−−−−−→

gσδ
(1

2
)Wσδ

Figure 4.2: The harmonic function h in the proof of Proposition 4.2.4 has boundary value 1 in the
shaded boundary arc and 0 elsewhere on the boundary. The dotted curve is the set of points at distance
δ from the interval [1, x].

and the boundary values are 0 elsewhere. See Figure 4.2. Then by applying the conformal map gσδ
we see that

h(iy) =
1
π

∫ gσδ (1/2)

Wσδ

Im gσδ(iy)
|gσδ(iy)− ξ|2

dξ =
1
πy

(gσδ(1/2)−Wσδ) + o(1)

as y → ∞. On the other hand, we can formulate h(iy) as the probability that a complex Brownian
motion sent from iy exits H \ γ[0, σδ] through the right-hand side of γ[0, σδ] or the interval [0, 1/2].
On this event the Brownian motion has to intersect the vertical line segment from the interval [1, x]
to γ(σδ). Let x0 = Re γ(σδ). Then the probability that a complex Brownian motion sent from iy will
hit the segment [x0, x0 + iδ] before exiting the upper half-plane is equal to 2δ

πy + o(1) as y →∞ again
by considering the conformal associated to the vertical line segment together with the Poisson kernel
of the upper half-plane.

Therefore there is a constant C > 0 such that on the event σδ < ∞ gσδ(1/2) − Wσδ ≤ Cδ.
Because the infimum of a Bessel process is positive, there exists a random δ0 such that σδ = ∞ for
0 < δ < δ0.

Proposition 4.2.5. For 0 < κ ≤ 4, |γ(t)| → ∞ as t→∞.

Proof. First of all |γ(tk)| → ∞ along some sequence tk →∞, because otherwise γ would be bounded
and hence had bounded half-plane capacity.

Let T1 be the hitting time of ∂B(0, 1) by γ and let x− < 0 < x+ be the two images of 0 under
the map gT1 −WT1 . Then by Proposition 4.2.4 almost surely distance from the SLE(κ) curve γ̂(t) =
gT1(γ(T1 + t)) −WT1 , t ∈ R+, to [−n,−1/n] ∪ [1/n, n] is positive for all n ∈ N. Hence it will stay at
a positive distance from x− and x+ and consequently, there exists a random variable r > 0 such that
|γ(t)| ≥ r for t ≥ T1. Using this property and scaling we can construct a sequence of random variables
0 < R1 < R2 < . . . such that Rk → ∞ almost surely and γ doesn’t enter to B(0, Rk−1) after hitting
∂B(0, Rk).

4.2.2 Phase transition at κ = 8

The property whether or not x ∈
⋃
t∈R+

Kt, for x ∈ R \ {0}, relied completely on the properties of a
single real Bessel process. This section provides an example of a property where we have to consider
gt(z) for two different points z simultaneously. In this section, we assume that κ > 4.

Let 0 < ξ
(1)
0 < ξ

(2)
0 and ξ

(k)
t = gt(ξ

(k)
0 )−Wt, k = 1, 2, where Wt = −

√
κdBt. Now

dξ(k)t =
2

ξ
(k)
t

dt+
√
κdBt.

Denote the law of the pair (ξ(1)t , ξ
(2)
t ) by Pξ

(1)
0 ,ξ

(2)
0 . Let T (k) be the hitting time of 0 by ξ

(k)
t . Then

T (1) ≤ T (2) < ∞ by the results of the previous section. We would like to resolve, whether or not
T (1) < T (2), and to calculate the function

F̂
(
ξ
(1)
0 , ξ

(2)
0

)
= Pξ

(1)
0 ,ξ

(2)
0

(
T (1) < T (2)

)
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By scale invariance we can write

F̂
(
ξ
(1)
0 , ξ

(2)
0

)
= F

(
ξ
(1)
0

ξ
(2)
0

)
.

By Markov property of SLE(κ), on the event t < T (1)

Pξ
(1)
0 ,ξ

(2)
0

(
T (1) < T (2)

∣∣∣Ft) = F

(
ξ
(1)
t

ξ
(2)
t

)
.

Therefore

Mt = F

(
ξ
(1)

t∧T (1)

ξ
(2)

t∧T (1)

)
is a martingale. We will investigate the consequences of this observation assuming also that F is
smooth.

Define

Xt = log
ξ
(2)
t

ξ
(1)
t

, St = exp(−Xt) =
ξ
(1)
t

ξ
(2)
t

.

Then Xt ∈ (0,∞) and St ∈ (0, 1) for t ∈ [0, T (1)). By Itô’s formula

dXt =
1
2

(4− κ)(e−2Xt − 1)
dt

(ξ(1)t )2
+
√
κ(e−Xt − 1)

dBt
ξ
(1)
t

and

dSt = −StdXt +
1
2
Std〈X〉t

=
1
2
St(1− St)

[
(4− κ)(St + 1) + κ(1− St)

] dt

(ξ(1)t )2
+
√
κSt(1− St)

dBt
ξ
(1)
t

. (4.7)

Also by Itô’s formula

dF (St) =
1
2
St(1− St)

{[
(4− κ)(St + 1) + κ(1− St)

]
F ′(St) + κSt(1− St)F ′′(St)

} dt

(ξ(1)t )2

+
{
. . .
}

dBt

If F (St) is a local martingale then

(logF ′)′(s) =
F ′′(s)
F ′(s)

=
(κ− 4)(s+ 1)− κ(1− s)

κs(1− s)
=

2(κ− 4)
κ(1− s)

− 4
κs

and hence
F (s) = C

∫
(1− s)−

2(κ−4)
κ s−

4
κ ds+ C ′

The integral is convergent at 0 if and only if κ > 4 and at 1 if and only if κ < 8.
For any 4 < κ < 8, define a function

F (s) = C(κ)
∫ 1

s

(1− u)−
2(κ−4)
κ u−

4
κ du (4.8)

where the constant is such that F (0) = 1, that is,

C(κ) =
(∫ 1

0

(1− u)−
2(κ−4)
κ u−

4
κ du

)−1

=
Γ(4/κ)

Γ(1− 4/κ)Γ(8/κ− 1)
.

This F is now the function that we were searching for as we’ll see soon.
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It is possible to show that St will exit any compact subinterval of (0, 1) before T (1) by making a
time-change ds = (ξ(1)t )−2dt in (4.7) and then comparing to a Brownian motion. We skip the details
of this argument. Define

G(s) =
∫ s

0

(1− u)−
2(κ−4)
κ u−

4
κ du

then G : [0, 1) → [0,∞) is strictly increasing and lims↗1G(s) < ∞ if and only if 4 < κ < 8. Let
0 < s < s′ < 1. The optional stopping theorem shows that

G(s) = G(s′) + (G(ε)−G(s′))Ps,1
(
(St)t∈[0,T (1)) hits ε before s′

)
=⇒ Ps,1

(
(St)t∈[0,T (1)) hits all ε ∈ (0, s) before s′

)
= 1− G(s)

G(s′)
. (4.9)

Hence Ps,1(inft∈[0,T (1)) St = 0) = 1 when κ ≥ 8 and 0 < Ps,1(inft∈[0,T (1)) St = 0) < 1 when 4 < κ < 8.

Lemma 4.2.6. The event that inft∈[0,T (1)) St = 0 and the event that T (1) < T (2) differ only with a
event of zero probability.

Proof. If T (1) < T (2) then clearly limt→T (1) St = 0.
Let σε = inf{t ∈ [0, T (1)) : St = ε}. If inft∈[0,T (1)) St = 0, then σε < T (1) for all 0 < ε < s. Now

use strong Markov property of (ξ(1)t , ξ
(2)
t ) and scale invariance to see that

P(s,1)
({
T (1) = T (2)

}
∩
{
τε < T (1)

})
= E(s,1)

(
P(s,1)

(
T (1) = T (2)

∣∣∣ Fσε) ;
{
τε < T (1)

})
≤ P(ε1/2,ε−1/2)

(
T (1) = T (2)

)
→ 0

as ε↘ 0, because
P(ε1/2,ε−1/2)

(
T (1) < t < T (2)

)
→ 1

for any fixed t > 0. Hence

Ps
({

T (1) = T (2)
}
∩
{

inf
t∈[0,T (1))

St = 0
})

= 0

which gives the claim.

We have now shown the following result. For the claim for 4 < κ < 8, we use (4.9).

Proposition 4.2.7. For κ ≥ 8, P(τ(x) < τ(x′)) = 1 for all 0 < x < x′. For 4 < κ < 8, P(τ(x) <
τ(x′)) = F (x/x′) for all 0 < x < x′ where F is as in (4.8).

4.2.3 Time-change of semimartingales

The next result about time-change of stochastic integrals is an addition to the tools introduced in
Chapter 1. It has several application to SLE.

Proposition 4.2.8. Let (Ω,F ,P) be a probability space with a filtration (Ft)t∈R+ and let (Bt)t∈R+ be
a standard one-dimensional Brownian motion with respect to (Ft)t∈R+ . Let a(t, ω) be a continuous,
positive, adepted process. Define a random time-change by setting:

S(t, ω) =
∫ t

0

a(r, ω)2 dr, σ(s, ω) = inf{t ∈ R+ : S(t, ω) ≥ s}

Let (B̃s)s∈R+ be the process defined by

B̃s(ω) =
∫ σ(s)

0

a(r, ω) dBr(ω),
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which is a standard one-dimensional Brownian motion with respect to (Fσ(s))s∈R+ . Then for any
continuous, adapted process v(t, ω) the following time-change formula holds∫ s

0

v(σ(q), ω) dB̃q(ω) =
∫ σ(s)

0

v(r, ω)a(r, ω) dBr(ω).

Moreover if Xt is a semimartingale

dXt(ω) = u(t, ω)dt+ v(t, ω)dBt(ω)

then the process (X̃s)s∈R+ defined by X̃s = Xσ(s) is a semimartingale with respect to (Fσ(s))s∈R+ and
(B̃s)s∈R+ and satisfies

dX̃s =
u(σ(s))
a(σ(s))2

ds+
v(σ(s))
a(σ(s))

dB̃s.

Proof. Exercise.

4.2.4 SLE(κ), κ ≥ 8, is space filling

We will also state a proposition here about whether or not z ∈
⋃
t∈R+

Kt.

Proposition 4.2.9. When κ > 4, z ∈
⋃
t∈R+

Kt almost surely for any z ∈ H.

In the proof of this result we need to keep track of a single point Zt = gt(z)−Wt, z ∈ H and the proof
relies on the fact that Z1−4/κ

t is a local martingale (the real and imaginary parts are local martingales).
We will skip the details of the proof and leave them to the exercises. Instead, in this section we will
show that z ∈ H is not swallowed when κ ≥ 8. We say that z is swallowed, if z ∈

⋃
t∈R+

Kt but
z /∈ γ[0,∞). This result will be the first one where we consider the Loewner flow of SLE(κ) for an
interior point. Therefore let’s first list some formulas related to the flow.

For any fixed z ∈ H, let Zt = gt(z)−Wt, t ∈ [0, τ(z)) and let Xt and Yt be the real and imaginary
parts of Zt, respectively, and as usual let Wt = −

√
κBt. Then from the Loewner equation it follows

that

dXt =
2Xt

X2
t + Y 2

t

dt+
√
κdBt (4.10)

∂tYt = − 2Yt
X2
t + Y 2

t

(4.11)

∂t log |g′t(z)| = −2
X2
t − Y 2

t

(X2
t + Y 2

t )2
. (4.12)

The last equation follows by taking derivative of the Loewner equation with respect to z.
Since z 7→ log z is holomorphic, using Itô’s formula for the real and imaginary parts of logZt gives

d logZt = (2− κ/2)
dt
Z2
t

+
√
κ

dBt
Zt

and therefore by taking real and imaginary parts we find that

d log |Zt| = (2− κ/2)
X2
t − Y 2

t

(X2
t + Y 2

t )2
dt+

√
κ

Xt

X2
t + Y 2

t

dBt (4.13)

d argZt = −(2− κ/2)
2XtYt

(X2
t + Y 2

t )2
dt−

√
κ

Yt
X2
t + Y 2

t

dBt. (4.14)

Let now θt = argZt. Then we can rewrite the previous equation as

dθt =
1
2

(κ− 4) sin(2θt)
dt

X2
t + Y 2

t

−
√
κ sin(θt)

dBt√
X2
t + Y 2

t

Now observe the following fact which shows that we should study θt in more detail.
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z
gt−−−−−→

gt(z)

Wt

Figure 4.3: The harmonic measure of the shaded boundary arc on the left picture can be formulated by
the conformal map gt as a constant multiple of the argument of gt(z)−Wt. Therefore as z is swallowed
arg(gt(z)−Wt) converges to 0 or π.

Lemma 4.2.10. If z ∈ H is swallowed, that is, τ(z) <∞ but z /∈ γ[0,∞), then limt→τ(z) θt exists and
equals to 0 or π.

Proof. This is a simple application of the harmonic measure. Define ht(z) as the bounded harmonic
function in Ht = H\Kt such that the boundary values are π on the union of (−∞, 0] and the left-hand
side of γ[0, t] and 0 otherwise. Then if z is swallowed, ht(z) → {0, π} as t → τ(z) by the Beurling
estimate. On the other hand, ht(z) = arg(gt(z)−Wt) and the claim follows. See also Figure 4.3.

Make a time-change

S(t) =
∫ t

0

dr
X2
r + Y 2

r

, σ(s) = S−1(s), B̂s = −
∫ σ(s)

0

dBr√
X2
r + Y 2

r

which is implies that
σ̇(s) = X2

σ(s) + Y 2
σ(s).

Under this time-change θ̂s = θσ(s) satisfies

dθ̂s =
1
2

(κ− 4) sin(2θ̂s)ds+
√
κ sin(θ̂s)dB̂s.

Now Ŷs = Yσ(s) safisfies
∂sŶs = −2Ŷs =⇒ Ŷs = (Im z) exp(−2s).

Therefore lims→∞ σ(s) = τ(z) and 0 < θ̂s < π for all s ∈ R+. Hence we now need to investigate
whether or not lims→∞ θ̂s ∈ {0, π}.

Similarly as above, it is possible to find a function F : (0, π) → R such that F (θ̂s) is a local
martingale. Namely, we can find smooth F with F (π/2) = 0 and F ′(π/2) = 1 such that for all
θ ∈ (0, π)

F ′′(θ)
F ′(θ)

= −κ− 4
κ

sin(2θ)
sin(θ)2

.

Since
sin(2θ)
sin(θ)2

≈

{
2
θ when θ ≈ 0
− 2
π−θ when θ ≈ π

,

we have that − limθ↘0 F (θ) and limθ↗π F (θ) are infinite if and only if κ ≥ 8.
We will show that for any κ ≥ 8, it is not true that lims→∞ θ̂s ∈ {0, π}. By symmetry, it is

enough to show that on the event that lim infs∈R+ θ̂s = 0 we have that lim sups∈R+
θ̂s > 0. Let

σε = inf{s ∈ R+ : θ̂s = ε} for any ε ∈ (0, π). Let 0 < ε′ < ε < θ. On the event σε < ∞ by strong
Markov property of θ̂s

Pθ
(

(θ̂s)s≥σε hits π/2 before ε′
∣∣∣Fσε) = Pε

(
(θ̂s)s≥R+ hits π/2 before ε′

)
.
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The right-hand side can be given in terms of F , by the optional stopping theorem

F (ε) = F (ε′) + (F (π/2)− F (ε′))Pε
(

(θ̂s)s≥R+ hits π/2 before ε′
)

=⇒ Pε
(

(θ̂s)s≥R+ hits π/2 before ε′
)

=
F (ε)− F (ε′)
F (π/2)− F (ε′)

.

Since the right-hand side of the last equation goes to one as ε′ ↘ 0, we can choose a decreasing
sequence εn such that on the event σεn <∞

Pθ
(

(θ̂s)s≥σεn hits π/2 before εn+1

∣∣∣Fσεn) ≥ 1− 2−n

Therefore on the event that lim infs∈R+ θ̂s = 0, lim sups∈R+
θ̂s ≥ π/2. Now we have shown the following

result.

Proposition 4.2.11. For any κ ≥ 8, almost surely z is not swallowed.

4.3 SLE is a random curve

Throughout this section ft = g−1
t . In this section we will finally prove that any chordal SLE is a

random curve.

Theorem 4.3.1. Almost surely SLE(κ) is a curve in the sense that γ(t) = limε↘0 ft(W (t) + iε) exists
for all t ∈ R+, t 7→ γ(t) is continuous and H \ Kt is the unbounded component of H \ γ[0, t] for all
t ∈ R+.

Strictly speaking, we only prove this for κ 6= 8. The case κ = 8 follows from a result by Lawler,
Schramm and Werner by which a certain discrete random curve converges to SLE(8) as lattice mesh
tends to zero.

We will first present the auxiliary results needed for the proof of Theorem 4.3.1. The function
γ(t) = limε↘0 ft(W (t) + iε) is called the trace of the Loewner chain. It is useful to define

f̃t(z) = ft(z +Wt).

The goal of the sections 4.3.1 and 4.3.2 is to have good bounds for |f̃ ′t(iy)|, t ∈ [0, 1], y ∈ (0, 1]. The
proof of the theorem will be given in the section 4.3.3 below.

4.3.1 Reverse Schramm–Loewner evolution

Lemma 4.3.2. Let ht(z) be the solution of

∂tht(z) = − 2
ht(z)−Wt

, h0(z) = z (4.15)

where Wt =
√
κBt. Then the solution is well-defined for t ∈ R+ and the functions z 7→ ft(z+Wt)−Wt

and z 7→ ht(z) have the same distribution for each t ∈ R+. Especially, f̃ ′t(z) has the same distribution
as h′t(z).

Remark. This holds only for a single time instant. It is not true that the joint law of ft(z+Wt)−Wt,
t ∈ R+, is the same as the joint law of ht(z), t ∈ R+.

Proof. The solution of (4.15) is well-defined for all t because the imaginary part of ht(z) is strictly
increasing for all t.

Let Wt =
√
κBt. Fix s > 0. Let Vt = Ws−t − Ws, t ∈ [0, s]. Then (Vt)t∈[0,s] has the same

distribution as (Wt)t∈[0,s]. Let ht(z), t ∈ [0, s], be the solution of the differential equation

∂tht(z) = − 2
ht(z)− Vt

, h0(z) = z.
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It is clearly enough to show that fs(z+Ws)−Ws = hs(z). Note that for this equality to hold (ht)t∈[0,s]

has to be the solution for the Brownian motion (Vt)t∈[0,s] not for (Wt)t∈[0,s].
Fix z ∈ H for a moment and let

ζt = hs−t(z −Ws) +Ws

for t ∈ [0, s]. Then ζ0 = hs(z −Ws) +Ws and

ζ̇t =
2

ζt −Wt
.

Hence ζt = gt(ζ0) for all t ∈ [0, s]. Expecially, z = ζs = gs(hs(z −Ws) + Ws) and therefore fs(z +
Ws)−Ws = hs(z) for all z ∈ H.

4.3.2 Moments E|f̃ ′
t(z)|λ

Let’s deal with both the forward and reverse Schramm–Loewner evolution by fixing ν = ±1 and letting
ht(z) be the solution of the following equation

∂tht(z) = ν
2

ht(z)−Wt
, h0(z) = z

where Wt = −
√
κBt. For fixed z0 = x0 + iy0 ∈ H, let Zt = ht(z0) −Wt and let Xt and Yt be the

real and imaginary parts of Zt, respectively. Let’s list some useful formulas which are verified in the
exercises:

dXt = 2ν
Xt

X2
t + Y 2

t

dt+
√
κdBt, ∂tYt = −2ν

Yt
X2
t + Y 2

t

,

∂t|h′t(z0)| = −2ν|h′t(z0)| X
2
t − Y 2

t

(X2
t + Y 2

t )2
, ∂t

|h′t(z0)|
Yt

= 4ν
|h′t(z0)|
Yt

Y 2
t

(X2
t + Y 2

t )2
,

d argZt = (κ− 4ν)
XtYt

(X2
t + Y 2

t )2
dt−

√
κ

Yt
X2
t + Y 2

t

dBt,

d log |Zt| = −
1
2

(κ− 4ν)
X2
t − Y 2

t

(X2
t + Y 2

t )2
dt+

√
κ

Xt

X2
t + Y 2

t

dBt,

d sin argZt = (sin argZt)
[

(κ− 4ν)X2
t − κ

2Y
2
t

(X2
t + Y 2

t )2
dt−

√
κ

Xt

X2
t + Y 2

t

dBt

]
.

Now we fix ν = −1. Then all the processes above are well-defined for all t ∈ R+.
Let p, q, r ∈ R and define

Mt = |h′t(z0)|p Y qt (sin argZt)−2r.

By Itô’s formula, Mt is a local martingale if and only if

q = p− κ

2
r, r2 −

(
1 +

4
κ

)
r +

2
κ
p = 0

and in that case
dMt = 2r

√
κ

Xt

X2
t + Y 2

t

Mt dBt.

The reader can verify these claims.
Next we define a time-change:

S(t) =
∫ t

0

du
X2
u + Y 2

u

, σ(s) = S−1(s).

Let F̂s = Fσ(s). Then

B̂s =
∫ σ(s)

0

dBu√
X2
u + Y 2

u
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is a standard one-dimensional Brownian motion with respect to the filtration (F̂s)s∈R+ . Denote the
time-changed processes by

Ẑs = Zσ(s), X̂s = Xσ(s), Ŷs = Yσ(s), ĥs(z0) = hσ(s)(z0).

Notice that the equations

∂sŶs = 2Ŷs, ∂s
|ĥ′s(z0)|
Ŷs

= −4
|ĥ′s(z0)|
Ŷs

(sin arg Ẑs)2

hold and therefore

Ŷs = y0e
2s (4.16)

|ĥ′s(z0)| = exp
(

2s− 4
∫ s

0

(sin arg Ẑu)2du
)
. (4.17)

By (4.16), Ŷs is deterministic and strictly increasing. The equation (4.17) implies that

e−2s′ ≤
|ĥ′s+s′(z0)|
|ĥ′s(z0)|

≤ e2s
′
. (4.18)

Observe also that
Yt ≤

√
y2
0 + 4t (4.19)

This shows that y0e2s ≤
√
y2
0 + 4σ(s) and hence σ(s)→∞ as s→∞.

Under this time-change, the local martingale M̂s = Mσ(s) satisfies

dM̂s = 2r
√
κ (cos arg Ẑs) M̂s dBs.

It is not hard to show that (M̂s)s∈R+ is a martingale.

Lemma 4.3.3. Let N0 be a constant and let (Nt)t∈R+ be a local martingale with

Nt = N0 +
∫ t

0

AsNsdBs.

If for every t > 0 there is a constant c(t) such that |As| ≤ c(t) for all s ∈ [0, t], then Nt is a martingale.

Proof. Let Mt = Nt −N0. Then

Mt =
∫ t

0

(AsMs +AsN0)dBs.

Let n ∈ N and define T = inf{t ∈ R+ : 〈M〉t = n}. Then Mt∧T is an Itô integral with a L2 integrand.
Define f(t) = E(M2

t∧T ). By the Itô isometry

f(t) = E
(∫ t

0

(AsMs +AsN0)21s≤Tds
)

Therefore for any t′ ∈ [0, t]

f(t′) ≤ 2c(t)2N2
0 t
′ + 2c(t)2

∫ t′

0

f(s) ds ≤ c̃(t) t′ + c̃(t)
∫ t′

0

f(s) ds (4.20)

where c̃(t) = 2c(t)2 max{1, N2
0 }. This implies that f(t′) < exp(2c̃(t)t′) because no t′ ∈ [0, t] can be the

smallest s such that f(s) ≥ exp(2c̃(t)s) by (4.20). Therefore

E(〈N〉t∧T ) = E(〈M〉t∧T ) = f(t) < exp(2c̃(t)t)

Taking n → ∞ we get by monotone convergence that E(〈N〉t) ≤ exp(2c̃(t)t). This shows that the
integrand AtNt is in L2 and hence by the construction of the Itô integral, Nt is a martingale.
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Theorem 4.3.4. Let (p, r) ∈ R2 be a solution of the equation

r2 −
(

1 +
4
κ

)
r +

2
κ
p = 0

Then
M̂s = |ĥ′s(z0)|p Ŷ p−

κ
2 r

s (sin arg Ẑs)−2r

is a martingale and

E
(
|ĥ′s(z0)|p (sin arg Ẑs)−2r

)
= e−2s(p−κ2 r)

(
y0
|z0|

)−2r

.

Furthermore, if r ≥ 0 and p ≥ 0, then

P
(
|ĥ′s(z0)| ≥ λ

)
≤ λ−pe−2s(p−κ2 r)

(
y0
|z0|

)−2r

.

Proof. We have already shown the first claim. For the second one notice that

M̂s = y
p−κ2 r
0 e2s(p−

κ
2 r) |ĥ′s(z0)|p (sin arg Ẑs)−2r.

If r ≥ 0, then (sin arg Ẑs)−2r ≥ 1 and the last claim follows from the Chebyshev inequality.

Corollary 4.3.5. For every 0 ≤ r ≤ 1 + 4/κ, there is c = c(κ, r) < ∞ such that for all 0 ≤ t ≤ 1,
0 < y0 ≤ 1, e6 ≤ λ ≤ y−1

0 ,

P
(
|f̃ ′t(z0)| ≥ λ

)
≤ cλ−p

(
y0
|z0|

)−2r

δ(y0, λ). (4.21)

Here p = κ
2

((
1 + 4

κ

)
r − r2

)
≥ 0 and

δ(y0, λ) =


λ−p+

κ
2 r when p− κ

2 r > 0
1 + log 1

λy0
when p− κ

2 r = 0

y
p−κ2 r
0 when p− κ

2 r < 0

.

Proof. Since f̃ ′t and h′t have the same distribution, it is enough to show (4.21) when f̃ ′t is replaced by
h′t. Notice first that Yt ≤

√
y2
0 + 4t ≤

√
5. Therefore

P (|h′t(z0)| ≥ λ) ≤ P
(

sup
0≤s≤T

|ĥ′s(z0)| ≥ λ
)

where T = (log(
√

5/y0))/2. Next notice that by (4.18), |ĥ′s+s′(z0)| ≤ e2s′ |ĥ′s(z0)| and therefore

P
(

sup
0≤s≤T

|ĥ′s(z0)| ≥ λ
)
≤
bTc∑
j=0

P
(
|ĥ′j(z0)| ≥ e−2λ

)
Also by (4.18), |ĥ′s(z0)| ≤ e2s and therefore

P
(

sup
0≤s≤T

|ĥ′s(z0)| ≥ λ
)
≤

bTc∑
j=dlog(λ)/2−1e

P
(
|ĥ′j(z0)| ≥ e−2λ

)

≤ e2pλ−p
(
y0
|z0|

)−2r bTc∑
j=dlog(λ)/2−1e

e−2j(p−κ2 r) ≤ c λ−p
(
y0
|z0|

)−2r

δ(y0, λ).

Here we use that
∑m
k=n β

k ≤ βn/(1− β) when 0 < β < 1 and similar bounds for β = 1 and β > 1.
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Let’s parametrize p in terms of r as

p(r) =
κ

2

((
1 +

4
κ

)
r − r2

)
and study the quantity

α(r) = 2p(r)− κ

2
r = κ r

((
1
2

+
4
κ

)
− r
)
.

Notice that α(r) is maximized by r0 = 1/4 + 2/κ and

α(r0) = κ

(
1
4

+
2
κ

)2

=
κ

16
+ 1 +

4
κ
≥ 2

and α(r0) = 2 only if κ = 8.
Let κ 6= 8 and set p0 = p(r0). Then p0 > κr0/2 if κ < 8 and p0 < κr0/2 if κ > 8. Let

θ ∈ (0, 1− 2
2p0−κr0/2 ). Let t ∈ [0, 1] and n ∈ N. By the estimate (4.21) for r = r0 and p = p0 we have

that for large enough n

P
(∣∣∣f̃ ′t(i2−n)

∣∣∣ ≥ 2n(1−θ)
)
≤ c 2−p0(1−θ)n δ

(
2−n, 2n(1−θ)

)
= c 2−p0(1−θ)n ×

{
2−(1−θ)(p0−κ2 r0)n when κ < 8
2−(p0−κ2 r0)n when κ > 8

≤ c 2−(1−θ)(2p0−κ2 r0)n = c2−(2+ε)n

for some ε > 0. Let
D2n = {k 2−2n : k = 0, 1, 2, . . . , 22n}

which is the dyadic partitioning of [0, 1] into intervals of length 2−2n. Then∑
n∈N

∑
t∈D2n

P
(∣∣∣f̃ ′t(i2−n)

∣∣∣ ≥ 2n(1−θ)
)
<∞

and hence the Borel–Cantelli lemma implies the following result.

Proposition 4.3.6. For each κ 6= 8 there exists θ0(κ) > 0 such that the following holds: For any
θ ∈ (0, θ0(κ)), there exists a random variable C such that C <∞ almost surely and∣∣∣f̃ ′t(i2−n)

∣∣∣ ≤ C 2n(1−θ) (4.22)

for any t ∈ D2n and for any n ∈ N.

Remark. By the above, we can choose

θ0(κ) =
κ
16 + 4

κ − 1
κ
16 + 4

κ + 1
.

4.3.3 The proof of Theorem 4.3.1

Proposition 4.3.7. Let gt be a Loewner chain with a driving term Wt. Suppose that

γ(t) = lim
ε↘0

g−1
t (Wt + i ε)

exists for all t ∈ R+ and that t 7→ γ(t) is continuous. In that case, g−1
t extends continuously to H and

for all t ∈ R+, Ht = H \Kt is the unbounded component of H \ γ[0, t].

We need the following properties about conformal maps: Let g : U → D be a conformal onto map.
Let α : [0, 1) → D be a curve that extends continuously to its end point, α[0, 1) = (α[0, 1)) ∪ {z0}
and z0 ∈ ∂U . Then limt↗1 g(α(t)) = ζ0 ∈ ∂D exists. This requires that the image domain (in this
case D) has locally connected boundary. Then the radial limit limt↗1 g

−1(t ζ0) exists and equals to z0.
Therefore if there is another curve α′ : [0, 1)→ U such that limt↗1 α

′(t) exists and limt↗1 g(α′(t)) = ζ0
then limt↗1 α

′(t) = z0
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Proof. Let S(t) be the set of all possible limit points of g−1
t (z) as z → Wt in H. Then S(t) ⊂ ∂Ht by

Theorem 2.2.5 and S(t) is non-empty because γ(t) ∈ S(t). Fix t0 ∈ R+ and let z0 ∈ S(t0). We will
show that z0 ∈ γ[0, t0). Let ε > 0 and let

tε = sup
{
t ∈ R+ : Kt ∩B(z0, ε) = ∅

}
Then B(z0, ε) ∩Ht0 6= ∅ and we can choose z ∈ B(z0, ε) ∩Ht0 . Also B(z0, ε) ∩Ktε 6= ∅ and we can
choose z′ ∈ B(z0, ε) ∩Ktε . Let z′′ to be the first point in Ktε in the line segment from z to z′ and let
α be the line segment [z, z′′). Then gtε ◦ α extends continuously to its end point which is some x ∈ R.
Suppose that x 6= Wtε . Then gt(z′′) has to hit Wt for some t < tε which contradicts with the definition
of tε. Hence x = Wtε . Now γ(tε) = limδ↘0 g

−1
tε (Wtε + i δ) has to be equal to z′′. Therefore we have

shown that z′′ ∈ γ[0, t0) and that γ[0, t0)∩B(z0, ε) 6= ∅. Since ε > 0 is arbitrary, z0 ∈ γ[0, t0) = γ[0, t0]
and

⋃
t≤t0 S(t) = γ[0, t0].

We will next show that Ht = H \ Kt is the unbounded component of H \ γ[0, t]. First note that
Ht is connected and disjoint from γ[0, t] =

⋃
t′≤t S(t′) ⊂

⋃
t′≤t ∂Ht′ . By the same argument as in the

previous paragraph, (H ∩ ∂Ht) ⊂ γ[0, t] and therefore Ht is the unbounded component of H \ γ[0, t].
Since the boundary of Ht is locally connected g−1

t extends continuously to H.

We will use the results of the following exercisees.

Exercise. Show using the Koebe distortion theorem that there exists constants C and r such that for
any conformal map f : H→ C and for any x ∈ R, y > 0 and 1/2 ≤ s ≤ 2

C−1|f ′(iy)| ≤ |f ′(isy)| ≤ C|f ′(iy)| (4.23)

C−1(1 + x2)−r|f ′(iy)| ≤ |f ′(y(x+ i))| ≤ C(1 + x2)r|f ′(iy)|. (4.24)

What is the value of r that you get from the Koebe distortion theorem?

Exercise. (a) Let gt be a Loewner chain and ft = g−1
t . By differentiating the Loewner equation of ft

with respect to z, find a differential equation for f ′t(z). Show that for x ∈ R, y > 0

|∂tf ′t(x+ iy)| ≤ 2|f ′′t (x+ iy)|
y

+
2|f ′t(x+ iy)|

y2
.

(b) Show using the special case |a2| ≤ 2 of the Bieberbach–de Branges theorem that there is a constant
c > 0 such that

|f ′′(z)| ≤ c

Im z
|f ′(z)|

for any f : H→ C conformal and for any z ∈ H.

(c) Show that there are constants c1, c2, c3 such that following holds for any Loewner chain: for any
t ∈ R+, x ∈ R and y > 0

|∂tf ′t(x+ iy)| ≤ c1|f ′t(x+ iy)|
y2

and if 0 ≤ s ≤ y2 then

c−1
2 |f ′t(x+ iy)| ≤ |f ′t+s(x+ iy)| ≤ c2 |f ′t(x+ iy)| (4.25)
|ft+s(x+ iy)− ft(x+ iy)| ≤ c3 y |f ′t(x+ iy)|. (4.26)

Definition 4.3.8. An increasing, continuous function ψ : [0,∞) → (0,∞) is said to be subpower
function if

lim
x→∞

logψ(x)
log x

= 0.

or equivalently if for all µ > 0
lim
x→∞

x−µψ(x) = 0.

Remark. One way to write this is ψ(x) = exp(o(log x)). If ψ1 and ψ2 are subpower functions also
ψ1ψ2, ψ1 + ψ2 and ψ(x) = ψ1(xp), p > 0, are subpower functions.
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Proof of Theorem 4.3.1. By the previous proposition it is enough to prove that the trace exists and is
continuous. Our goal is to prove this based on the following bounds: As we saw above for each κ 6= 8,
there exist a constant θ > 0 and a random variable C which is almost surely finite such that

|f̃ ′t(i2−n)| ≤ C 2n(1−θ) (4.27)

for all t ∈ D2n and for any n ∈ N. Remember also that since (Wt)t∈R+ is a Brownian motion, there is
an almost surely finite random variable C̃ such that

|Wt+s −Wt| ≤ C̃
√
s log(1/s) (4.28)

for any t, s ∈ [0, 1].
Fix a realization of the driving process and the Loewner chain such that the bounds (4.27) and

(4.28) hold for some finite C and C̃. Throughout this proof let c be a generic constant that might
change from line to line and let ψ be a generic subpower function. We allow that c and ψ can depend
on C and C̃ but they don’t depend on the other variables such as t and y.

Let t ∈ [0, 1], y ∈ (0, 1). Take n ∈ N and t0 ∈ D2n such that

2−n ≤ y < 2−n+1, t0 ≤ t < t0 + 2−2n,

that is, n = dlog2(1/y)e and t0 = bt22nc2−2n. By (4.27) and (4.28)

|f̃ ′t(iy)| = |f ′t(Wt + iy)| ≤ c|f ′t0(Wt + iy)|

≤ c|f ′t0(Wt + iy0)| ≤ c
(

1 +
|Wt −Wt0 |2

y2
0

)r
|f ′t0(Wt0 + iy)|

≤ cnr2n(1−θ) ≤ yθ−1ψ(1/y) (4.29)

for some subpower function ψ.
Let’s integrate the bound (4.29). By change of integration variable∫ y

0

uθ−1ψ(1/u) du = yθψ̃(1/y)

where

ψ̃(x) =
∫ 1

0

uθ−1ψ(x/u) du.

It is not difficult to check that ψ̃ is a subpower function. Hence

γ(t) = lim
y↘0

f̃t(iy)

exists and satisfies
|γ(t)− f̃t(iy)| ≤ yθψ(1/y). (4.30)

We still have to show that t 7→ γ(t) is continuous. It is enough to estimate

|γ(t+ s)− γ(t)|

when t ∈ D2n, 0 ≤ s ≤ 2−2n. By triangle inequality

|γ(t+ s)− γ(t)| ≤ |γ(t+ s)− f̃t+s(iy)|+ |f̃t+s(iy)− f̃t(iy)|+ |f̃t(iy)− γ(t)|

Set y = 2−n. Then by (4.30)

|γ(t+ s)− γ(t)| ≤ 2−nθψ(2n) + |f̃t+s(i2−n)− f̃t(i2−n)|

Again by triangle inequality

|f̃t+s(i2−n)−f̃t(i2−n)| ≤ |ft+s(Wt+s + i2−n)− ft+s(Wt + i2−n)|︸ ︷︷ ︸
=A

+ |ft+s(Wt + i2−n)− ft(Wt + i2−n)|︸ ︷︷ ︸
=B

.
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By (4.29) and (4.24)

|f ′t+s(x+ i2−n)| ≤ c(1 + 22n(x−Wt+s)2)r|f ′t+s(Wt+s + i2−n)| ≤ 2n(1−θ)ψ(2n) (4.31)

when x lies on the interval between Wt and Wt+s. Integrating this bound over the interval between
Wt and Wt+s gives

A ≤ 2n(1−θ)ψ(2n) · C̃2−n
√
n = 2−nθψ(2n)

By (4.26)
B ≤ c2−n|f ′t(Wt + i2−n)| ≤ c 2−θn

We have now shown that
|γ(t+ s)− γ(t)| ≤ 2−nθψ(2n)

for t ∈ D2n, 0 ≤ s ≤ 2−2n. For 0 < s ≤ 2−2n, we can choose m ≥ n such that 2−2m−2 < s ≤ 2−2m and
since D2n ⊂ D2m when n ≤ m, we can apply the previous bound to show that

|γ(t+ s)− γ(t)| ≤ s θ2ψ(1/s) (4.32)

for t ∈ D2n, 0 < s ≤ 2−2n.

In fact, the bound (4.32) implies the following result.

Proposition 4.3.9. For each κ 6= 8, there exist a constant α0 > 0 such that t 7→ γ(t) is Hölder
continuous for any exponent α < α0

Remark. We can choose α0 = θ0/2 where θ0 is as in the remark after Proposition 4.3.6.

4.4 Coordinate change of SLE(κ) and simple consequences

Let’s summarize here some fact from the exercises. Let c < 0. The unique map φc from H onto the
strip Sπ = {z ∈ C : 0 < Im z < π} with φc(0) = 0, φc(c) = −∞ and φc(∞) = +∞ is

φc(z) = log(z − c)− log |c|.

Let gt be the Loewner chain in H associated to a driving term Wt. Then

Ĝt = log [gt (c+ |c|ez)− gt (c)]− 1
2

log g′t(c)− log |c|.

defines a map from Sπ \ φc(Kt) onto Sπ and Ĝt is the unique such map with the expansion near ±∞
equal to

Ĝt(z) =

{
z − S(t) + o(1), z → −∞
z + S(t) + o(1), z → +∞

.

Especially S(t) is uniquely determined by these requirements and in this case

S(t) = −1
2

log g′t(c) =
∫ t

0

du
(Wt − gt(c))2

.

Now the driving term is transformed to

Ŵt = log(Wt − gt(c)) + S(t)− log |c| ∈ R ⊂ ∂Sπ.

Define a time-change σ(s) such that S(σ(s)) = s and set Gs = Ĝσ(s) and W̃s = Ŵσ(s). A straightfor-
ward calculation shows that Gs satisfies the Loewner equation of the strip Sπ

∂sGs(z) = coth
Gs(z)− W̃s

2
, G0(z) = z

And if the driving term in the upper half-plane is a Brownian motion then the driving term of the
strip is a Brownian motion with a drift. See Table 4.1 for more details.
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H Sπ

Normalization gt(z) = z + 2t
z

+ . . ., z →∞ Gs(z) =

(
z − s+ o(1), z → −∞
z + s+ o(1), z → +∞

Loewner equation ∂tgt(z) = 2
gt(z)−Wt ∂sGs(z) = coth Gs(z)−W̃s

2

Driving term Wt ∈ R W̃s ∈ R

Chordal SLE(κ) Wt =
√
κBt W̃s =

√
κB̃s + α0(κ)s

SLE(κ, ρ)

8><>:
dWt =

√
κ dBt +

ρ

Wt − Ct
dt

dCt =
2

Ct −Wt
dt

W̃s =
√
κB̃s + αs

Relations between parameters α = ρ+ 3− κ
2
, α0(κ) = 3− κ

2

Table 4.1: A comparison between SLE in H and in Sπ.

4.4.1 Definition of SLE(κ, ρ)

Also in the exercises we saw that the transformation from Sπ to H sends driving processes of the form
W̃s =

√
κB̃s + αs to a process Wt which is as in the next definition.

Definition 4.4.1. Let κ ≥ 0 and ρ ∈ R. Let w0, c0 ∈ R with w0 6= c0 and let (Wt, Ct)t∈[0,τ(c0)) be the
solution to the system of stochastic differential equations

dWt =
√
κdBt +

ρ

Wt − Ct
dt

dCt =
2

Ct −Wt
dt

,

{
W0 = w0

C0 = c0
(4.33)

which exists for t ∈ [0, τ(c0)) where τ(c0) = sup{t ∈ R+ : infs∈[0,t] |Wt −Ct| > 0}. Then the Loewner
chain (gt,Kt)t∈[0,τ(c0)) with the driving process (Wt)t∈[0,τ(c0)) is called SLE(κ, ρ).

Remark. The chordal SLE(κ) is a special case SLE(κ, 0) of this definition.

It is possible to construct SLE(κ, ρ) using a Bessel process. This construction is especially useful
when we want to consider the process beyond τ(c0), which we don’t do in these lecture notes, but we’ll
give this construction here. Let w0, c0 ∈ R with w0 6= c0 and let η = sgn(w0 − c0). Let Dt be the
Bessel process (with unusual time-parametrization)

dDt =
ρ+ 2
Dt

dt+
√
κdB̃t, D0 = |w0 − c0|.

Define

Ct = c0 − 2η
∫ t

0

du
Du

, Wt = Ct + ηDt.

Then they satisfy (4.33) with Bt = ηB̃t.

4.4.2 Schramm’s principle and SLE(κ, ρ)

We will now generalize Schramm’s principle which was given in the section 4.1.1. Assume that we are
given a collection of probability measures (PU,a,b,c) indexed by the set all triplets (U, a, b, c) where U is
any simply connected domain and a 6= b 6= c 6= a are boundary points of U in counterclockwise order.
Assume that PU,a,b,c is the law of a random curve γ : [0,∞) → C (the parametrization is arbitrary)
such that γ([0,∞)) ⊂ U and γ(0) = a. We assume that the family (P(U,a,b,c)) satisfies the following
properties:

• The family (P(U,a,b,c)) satisfies conformal invariance (CI):

φ∗P(U,a,b,c) = P(φ(U),φ(a),φ(b),φ(c))



CHAPTER 4. SCHRAMM–LOEWNER EVOLUTION 67

• The family (P(U,a,b,c)) satisfies domain Markov property (DMP):

P(U,a,b,c)(γ|[t,∞) ∈ B | Ft) = P(U\γ([0,t]),γ(t),b,c)(γ ∈ B)

for any measurable set B in the space of curves.

We also assume that we can describe the curve γ by the Loewner equation in the sense that P(Sπ,0,+∞,−∞)

is supported on curves which have a continuous driving term in the Loewner equation of Sπ. Then a
similar calculation as in the section 4.1.1 will show that the driving process is a Brownian motion with
drift

W̃s =
√
κB̃s + αs (4.34)

where κ ≥ 0 and α ∈ R. In the section 4.1.1, we used scale invariance to deduce that there is no drift
in the driving process. Now we don’t have any extra symmetries left. Therefore the Loewner chain
of the strip satisfies Schramm’s principle for three points if and only if the driving process is of the
form (4.34).

4.4.3 SLE(κ, (κ− 6)/2)

Denote the reflection with respect to the y-axis by

m(z) = −z. (4.35)

Then m is an antiholomorphic map from C onto itself. Since the process W̃s =
√
κB̃s is invariant

under W̃s 7→ −W̃s, SLE(κ, (κ− 6)/2) on Sπ is invariant under m and for fixed κ > 0, it is the unique
SLE(κ, ρ) process with this property. We say that SLE(κ, (κ− 6)/2) on Sπ is symmetric.

Suppose that we know that some discrete random curve arising from statistical physics converges
to SLE(κ) as the mesh goes to zero. For example, suppose we know that the interface of Ising model
with boundary conditions changing at two marked points (boundary conditions are + spins on one arc
and − spins on the other arc) converges to SLE(3). Can we conclude something about the scaling limit
for other boundary conditions? If we consider the Ising model with three marked points a, b, c ∈ ∂U
(in counterclockwise order) and boundary conditions are set to be − on the arc ab, + on the arc ca
and free on the arc bc, then by Schramm’s principle we expect that the scaling limit of the interface
starting from the point a should be SLE(3, ρ) process. And since the law of that interface is invariant
under flipping all the spins σ → −σ, the scaling limit should be symmetric on Sπ and hence it should
be SLE(3,−3/2).

4.4.4 Locality of SLE(6)

Consider following map
ψ = m ◦ φ−1 ◦m ◦ φ (4.36)

where m is as in (4.35). Under those maps SLE(κ) is transformed as

(H, κ = 6, ρ = 0)
φ−→ (Sπ, κ = 6, α = 0) m−→ (Sπ, κ = 6, α = 0)
φ−1

−−→ (H, κ = 6, ρ = 0) m−→ (H, κ = 6, ρ = 0) .

On the other hand ψ is a holomorphic and bijective self map of H with ψ(0) = 0, ψ(∞) = ∞ and
ψ(c) = |c|. Hence

ψ(z) =
|c|z
z − c

. (4.37)

Therefore SLE(6) has the following locality property: the image of SLE(6) under any conformal self-
map of H is again (a time-change of) SLE(6). If ψ : H→ H is this Möbius map, then we consider the
first process until it disconnects ψ−1(∞) from ∞ and the second one until it disconnects ψ(∞) from
∞. Actually SLE(6) has even stronger locality property because SLE(6) sent from 0 is invariant up to
a time-change under any conformal transformation defined in a neighborhood of 0 such that it maps
the real axis around 0 in R.
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4.4.5 SLE(κ, κ− 6)

For other values of κ, the argument of the section 4.4.4 gives that if (Kt)t∈[0,τ(c)) is a chordal SLE(κ)
stopped at the time τ(c) then (ψ(Kt))t∈[0,τ(c)) is a time-change of the SLE(κ, κ − 6) process stopped
at the time when the process disconnects |c| from ∞. Namely, under the map ψ of the form (4.36) the
processes are transformed in the following way:

(H, κ, ρ = 0)
φ−→ (Sπ, κ, α = 3− κ/2) m−→ (Sπ, κ, α = κ/2− 3)
φ−1

−−→ (H, κ, ρ = κ− 6) m−→ (H, κ, ρ = κ− 6) .

4.5 Dimension of SLE

Let K ⊂ C be a non-empty bounded Borel set. Let Nε be the number of sets of the form

[(j − 1)ε, jε]× [(k − 1)ε, kε], (j, k) ∈ Z2

intersecting with the set K. Then the box-counting dimension (or Minkowski dimension) of K is
defined to be

dimM(K) = lim
ε↘0

logNε
log 1

ε

if the limit exists. If the limit doesn’t exists we define the upper and lower box-counting dimensions
as

dimM(K) = lim sup
ε↘0

logNε
log 1

ε

, dimM(K) = lim inf
ε↘0

logNε
log 1

ε

,

respectively. It is true that the (upper and lower) box-counting dimension is not less than the Hausdorff
dimension of K. Hence any upper bound for the box-counting dimension is an upper bound for
the Hausdorff dimension. In this section we will show that the following upper bound for SLE(κ),
0 < κ < 8, curve γ:

dimM(([−1, 1]× [0, 1]) ∩ γ[0,∞)) ≤ 1 +
κ

8
. (4.38)

This bound is sharp. In fact, it is possible to show that the Hausdorff dimension of SLE(κ) is almost
surely 1 + κ/8. Remember that for any z0 ∈ H, P(z0 ∈ γ[0,∞)) = 1. Therefore almost surely
γ[0,∞) = H and the Hausdorff dimension of γ[0,∞) is 2 almost surely, when κ ≥ 8.

Suppose that for some C > 0 and λ > 0, we have a bound

P
(
γ[0,∞) ∩B(z0, r) 6= ∅

)
≤ C

(
r

Im z0

)λ
(4.39)

for all z0 ∈ H and r > 0. If γ[0,∞) intersects Rj,k = [(j − 1) 2−n, j 2−n]× [(k − 1) 2−n, k 2−n], then

dist
((

j − 1
2

)
2−n + i

(
k − 1

2

)
2−n, γ[0,∞)

)
≤ 2−n−1/2.

Hence

EN2−n =
∑

−2n<j≤2n

0<k≤2n

P (γ[0,∞) ∩Rj,k 6= ∅) ≤ C 2−λ/2
∑

−2n<j≤2n

0<k≤2n

(k − 1/2)−λ

≤ C ′2(2−λ)n

where C ′ is a constant that depends only on C and λ.
Now by Chebyshev inequality, for each δ > 0

P
(
N2−n ≥ 2(2−λ+δ)n

)
≤ C ′2−δn.

Since these probabilities are summable over n, by Borel–Cantelli lemma there exist a random n0(δ)
such that

N2−n < 2(2−λ+δ)n (4.40)
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for n > n0(δ). Now

lim sup
n→∞

logN2−n

n log 2
≤ 2− λ+ δ

Since δ > 0 is arbitrary and ε 7→ Nε is increasing

lim sup
ε↘0

logNε
log 1

ε

≤ 2− λ.

Hence the upper box-counting dimension is at most 2 − λ. Therefore to obtain the claim (4.38), we
have to show (4.39) with λ = λ(κ) = 1− κ/8, for 0 < κ < 8.

To show (4.39), we first need a conformally invariant version of the distance to the boundary. This
quantity is known as conformal radius.

Exercise. Let U ⊂ C be a simply connected domain with U 6= C and let z0 ∈ U . Let ψ be the unique
conformal map from U onto D such that ψ(z0) = 0 and ψ′(z0) > 0. Then the conformal radius of U
from z0 is defined as

ρ(z0, U) =
1

ψ′(z0)
.

(a) Show that if φ is a conformal map from U onto D with φ(z0) = 0 then ρ(z0, U) = |φ′(z0)|−1. Show
also that ρ(λz0, λU) = λρ(z0, U) for λ > 0 and ρ(f(z0), f(U)) = |f ′(z0)|ρ(z0, U) for any conformal
map f : U → C.

(b) Show using the Koebe distortion theorem that

dist(z0, ∂U) ≤ ρ(z0, U) ≤ 4 dist(z0, ∂U).

(c) Let g be a conformal map from U onto H. Show that

ρ(z0, U) =
2 Im g(z0)
|g′(z0)|

.

By the previous exercise, the conformal radius of Ht = H \Kt from z0 is

ρ(z0, Ht) =
2Yt
|g′t(z0)|

when t < τ(z0). And
1
2

dist(z0, ∂Ht) ≤
Yt

|g′t(z0)|
≤ 2 dist(z0, ∂Ht).

This implies that
1
2

dist(z0, γ[0,∞)) ≤ lim
t↗τ(z0)

Yt
|g′t(z0)|

≤ 2 dist(z0, γ[0,∞)).

Define a time-change

S(t) =
∫ t

0

2 sin θu du√
X2
u + Y 2

u

, σ(s) = S−1(s).

We use the definition
θ̂s = 2θσ(s)

since it corresponds to the coordinate change from H to D. Now

dθ̂s =
κ− 4

2
cot

(
θ̂s
2

)
ds+

√
κdB̂s (4.41)

ρ(z0, Hσ(s)) = 2y0e−s (4.42)

We also see that
lim

t↗τ(z0)

Yt
|g′t(z0)|

= ρ(z0, U0) = 2y0e−τ̂(z0)
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where τ̂(z0) = S(τ(z0)) and U0 is the connected component of z0 in H \ γ[0,∞).
For z0 = r exp(iθ̂0/2), r > 0, define a function, which doesn’t depend on r > 0,

F (θ̂0, u) = P
(
ρ(z0, U0) ≤ 2y0e−u

)
= P(τ̂(z0) ≥ u).

A conditional version of this is when s < T{0,2π} = sup{s ∈ R+ : infs′∈[0,s] θ̂s > 0 and sups′∈[0,s] θ̂s <
2π}

P
(
τ̂(z0) ≥ u

∣∣∣ F̂s) = F (θ̂s, u− s)

by the conformal Markov property of SLE(κ) or by Markov property of the pair of processes (4.41)
and (4.42). This is by construction a martingale and therefore F satisfies

Ḟ = LF (4.43)

where L is the following second order differential operator

Lf(x) = −κ
2
f ′′(x)− κ− 4

2
cot

x

2
f ′(x).

The function F satisfies the boundary conditions

F (x, 0) = 1, 0 < x < 2π and F (0, u) = 0 = F (2π, u), u > 0. (4.44)

To analyze the asymptotic behaviour of the solution of (4.43) and (4.44) we need to find a positive
eigenfuntion of L. Namely, in a suitable function space L is a self-adjoint operator. Moreover, there
exists a eigenbasis (fk)k∈N of L such that Lfk = λkfk, 0 < λ1 < λ2 < . . . and for each k, fk has k − 1
zeros on the interval (0, 2π). It is straightforward to check that

f(x) = sin
(x

2

)β
satisfies Lf = λf if and only if

λ = 1− κ

8
, β =

8
κ
− 1.

Since the boundary values (4.44) are non-negative, it is possible to prove the following version of the
maximum principle: there exists a constant C > 0 such that

C−1f(x)e−λu ≤ F (x, u) ≤ Cf(x)e−λu

for all x ∈ [0, 2π] and u ≥ 1. Since f ≤ 1, (4.39) follows.
The bound (4.39) can be used to show the following result which is the final piece of the theory of

“phases of SLE”.

Proposition 4.5.1. When 0 < κ < 8, for each z ∈ H, P(z ∈ γ[0,∞)) = 0. Furthermore, when
4 < κ < 8, for each z ∈ H, P(z is swallowed) = 1.


