
Chapter 1

Stochastic calculus

1.1 Probability

1.1.1 Measure theory

The basic concepts of measure theory that reader should be aware of are

• (X,A) a measurable space: X is set, A its σ-algebra

• measurable function f , (positive) measure µ, integral
∫
fdµ

• Lebesgue measure on Rd

• Lp(µ) space: Measurable f is in Lp(µ) if
∫
|f |pdµ <∞. Notation: ‖f‖p = (

∫
|f |pdµ)1/p.

• Product measures: If (X,A, µ) and (Y,B, ν) are measure spaces, then their product space is
(X × Y,A × B, µ × ν) where X × Y is Cartesian product, A × B the σ-algebra generated by
A × B, A ∈ A and B ∈ B, and µ × ν the unique extension of A × B 7→ µ(A)ν(B). (Here we
have to assume that both measures µ and ν are σ-finite in the sense that X can be written as
X =

⋃∞
k=1Xk where Xk a measurable sets with finite µ-measure and the same holds for Y and

ν.)

Here is a summary of some results of measure theory. For the details and proof see the books mentioned
above.

• Monotone convergence theorem: If fn are measurable functions such that 0 ≤ fn ↗ f , then∫
fdµ = limn→∞

∫
fndµ

• Dominated convergence theorem: If fn are measurable functions and f = limn→∞ fn exists
almost everywhere and ∃g ≥ 0 such that |fn| ≤ g for all n and

∫
gdµ < ∞, then

∫
fdµ =

limn→∞
∫
fndµ.

• Fubini’s theorem: Assume that µ and ν are σ-finite. Let f ∈ A×B. If f ≥ 0 or
∫
|f |d(µ×ν) <∞

then
∫
X

(
∫
Y
fdν)dµ =

∫
X×Y fd(µ× ν) =

∫
Y

(
∫
X
fdµ)dν.

• Radon–Nikodym theorem: If ν is a σ-finite signed measure and µ is a σ-finite measure on (X,A)
and ν is absolutely continuous with respect to µ, then exist g ∈ F such that ν(A) =

∫
A
g dµ.

Here ν is absolutely continuous with respect to µ, if ν(A) = 0 whenever µ(A) = 0, A ∈ F . A
notation: f = dν

dµ and it is called Radon–Nikodym derivative.

A notation which sometimes handy: f ∈ A where f is a function on X means that f is A-measurable.
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1.1.2 Probability theory

Probability theory is essentially measure theoretical formulation of probability. Therefore the basics
of probability are easily accessible to anybody with background in mathematical analysis. Here is a
list of basic facts about probability:

• A probability space is a measure space (Ω,F ,P) such that P is a probability measure, i.e.,
P(Ω) = 1. Ω “outcomes”, F “events”

• A random variable is a F-measurable function X : Ω → R. H-valued random variable is a
measurable function X : Ω→ H (H is a measurable space).

• The expected value of X is E(X) =
∫
XdP ∈ [−∞,∞], which makes sense when X ≥ 0 or when

either
∫
X+dP < ∞ or

∫
X−dP < ∞, where X = X+ − X− is the decomposition of X into

positive and negative part.

• Lp(P) space: ‖X‖p = (E(|X|p))1/p <∞. By Hölder inequality, ‖X‖p ≤ ‖X‖q for 1 ≤ p ≤ q and
hence Lq(P) ⊂ Lp(P) (a fact which isn’t necessarily true for general measures).

• Independence: sub-σ-algebras A1, . . . ,An of F are independent if

P(A1 ∩A2 ∩ . . . ∩An) = P(A1) · P(A2) · . . . · P(An) for Ak ∈ Ak.

Random variables X1, X2, . . . , Xn are independent if the σ-algebras σ(X1), σ(X2), . . . , σ(Xn) are
independent

⇔P({X1 ∈ B1} ∩ {X2 ∈ B2} ∩ . . . ∩ {Xn ∈ Bn})
= P(X1 ∈ B1) · P(X2 ∈ B2) · . . . · P(Xn ∈ Bn) for Bk ∈ BR.

A couple of useful notations:

• E(X;E) =
∫
E
XdP =

∫
1EXdP.

• A random variable X induces a measure on R by µX(B) = P(X−1(B)) where B ∈ BR and BR is
the Borel σ-algebra on R. The measure µX is called distribution (or law) of X. When X and Y
induce the same measure, we say that X and Y are equal in distribution and use the notation

X
d= Y.

1.2 Conditional expected value

Definition 1.2.1. Let X be a L1(P,F) random variable and let G ⊂ F be a σ-algebra. The conditional
expected value of X given G is defined to be any random variable Y such that Y is (i) G-measurable
and (ii) for any E ∈ G ∫

E

XdP =
∫
E

Y dP.

We then use the notation E(X|G) for the conditional expected value and any such Y is called a version
of E(X|G).

Proposition 1.2.2. The conditional expected value exists and is unique in the sense that if Y and Y ′

satisfy (i) and (ii) then Y = Y ′ almost surely. Also the conditional expected value is integrable.

Proof. Let G = {Y ≥ 0} which is G-measurable. Then

E(|Y |) =
∫
G

Y dP−
∫
Gc
Y dP =

∫
G

XdP−
∫
Gc
XdP ≤ ‖X‖1,

where Gc is the complement Ω \G of G. Therefore E(|Y |) <∞.
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Existence follows from Radon–Nikodym theorem:

E 7→
∫
E

XdP

is a signed measure, which is absolutely continuous with respect to P. Then the Radon-Nikodym
derivative Y of that measure satisfies the properties of the conditional expected value.

Uniqueness: If Y and Y ′ are version of E(X|G), then let E = {Y > Y ′}. Then if P(E) > 0,∫
E
Y dP >

∫
E
Y ′dP which is a contradiction. Hence P({Y = Y ′}) = 1.

Intuitively E(X|G) should be thought to the best guess of the value of X given the information
contained in G.

Example 1.2.3. (Perfect information) If X is G measurable then E(X|G) = X.

Example 1.2.4. (No information) If X is independent of G then E(X|G) = EX.

Example 1.2.5. (Relation to the usual conditional expected value) Let Ω1,Ω2, . . . be a finite or count-
ably infinite disjoint partition of Ω into F-measurable sets, each of which has positive probability. If
G is the σ-algebra generated by Ω1,Ω2, . . . then

E(X|G) =
E(X; Ωk)

P(Ωk)
on Ωk.

Note that G = {
⋃
k∈I Ωk : I ⊂ N}.

We list next some properties of conditional expected value.

Theorem 1.2.6. Let X,Y be L1(P,F) random variables and a, b ∈ R and G,G1,G2 ⊂ F be σ-algebras.
Then

1. E(aX + bY |G) = aE(X|G) + bE(Y |G)

2. E(E(X|G)) = E(X)

3. E(X Y |G) = Y E(X|G) if Y is G-measurable

4. (Tower property) E(E(X|G2)|G1) = E(X|G1) if G1 ⊂ G2

5. (Jensen’s inequality) If φ : R→ R is convex and E(|φ(X)|) <∞ then φ(E(X|G)) ≤ E(φ(X)|G).

6. |E(X|G)| ≤ E(|X||G) and when E(|X|2) <∞, |E(X|G)|2 ≤ E(|X|2|G)

7. If Xn → X in L2(P,F) then E(Xn|G)→ E(X|G) in L2(P,F).

The following notation is sometimes used: if X and Y are random variables and σ(Y ) is the
σ-algebra generated by Y , then E(X|Y ) means the same as E(X|σ(Y )).

1.3 Stochastic processes

Let’s use the following notation: N = {1, 2, 3, . . .}, Z+ = {0, 1, 2, . . .} and R+ = [0,∞).

Definition 1.3.1. A stochastic process is a collection of random variables Xt indexed by a ordered
set I. A notation (Xt)t∈I is used for a stochastic process.

Almost always I = R+ or I = Z+. Since t is regarded as time, we call the process in those cases
continuous time stochastic process and discrete time stochastic process, respectively. On this course
usually I = R+.

The mapping t 7→ Xt(ω) is called the path of (Xt)t∈I . For continuous time processes the path
regularity properties are usually essential already when defining the process (as in the definition of
Brownian motion below).

Remember that X is a normally distributed with mean µ and variance σ2 if and only if

P(X ∈ A) =
∫
A

1√
2πσ2

exp
(
− (x− µ)2

2σ2

)
dx

for any Borel subset A of R.
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Definition 1.3.2. A stochastic process (Bt)t≥0 is called a (standard one-dimensional) Brownian mo-
tion if B0 = 0 and

1. Bt1 − Bs1 , Bt2 − Bs2 , . . . , Btn − Bsn are independent for any n ∈ N and for any 0 ≤ s1 < t1 ≤
s2 < t2 ≤ . . . ≤ sn < tn.

2. For any s, t ≥ 0, Bs+t −Bs is normally distributed with mean 0 and variance t.

3. With probability one, t 7→ Bt is continuous.

Remark. We say that the process has independent and stationary increments, if the properties 1. and
2. hold, respectively.

Remark. The third property is best understood in the following way: Let P be a property that a
function might or might not have, for example, continuity, differentiability etc. A process (Xt)t∈R+

has property P with probability one (almost surely) if there exist E ∈ F such that P(E) = 1 and
E ⊂ {ω ∈ Ω : t 7→ Xt(ω) has property P}. Note that {t 7→ Xt(ω) has property P} need not lie in F .

The “canonical” probability space for Brownian motion is the space of continuous functions C(R+)
with a certain Borel probability measure P and where the Brownian motion is the coordinate map
Bt(ω) = ωt. As soon as Brownian motion exists in some probability space, its distribution in C(R+)
defines the ‘canonical” Brownian motion.

Theorem 1.3.3. Brownian motion exists.

There are many ways to construct Brownian motion. One of them using so called Brownian bridge
is left as an exercise, see Problem sheet 2. It’s the same idea that was used in the original construction
by Paul Lévy.

A standard d-dimensional Brownian motion is a Rd-valued stochastic process (B(1)
t , . . . , B

(d)
t ) where

B
(1)
t , . . . , B

(d)
t are independent standard one-dimensional Brownian motions.

Exercise. Let (Bt)t∈R+ be a standard d-dimensional Brownian motion and let A : Rd → Rd be a
orthogonal transformation. Show that ABt is a standard d-dimensional Brownian motion. Show also
that (Bt)t∈R+ satisfies Brownian scaling : if r > 0 then Yt = r−1/2Brt is a standard d-dimensional
Brownian motion.

The following theorem shows that the assumption that the increments are normal is partly redun-
dant in the definition of Brownian motion.

Theorem 1.3.4. If (Xt)t∈R+ is a continuous stochastic process which has independent and stationary
increments, then there exists a standard one-dimensional Brownian motion (Bt)t∈R+ and real numbers
α ≥ 0 and β such that Xt = αBt + βt.

Remark. The process of the form Xt = αBt + βt is called Brownian motion with drift.

We’ll return to this characterization of Brownian motion later, because it will be an essential input
for the motivation of studying SLEs.

Definition 1.3.5. A filtration on (Ω,F) is a collection (Ft)t∈R+ of sub-σ-algebras Ft ⊂ F such that
for each 0 ≤ s < t, Fs ⊂ Ft.

A filtration can be though as increasing information on the probability space. For example, the
σ-algebras generated by a Brownian motion (Bt)t∈R+ , i.e. FBt = σ(Bs, 0 ≤ s ≤ t), form a filtration
(FBt )t∈R+ .

Definition 1.3.6. A stochastic process (Xt)t∈R+ on (Ω,F) is adapted to the filtration (Ft)t∈R+ if for
each t ≥ 0, Xt is Ft-measurable.

We will make the following more restrictive definition of Brownian motion.

Definition 1.3.7. A process (Bt)t≥0 is called a (standard one-dimensional) Brownian motion with
respect to the filtration (Ft)t∈R+ if it is adapted to (Ft)t∈R+ , B0 = 0 and

1. Bt −Bs are independent from Fs for any 0 ≤ s < t,
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2. Bt −Bs, 0 ≤ s < t, is normally distributed with mean 0 and variance t− s

3. With probability one, t 7→ Bt is continuous.

Remark. We can always weaken this to (FBt )t∈R+ , the filtration generated by the Brownian motion
itself, and therefore any Brownian motion in the sense of Definition 1.3.7 is also a Brownian motion
in the sense of Definition 1.3.2. But this definition is useful for instance when we are considering two
(independent) Brownian motions B(1) and B(2) in the same probability space and (Ft) = (F (B(1),B(2))

t ).

Definition 1.3.8. Let p ≥ 1. Define the p’th variation of a process (Xt)t∈R+ as the process

V
(p)
X (t) = lim

mesh(π)→0

m(π)−1∑
k=0

|Xtk+1 −Xtk |p

where π is a partitions of [0, t] of the form π = {0 = t0 < t1 < . . . < tm(π) = t} and the limit is the
limit in probability as mesh(π) = maxk(tk+1− tk)→ 0 in the sense that that for each ε > 0 there exist
δ > 0 such that

P

∣∣∣∣∣∣
m(π)−1∑
k=0

|Xtk+1 −Xtk |p − V
(p)
X (t)

∣∣∣∣∣∣ ≥ ε
 < ε

when mesh(π) < δ. We call the first variation (p = 1) as total variation and the second variation
(p = 2) as quadratic variation.

Proposition 1.3.9. The quadratic variation of a Brownian motion exist and V (2)
B (t) = t.

Proof. Let ε > 0 and π be a partitioning with mesh(π) < (2t)−1 ε3. Let ∆k = (Btk+1−Btk)2−(tt+1−tk)

E


m(π)−1∑

k=0

(Btk+1 −Btk)2 − t

2
 = E


m(π)−1∑

k=0

∆k

2


=E

(∑
k

∆2
k

)
+ 2E

∑
j<k

∆j∆k

 =
∑
k

E
(
∆2
k

)
+ 2

∑
j<k

E (∆j∆k)︸ ︷︷ ︸
by inpendence, =0

=E((N2 − 1)2)
∑
k

(tk+1 − tk)2 ≤ 2mesh(π)t.

Here N ∼ N(0, 1) and we used the scaling property of Brownian motion. Hence

P

∣∣∣∣∣∣
m(π)−1∑
k=0

(Btk+1 −Btk)2 − t

∣∣∣∣∣∣ ≥ ε
 ≤ 2mesh(π)t

ε2
< ε (1.1)

The above proof and Borel–Cantelli lemma will give that almost surely Brownian motion is not a
finite variation process.

Lemma 1.3.10 (Borel–Cantelli). Let Ak, k ∈ N be a sequence of events. Define {ω : ω ∈ Ak i.o.},
where i.o. stands for infinitely often, as the event

⋂∞
k=1

⋃∞
j=k Aj. If

∑∞
k=1 P(Ak) <∞ then

P(An i.o.) = 0.

The total variation of a Brownian motion is almost surely infinite in the sense that if take the limit
along the sequence of dyadic partitionings of [0, t]

πn = {t k 2−n : k = 0, 1, 2, . . . , 2n} = {t0 < t1 < . . . < t2n},
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then
lim
n→∞

∑
tk∈πn,k≤2n−1

|Btk+1 −Btk | =∞

almost surely. Namely, if we denote P(E(π)) the left-hand side of (1.1), then
∑
n P(E(πn)) < ∞ and

hence ∑
tk∈πn,k≤2n−1

(Btk+1 −Btk)2 → t

almost surely. Take any ω for which this convergence happens. Then∑
tk∈πn,k≤2n−1

(Btk+1(ω)−Btk(ω))2︸ ︷︷ ︸
→t

≤ mesh(πn)︸ ︷︷ ︸
→0

∑
tk∈πn,k≤2n−1

|Btk+1(ω)−Btk(ω)|

which implies that the total variation is infinite for such ω.

1.4 Stochastic integration

1.4.1 Motivation of stochastic integral

The goal of this section is to define a process Xt which can be interpreted as the integral

Xt(ω) =
∫ t

0

f(t, ω) dBt(ω).

It is important because of the following reasons:

• It is tool for generating new stochastic processes out of Brownian motion.

• Coordinate changes such as f(Bt) turn out to have extremely useful representation using the
above intagral.

• Appears in many applications, since dBt represents some kind of independent and stationary
noise.

The integral doesn’t exist pathwise as a Riemann-Stieltjes (or similar) integral even for a continuous
f , because the Brownian motion doesn’t have finite total variation. For example we will see that∫ t

0

BsdBs 6=
1
2
B2
t

and therefore the usual integration by parts formula can’t hold.

1.4.2 Stochastic integral

In this section (Ft)t∈R+ is a filtration and (Bt)t∈R+ is a standard one-dimensional Brownian motion
with respect to Ft.

First we need to define the correct set of integrands f .

Definition 1.4.1. A stochastic process (Xt)t∈R+ is measurable if the mapping (t, ω) 7→ Xt(ω) is
BR ×F-measurable.

Definition 1.4.2. Let T > 0. We define L2 to be the set of measurable, adapted processes f that
satisfy

E

(∫ T

0

f(t, ·)2dt

)
<∞ (1.2)

and we call f ∈ L2 simple if f can be written in the form

f(t, ω) =
n−1∑
k=0

Xk(ω)1[tk,tk+1)(t) (1.3)

where 0 ≤ t0 < t1 < t2 . . . < tn ≤ T and Xk is a Ftk -measurable, square integrable random variable.
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Remark. The above class could be called as L2(T ) and then we could set f ∈ L2 if and only if f ∈ L2(T )
for any T > 0. However, we don’t make a big difference between L2(T ) and L2, and consequently, we
use the notation L2 for both classes.

Remark. Note that L2 is a closed subspace of L2(dt× dP).

We would like to define a mapping f 7→ I[f ] which we later denote by

I[f ](ω) =
∫ T

0

f(t, ω)dBt(ω).

If that notation makes any sense we have to define

I[1[s,t)] = Bt −Bs

for any 0 ≤ s < t ≤ T . Therefore for any f which is of the form (1.3) it is natural to define by linearity
that

I[f ] =
n−1∑
k=0

Xk(Btk+1 −Btk).

Therefore I is now defined for any simple f ∈ L2 and it turns out that there is a unique L2-continuous
extension of it to the whole L2. Namely, we first observe the following isometry.

Proposition 1.4.3 (Itô isometry for simple processes). For any bounded, simple f ∈ L2

E(I[f ]2) = E

(∫ T

0

f(t, ·)2dt

)
.

Proof. Let’s calculate both sides explicitly for a bounded, simple f ∈ L2 of the form (1.3). Notice that
f2 =

∑n−1
k=0 X

2
k1[tk,tk+1) and hence

E

(∫ T

0

f(t, ·)2dt

)
=
n−1∑
k=0

E(X2
k)(tk+1 − tk).

On the other hand

E(I[f ]2) =
∑
k

E(X2
k)E

(
(Btk+1 −Btk)2

)
+
∑
k<l

E(XkXl(Btk+1 −Btk)(Btl+1 −Btl))

which gives the claim after we notice that

E(XkXl(Btk+1 −Btk)(Btl+1 −Btl)) = E(XkXl(Btk+1 −Btk))E(Btl+1 −Btl) = 0

for k < l and that E
(
(Btk+1 −Btk)2

)
= tk+1 − tk.

Next we prove that the simple processes are dense in L2.

Proposition 1.4.4. For each f ∈ L2, there exist a sequence of bounded, simple fn ∈ L2 such that

E

(∫ T

0

(f(t, ·)− fn(t, ·))2dt

)
→ 0,

i.e. fn converges to f in L2(dt× dP).

Remark. We divide the proof in three steps. The first and last steps are the most important for us,
because we will mostly only consider continuous processes as integrands.
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Proof. Bounded continuous f ∈ L2: Take any sequence of partitions πn such that mesh(πn) → 0
as n→∞ and define a sequence of bounded, simple processes fn ∈ L2 as

fn(t, ω) =
m(π)−1∑
k=0

f(tk, ω)1[tk,tk+1)(t)

when πn is 0 = t0 < t1 < . . . < tm(πn) = T . Then

sup
t∈[0,T ]

|f(t, ω)− fn(t, ω)| ≤ sup
s,t∈[0,T ] : |s−t|≤mesh(πn)

|f(t, ω)− f(s, ω)|

By continuity the right-hand side goes to zero almost surely. Since |f | ≤ C < ∞ for some constant
C, we can apply the dominated convergence theorem (DCT) to show that the right-hand side goes to
zero also in L2(dP).

Hence

E

(∫ T

0

|f(t, ·)− fn(t, ·)|2dt

)
≤ E

(
T sup
t∈[0,T ]

|f(t, ·)− fn(t, ·)|2
)
→ 0.

Bounded g ∈ L2: Take a sequence of continuous functions ψn : R→ R such that

1. ψn ≥ 0

2. ψn(x) = 0 when x /∈ (−1/n, 0)

3.
∫∞
−∞ ψn(x) = 1

Define a sequence of bounded, continuous processes gn ∈ L2 as

gn(s, ω) =
∫ t

0

ψn(s− t)g(s, ω)ds

The sequence (ψn) forms a approximate identity and by standard properties of such sequences,∫ T

0

(gn(s, ω)− g(s, ω))2ds→ 0.

The measurability requirements of L2 are slightly tricky, and we omit such details here. By DCT,
gn → g in L2(dt× dP).

General h ∈ L2: Define a sequence of bounded processes hn ∈ L2 as

hn(t, ω) =


−n if h(t, ω) < −n
h(t, ω) if h(t, ω) ∈ [−n, n]
n if h(t, ω) > n

Then by DCT, hn → h in L2(dt× dP).

If fn ∈ L2 is a sequence of simple, bounded processes converging to f , then fn is a Cauchy sequence
in L2(dt × dP) and hence by the isometry property I[fn] is a Cauchy sequence if L2(dP ) and hence
it converges. Therefore we can define I[f ] = limn I[fn]. Note that this limit doesn’t depend on the
choice of fn: if fn and f ′n are two such sequences, then fn − f ′n goes to zero in L2(dt× dP) and hence
by isometry, limn I(fn) = limn I(f ′n) almost surely. This is summarized in the following definition.

Definition 1.4.5. For any f ∈ L2, the stochastic integral (or Itô integral) is defined to be∫ T

0

f(t, ω)dBt(ω) = I[f ](ω) = (lim
n
I[fn)])(ω) (1.4)

where the limit is in L2(P) and fn ∈ L2 is any sequence of bounded, simple processes converging to f
in L2(dt× dP). The integral is defined almost surely.
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Corollary 1.4.6 (Itô isometry for L2). For any f ∈ L2

E

(∫ T

0

f(t, ·)dBt

)2
 = E

(∫ T

0

f(t, ·)2dt

)
.

Corollary 1.4.7. If fn ∈ L2, f ∈ L2 and fn → f in L2(dt×dP) then
∫ T
0
fndBt →

∫ T
0
fdBt in L2(P).

Example 1.4.8. We’ll show that ∫ t

0

BsdBs =
1
2
Bt −

1
2
t

Let πn be a sequence of partitions of [0, t] such that mesh(πn) → 0. By the above, the sequence
of processes fn(s, ω) =

∑
tj∈πn Btj (ω)1[tj ,tj+1)(s) is a reasonable choice for a discretization of the

integrand. Since

E
(∫ t

0

(Bs − fn(s, ·))ds
)

= E

∑
j

∫ tj+1

tj

(Bs −Btj )2ds

 =
∑
j

1
2

(tj+1 − tj)2 → 0

as n→∞, then by Corollary 1.4.7,
∫ t
0
BsdBs = lim

∫ t
0
fndBs = lim

∑
j Btj (Btj+1 − Btj ). Now notice

that
B2
tj+1
−B2

tj = (Btj+1 −Btj )2 + 2Btj (Btj+1 −Btj )

and thus ∑
j

Bj(Btj+1 −Btj ) =
1
2
B2
t −

1
2

∑
j

(Btj+1 −Btj )2

and the second term on the right converges in L2 to the quadratic variation of Brownian motion which
we already showed to be t.

The following proposition states some properties of the stochastic integral. Those properties hold
for the simple processes and hence hold also for any limit of a sequence of simple processes.

Proposition 1.4.9. Let f, g ∈ L2 and let 0 ≤ S < U < T . Then

1.
∫ T
S
fdBt =

∫ U
S
fdBt +

∫ T
U
fdBt

2.
∫ T
S

(af + bg)dBt = a
∫ T
S
fdBt + b

∫ T
S
gdBt

3. E(
∫ T
S
fdBt) = 0

4.
∫ T
S
fdBt is FT -measurable

1.4.3 Martingales

The following concept will be extremely useful during this course.

Definition 1.4.10. A stochastic process (Mt)t∈R+ is called a (continuous-time) martingale with re-
spect to a filtration (Ft)t∈R+ if

1. Mt is Ft-measurable for each t ≥ 0,

2. E(|Mt|) <∞ for each t ≥ 0,

3. E(Mt|Fs) = Ms for each 0 ≤ s < t.

If the last property is replaced by E(Mt|Fs) ≥Ms, the process is called submartingale, and if the last
property is replaced by E(Mt|Fs) ≤Ms, the process is called supermartingale.

Quite many results for martingales are proved using discrete-time martingales.
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Definition 1.4.11. A discrete-time filtration on (Ω,F) is a collection (Ft)t∈Z+ of sub-σ-algebras
Ft ⊂ F such that for each t ∈ Z+, Ft ⊂ Ft+1.

A stochastic process (Mt)t∈Z+ is called a (discrete-time) martingale with respect to a filtration
(Ft)t∈Z+ if

1. Mt is Ft-measurable for each t ∈ Z+,

2. E(|Mt|) <∞ for each t ∈ Z+,

3. E(Mt+1|Ft) = Mt for each t ∈ Z+.

If the last property is replaced by E(Mt+1|Ft) ≥ Mt, the process is called submartingale, and if the
last property is replaced by E(Mt+1|Ft) ≤Mt, the process is called supermartingale.

Example 1.4.12. Let X ∈ L1(P,F) and let (Ft)t≥0 be a filtration. Then Mt = E(X|Ft) is a
martingale: 1 holds by the definition of conditional expected value, 2 holds by items 2 and 6 of
Theorem 1.2.6 and 3 holds by item 4 of Theorem 1.2.6.

Example 1.4.13. Let X0, X1, X2, . . . be a sequence of independent integrable random variables such
that E(Xk) = 0 for each k and let Fn = σ(X0, X1, X2, . . . , Xn). Then (Mn)n∈Z+ defined by

Mn =
n∑
k=0

Xk

is a martingale with respect to (Fn)n∈Z+ .

Example 1.4.14 (The origin of the name martingale). There is a gambling strategy called martingale.
Consider a gambler that is playing roulette, where the outcome is either red or black with probability
1/2 each. After a loss the gambler always doubles his bet and keeps playing until the first time when
he wins. After that he stops playing. If the first bet is x, then the gambler is sure to win x by
this strategy! Do you see any problem with the martingale strategy? This is related to the previous
example when we consider X0, X1, . . . such that X0 = 0, X1 = X̂1 and

Xk = X̂k 1{no wins during rounds 1,2,...,k−1}

for k ≥ 2, where X̂k are independent and P(X̂k = ±x 2k) = 1/2. Then Mn is the wealth of the gambler
after n rounds relative to the wealth at time zero.

Example 1.4.15. Let X0, X1, X2, . . . be a sequence of independent integrable random variables such
that E(Xk) = 1 for each k and let Fn = σ(X0, X1, X2, . . . , Xn). Then (Mn)n∈Z+ defined by

Mn =
n∏
k=0

Xk

is a martingale with respect to (Fn)n∈Z+ .

Example 1.4.16. There are many martingales related to Brownian motions. During the course we
will check the following formulas

E(Bt | Fs) = Bs

E(B2
t − t | Fs) = B2

s − s

E
(

exp
(
θBt −

θ2

2
t

) ∣∣∣∣ Fs) = exp
(
θBs −

θ2

2
s

)
.

The first result that we need about martingales for the Itô integral is the next inequality. Its proof
is given in the exercises.

Theorem 1.4.17 (Doob’s maximal inequality). Suppose that (Mt)t∈R+ is a continuous martingale.
Then for each p ≥ 1, T > 0

P
(

sup
0≤s≤t

|Ms| ≥ λ
)
≤ 1
λp

E(|MT |p).
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1.4.4 Itô integral as a process

By the above, we try to define a process Xt such that Xt =
∫ t
0
f(·, s)dBs for every t. The problem in

just defining Xt = I[f1[0,t]] is that the for each fixed t, Xt is defined in a set of probability one, say, in
Ωt, but it is possible that the probability of the uncountable intersection

⋂
t Ωt is strictly less than 1

or even that
⋂
t Ωt is not an event (a measurable set). Therefore we define Xt that way in a countable

set of t and then extend by continuity to other t’s as in the following theorem.

Theorem 1.4.18. For each f ∈ L2 there exists a continuous square integrable martingale (Xt)t∈R+

such that for each t, Xt =
∫ t
0
f(·, s)dBs almost surely.

Remark. The process (Xt)t∈R+ is unique in the sense that if there is another process (X ′t)t∈R+ with
the same properties, then almost surely Xt = X ′t for all t.

Proof. Fix some T > 0. Take a sequence of simple (and bounded) fn ∈ L2 such that fn → f

in L2(dt × dP, [0, T ] × Ω) and define X
(n)
t = I[fn1[0,t]] which is well-defined in whole Ω. If fn =∑

ak1[tk,tk+1), then for tl ≤ t < tl+1 we have an explicite formula

X
(n)
t = al · (Bt −Btl) +

l−1∑
k=0

ak · (Btk+1 −Btk). (1.5)

Clearly t 7→ Xt is continuous. To show that it is a martingale, notice first that it is adapted because
all the random variables on the right of (1.5) are Ft-measurable. Also E|X(n)

t | < ∞, because it is a
finite sum of integrable random variables (you can also use Itô isometry), and for 0 ≤ s < t ≤ T we can
assume that s = tl and t = tm for some l and m (redefine the “partitioning” of fn again if necessary)
and then

E(X(n)
t |Fs) = E(X(n)

s |Fs) + E(
m−1∑
k=l

ak · (Btk+1 −Btk)|Fs)

= X(n)
s +

m−1∑
k=l

E(ak · (Btk+1 −Btk)|Fs)

= X(n)
s

because

E(ak · (Btk+1 −Btk)|Fs) = E(E(ak · (Btk+1 −Btk)|Ftk)|Fs)
= E(ak · E((Btk+1 −Btk)|Ftk)|Fs) = 0. (1.6)

Now since X(n)
t −X(m)

t is a martingale, by Doob’s maximal inequality

P

(
sup
t∈[0,T ]

∣∣∣X(n)
t −X(m)

t

∣∣∣ ≥ ε) ≤ 1
ε2

E(|X(n)
T −X(m)

T |2)

=
1
ε2
‖fn − fm‖2L2(dt×dP)

for any ε > 0. Choose a subsequence nk such that ‖fnk+1 − fnk‖2L2(dt×dP) ≤ 2−3k and use the previous
estimate for ε = 2−k to get

P

(
sup
t∈[0,T ]

∣∣∣X(nk+1)
t −X(nk)

t

∣∣∣ ≥ 2−k
)
≤ 2−k

By the Borel–Cantelli lemma, there exist random variable N which is almost surely finite and for
k ≥ N(ω)

sup
t∈[0,T ]

∣∣∣X(nk+1)
t −X(nk)

t

∣∣∣ < 2−k.
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Hence the sequence of the continuous processes (X(nk)
t ) converges almost surely uniformly to a con-

tinuous process (Xt). Since for any fixed t, limX
(nk)
t in L2(P) is

∫ t
0
fdBs then

Xt =
∫ t

0

f(s, ·) dBs

almost surely. This also shows that (Xt) is adapted and square integrable.
Finally the martingale property of (X(n)

t ), for any 0 ≤ s < t ≤ T

X(n)
s = E(X(n)

t |Fs).

Since the random variables X(n)
s and X

(n)
s converge in L2(P) to Xs and Xt, respectively, then by

Theorem 1.2.6
Xs = E(Xt|Fs).

for any 0 ≤ s < t ≤ T . For the whole R+, the claim follows from the above by taking a countable
sequence T ↗∞ and using the uniqueness.

Remark. The property that we used in (1.6) could be reformulated in the following way: if (Mt)t∈R+

is a martingale and if 0 ≤ s ≤ t ≤ u and Y is a Ft-measurable bounded random variable, then

E(Y (Mu −Mt) |Fs) = 0.

We say that the martingale increments Mu −Mt is orthogonal to Ft.

Definition 1.4.19. For any f ∈ L2, the stochastic integral (or Itô integral) is redefined to be the
continuous version Xt(ω) of

∫ t
0
f(s, ω)dBs(ω) constructed in the previous theorem.

Remark. The processes (Xt)t∈R+ and (Yt)t∈R+ are versions of each other if P(Xt = Yt) = 1 for each t.

Definition 1.4.20. For any process Xt =
∫ t
0
fdBs, define the quadratic variation process as

〈X〉t(ω) =
∫ t

0

f(s, ω)2dt.

We will later prove that 〈X〉 is the quadratic variation in the sense of Definition 1.3.8, but before
that we state and prove a couple more theorems about the Itô integral as a process.

Theorem 1.4.21. Let f ∈ L2, Xt =
∫ t
0
fdBs and 〈X〉t as above. Then X2

t − 〈X〉t is a martingale.

Proof. We leave as an exercise to check this for bounded, simple f ∈ L2. In the general case take a
sequence of bounded, simple fn ∈ L2 and define X(n)

t =
∫ t
0
fndBs. The claim follows easily from the

L1(P) convergence of (X(n)
t )2−〈X(n)〉t which implies the L1(P) convergence of E[(X(n)

t )2−〈X(n)〉t | Fs]
by the properties 2. and 6. in Theorem 1.2.6.

Next we define a stopping time which can be taught as the time when something happens such
that for each time instant, the question whether this event already occurred or not before or at that
time is a “measurable question”.

Definition 1.4.22. A random variable τ : Ω → [0,∞] is called a stopping time with respect to the
filtration (Ft)t∈R+ if for all t ≥ 0, {ω : τ(ω) ≤ t} ∈ Ft.

One way to describe the following result is that by that proposition, the pathwise interpretation of
the Itô integral makes sense: if two integrands have the same paths up to a stopping time, then the
integrals also agree up to that stopping time.

Proposition 1.4.23. If τ is a stopping time and f ∈ L2 and g ∈ L2 processes such that f(t, ω) =
g(t, ω) for any (t, ω) such that t ≤ τ(ω), then for almost all ω∫ t

0

f(s, ω)dBs(ω) =
∫ t

0

g(s, ω)dBs(ω)

for all t ≤ τ(ω).
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Proof. Let Xt =
∫ t
0
f(s, ·)dBs. It is clearly enough to prove that if τ is a stopping time and f(t, ω) = 0

for t ≤ τ(ω), then for almost all ω, Xt(ω) = 0 for all t ≤ τ(ω).
Assume for a moment that |f | ≤ K. Pick a sequence of simple fn ∈ L2 converging to f in

L2(dt× dP). We can assume that |fn| ≤ K. Write

fn(t, ω) =
mn−1∑
k=0

a
(n)
k (ω)1h

t
(n)
k ,t

(n)
k+1

”(t)

Since it is possible that fn(t, ω) 6= 0 for some (t, ω) satisfying t ≤ τ(ω), we modify fn by setting

f̃n(t, ω) =
mn−1∑
k=0

a
(n)
k (ω)1n

τ<t
(n)
k

o(ω)1h
t
(n)
k ,t

(n)
k+1

”(t).

Notice that f̃n ∈ L2 (here we need that τ is a stopping time). Now since fn1[τ,∞) → f1[τ,∞) = f

in L2(dt × dP), to check that f̃n → f in L2(dt × dP) we have to show that f̃n − fn1[τ,∞) → 0 in
L2(dt× dP).

Now ∣∣∣f̃n(t, ·)− fn(t, ·)1[τ,∞)(t)
∣∣∣ ≤K m−1∑

k=0

∣∣∣∣1nτ<t(n)
k

o − 1{τ≤t}
∣∣∣∣1ht(n)

k ,t
(n)
k+1

”(t)

≤K
m−1∑
k=0

1n
t
(n)
k ≤τ<t

(n)
k+1

o1h
t
(n)
k ,t

(n)
k+1

”(t)

and therefore

E

(∫ T

0

(
f̃n − fn1[τ,∞)

)2

dt

)
≤ K2

m−1∑
k=0

P
(
t
(n)
k ≤ τ < t

(n)
k+1

)∫ T

0

1h
t
(n)
k ,t

(n)
k+1

”(t)dt

≤ K2 mesh(πn)

where πn = {t(n)
0 , . . . , t

(n)
mn}. We can assume that mesh(πn) → 0 by adding points to the partition

if necessary. Since f̃n → f in L2(dt × dP) and
∫ t
0
f̃n(s, ·)dBs = 0 for t ≤ τ , and since by the proof

of Theorem 1.4.18 there is a subsequence of
∫ t
0
f̃n(s, ·)dBs that converges almost surely uniformly on

[0, T ] for T > 0, Xt(ω) = 0 almost surely for any t ≤ τ .

1.4.5 More general integrands and localization

Often useful notations: s ∧ t = min{s, t} and s ∨ t = max{s, t}.
At this point, we have the Itô integral defined for any measurable, adapted process f such that

E

(∫ T

0

f2dt

)
<∞

for any T ∈ (0,∞). However, we would like to have a larger class of processes that includes at least all
the continuous processes such as f(t, ω) = exp(Bt(ω)3) which is an example of a process that doesn’t
belong to L2.

Definition 1.4.24. L2
loc is definied to be the set of measurable, adapted process f such that∫ T

0

f(t, ·)2 dt <∞

almost surely for any T ∈ (0,∞).
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Fix some f ∈ L2
loc. Define a stopping time

τn(ω) = inf
{
t ∈ R+ :

∫ t

0

f(s, ω)2ds ≥ n
}
.

It follows from f ∈ L2
loc, that τn ↗∞ almost surely as n→∞.

Let fn(t, ω) = f(t, ω)1t≤τn . Then fn ∈ L2 and we can define the Itô integral X(n)
t =

∫ t
0
fndBs.

Since fn(t, ω) = fm(t, ω) for all (t, ω) such that t ≤ (τn ∧ τm)(ω) and since τn ∧ τm is also a stopping
time, by Proposition 1.4.23 for almost all ω,

X
(n)
t (ω) = X

(m)
t (ω)

for t ≤ (τn ∧ τm)(ω). For each fixed ω, this is really strong convergence: there is a finite n0(ω) such
that X(n)

t (ω) = X
(m)
t (ω) for any n,m ≥ n0(ω). Define now a process (Xt)t∈R+ on the event {τn ↗∞}

Xt(ω) = X
(n)
t (ω)

where n ∈ N is any number satisfying τn(ω) ≥ t. The complement of {τn ↗ ∞} has zero probability
and there we can define Xt = 0 identically, say. Note that: if for any t > 0, Xt(ω) = X

(n)
t (ω) for some

n, then Xs(ω) = X
(n)
s (ω) for all s ∈ [0, t]. Therefore s 7→ Xs(ω) is continuous.

Definition 1.4.25. The Itô integral of f ∈ L2
loc is defined as∫ t

0

f(s, ω)dBs(ω) = Xt(ω) = Xn
t (ω)

where n ∈ N is any number satisfying τn(ω) ≥ t and Xn
t (ω) is as above,

We will conclude this section by stating a theorem that lists the properties of Itô integral For
any continuous process (Xt)t∈R+ and for any stopping time τ , define a stopped process (Xτ

t )t∈R+ by
Xτ
t = Xt∧τ . The continuity guarantees that Xτ

t is measurable.

Definition 1.4.26. A continuous process (Mt)t∈R+ adapted to (Ft)t∈R+ is called local martingale if
there exist a sequence of stopping times 0 ≤ τ1 ≤ τ2 ≤ . . . such that P(τk ↗ ∞) = 1 and for each k,
Mτk is a martingale. It is a local square integrable martingale, if each (Mτk

t )t∈R+ is a square integrable
martingale.

Theorem 1.4.27. For any f ∈ L2
loc, Xt =

∫ t
0
f(s, ·) dBs is a continuous local square integrable

martingale and X2
t − 〈X〉t is a continuous local martingale.

1.4.6 Quadratic variation of Itô integrals1

Remember that above we noticed that X2
t −〈X〉t is a martingale for any Xt =

∫ t
0
fdBs, f ∈ L2. We can

use this property to show that 〈X〉t is the quadratic variation V
(2)
X (t) in the sense of Definition 1.3.8.

This proposition has a version for f ∈ L2
loc and also then V

(2)
X = 〈X〉.

Theorem 1.4.28. For any f ∈ L2, the Itô integral Xt =
∫ t
0
fdBs has finite quadratic variation and

V
(2)
X (t) = 〈X〉t

almost surely for any t.

Proof. Assume first that f ∈ L2 is such that the Itô integral Xt =
∫ t
0
fdBs and the quadratic variation

〈X〉t are bounded processes, that is, there exists a constant K such that for almost all ω and for all t,
|Xt(ω)| ≤ K and 〈X〉t ≤ K.

Let t > 0 and π = {0 = t0 < t1 < . . . < tm = t}. Define

∆k = (Xtk+1 −Xtk)2 − 〈X〉tk+1 + 〈X〉tk
1We didn’t go through this proof in the lectures. But it is included here for completeness.
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and note that
m−1∑
k=0

∆k =
m−1∑
k=0

(Xtk+1 −Xtk)2 − 〈X〉t.

Notice also that for any 0 ≤ u ≤ tk, E[∆k|Fu] = 0 by the martingale increment orthogonality.
Therefore

E

(m−1∑
k=0

∆k

)2
 =

m−1∑
k=0

E
(
∆2
k

)
.

By the inequality (a+ b)2 ≤ 2(a2 + b2),

E

(m−1∑
k=0

∆k

)2
 ≤2

m−1∑
k=0

E
(
(Xtk+1 −Xtk)4

)
+ 2E(〈X〉t sup{|〈X〉s − 〈X〉s′ | : 0 ≤ s, s′ ≤ t, |s− s′| ≤ mesh(π)}).

The second term goes to zero as mesh(π) → 0 by boundedness and continuity of 〈X〉t. So it remains
to show that

m−1∑
k=0

E
(
(Xtk+1 −Xtk)4

)
→ 0

as mesh(π)→ 0.
We will first show that

E

(m−1∑
k=0

(Xtk+1 −Xtk)2
)2
 ≤ 6K4 (1.7)

By using the martingale property of (Xt)t∈R+

m−1∑
k=j

E
(

(Xtk+1 −Xtk)2
∣∣Ftj) =

m−1∑
k=0

E
(
X2
tk+1
−X2

tk

∣∣∣Ftj) ≤ E
(
X2
tm

∣∣Ftj) ≤ K2

and therefore
m−1∑
j=0

m−1∑
k=j+1

E
(
(Xtj+1 −Xjk)2 (Xtk+1 −Xtk)2

)

=
m−1∑
j=0

E

(Xtj+1 −Xjk)2
m−1∑
k=j+1

E
(

(Xtk+1 −Xtk)2
∣∣Ftj+1

)
≤ K2

m−1∑
j=0

E
(
(Xtj+1 −Xjk)2

)
≤ K4

We also have
m−1∑
k=0

E
(
(Xtk+1 −Xtk)4

)
≤ 4K2

m−1∑
k=0

E
(
(Xtk+1 −Xtk)2

)
≤ 4K4.

The inequality (1.7) follows directly from the last two inequalities.
Now by the Cauchy–Schwarz inequality

E

(
m−1∑
k=0

(Xtk+1 −Xtk)4
)

≤E

(
sup

{
|Xs −Xs′ |2 : 0 ≤ s, s′ ≤ t, |s− s′| ≤ mesh(π))2

} m−1∑
k=0

(Xtk+1 −Xtk)2
)

≤

E
(

sup
{
|Xs −Xs′ |2 : 0 ≤ s, s′ ≤ t, |s− s′| ≤ mesh(π))2

}2
)

E

(m−1∑
k=0

(Xtk+1 −Xtk)2
)2
 1

2
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And the right-hand side goes to zero by continuity of Xt and by the estimate (1.7).
We have now show that when Xt and 〈X〉t are bounded processes then the quadratic variation

exists and V
(2)
X (s) = 〈X〉s. To complete the proof for a general f ∈ L2, let

τn = inf{t ≥ 0 : |Xt| ≥ n or 〈X〉t ≥ n}

and use the above argument for fn = f1[0,τn] and X(n)
t =

∫ t
0
fn(s, ·)dBs. Notice that X(n)

t = Xτn
t and

that τn ↗∞ almost surely.

1.5 Itô’s formula

Also in this section (Bt)t∈R+ and (B(1)
t , . . . , B

(m)
t )t∈R+ denote Brownian motions adapted to a filtration

(Ft)t∈R+ .

1.5.1 Itô’s formula for a Brownian motion

Theorem 1.5.1 (Itô’s formula for a Brownian motion). Let F : R+×R→ R be a continuous function
such that Ḟ, F ′, F ′′ exist and are continuous, where

Ḟ (t, x) =
∂F

∂t
(t, x), F ′(t, x) =

∂F

∂x
(t, x) and F ′′(t, x) =

∂2F

∂x2
(t, x).

Then almost surely

F (t, Bt) = F (0, B0) +
∫ t

0

Ḟ (s,Bs)ds+
∫ t

0

F ′(s,Bs)dBs +
1
2

∫ t

0

F ′′(s,Bs)ds (1.8)

for any t ∈ R+. For the previous equation we will use the shorthand notation

dF (t, Bt) = Ḟ (t, Bt)dt+ F ′(t, Bt)dBt +
1
2
F ′′(t, Bt)dt.

Proof. We’ll prove this claim in the case when Ḟ, F ′, F ′′ are compactly supported. The general case
follows from this when we set Fn = F hn where 0 ≤ hn ≤ 1 is a sequence of smooth functions such
that hn = 1 in [0, n]× [−n, n] and 0 in the complement of [0, n+ 1]× [−n− 1, n+ 1].

Take a partition π of [0, t] and write a telescoping sum

F (t, Bt)− F (0, B0) =
m(π)−1∑
k=0

(F (tk+1, Btk+1)− F (tk, Btk)).

By the mean value theorem

F (tk+1, Btk+1)− F (tk, Btk) = [F (tk+1, Btk+1)− F (tk, Btk+1)] + [F (tk, Btk+1)− F (tk, Btk)]

= [F (tk+1, Btk+1)− F (tk, Btk+1)]︸ ︷︷ ︸
=ak

+F ′(tk, Btk)(Btk+1 −Btk)︸ ︷︷ ︸
=bk

+
1
2
F ′′(tk, ηk)(Btk+1 −Btk)2︸ ︷︷ ︸

=ck

where ηk is a Ftk+1-measurable random variable that lies between Btk and Btk+1 . Take a sequence of
partitions πn such that mesh(πn) → 0 as n → ∞. The claim is that the sums

∑
ak,

∑
bk and

∑
ck

will converge to each of the three integrals in (1.8), respectively. The convergence will be almost sure
along suitable subsequences of πn.

Define for any g : R+ × R→ R the following quantities measuring sizes of oscillations

O(B)(δ) = sup{|Bs −Bs′ | : 0 ≤ s, s′ ≤ t s.t. |s− s′| ≤ δ}
Og(δ, δ′) = sup{|g(s, x)− g(s′, x′)| : 0 ≤ s, s′ ≤ t s.t. |s− s′| ≤ δ and x, x′ ∈ R s.t. |x− x′| ≤ δ′}
Og,B(δ) = Og

(
δ,O(B)(δ)

)
.
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Note first that by the mean value theorem

F (tk+1, Btk+1)− F (tk, Btk+1) = Ḟ (ρk, Btk+1)(tk+1 − tk)

where ρk ∈ (tk, tk+1) is a random variable. Now∣∣∣Ḟ (ρk, Btk+1)− Ḟ (tk, Btk)
∣∣∣ ≤ OḞ,B(mesh(πn))

and therefore∣∣∣∣∣∑
k

Ḟ (ρk, Btk+1)(tk+1 − tk)−
∑
k

Ḟ (tk, Btk)(tk+1 − tk)

∣∣∣∣∣ ≤ tOḞ,B(mesh(πn))

which goes to zero almost surely as mesh(πn)→ 0. By almost sure continuity of t 7→ Ḟ (t, Bt),∑
k

Ḟ (tk, Btk)(tk+1 − tk)→
∫ t

0

Ḟ (s,Bs)ds

almost surely as mesh(πn)→ 0 and hence∑
k

Ḟ (ρk, Btk+1)(tk+1 − tk)→
∫ t

0

Ḟ (s,Bs)ds

almost surely as mesh(πn)→ 0 and we have shown the almost sure convergence of
∑
ak.

We know from the definition of Itô integral that∑
F ′(tk, Btk)(Btk+1 −Btk)→

∫ t

0

F ′(s,Bs)dBs (1.9)

in L2. Choose a subsequence of πn (denoted for simplicity still by πn) such that this convergence is
almost sure. This gives the claim for

∑
bk.

Finally,∣∣∣∑(F ′′(tk, ηk)− F ′′(tk, Btk)) · (Btk+1 −Btk)2
∣∣∣ ≤ OF ′′,B(mesh(πn))

∑
(Btk+1 −Btk)2

Take a subsequence such that
∑

(Btk+1 − Btk)2 goes to t almost surely as mesh(πn) → 0. Then the
right-hand side goes to zero almost surely. Now the same calculation as for the quadratic variation of
Brownian motion shows that

E
((∑

F ′′(tk, Btk) · ((Btk+1 −Btk)2 − (tk+1 − tk))
)2
)

=
∑

E
(
F ′′(tk, Btk)2 · ((Btk+1 −Btk)2 − (tk+1 − tk))2

)
≤ ‖F ′′‖2∞

∑
E
(
((Btk+1 −Btk)2 − (tk+1 − tk))2

)
= 2‖F ′′‖2∞

∑
(tk+1 − tk)2

which goes to zero. Now take yet another subsequence such that∑
F ′′(tk, Btk) · ((Btk+1 −Btk)2 − (tk+1 − tk))→ 0

almost surely. Then on the event that t 7→ F ′′(t, Bt) is continuous,∑
F ′′(tk, Btk)((Btk+1 −Btk)2 →

∫ t

0

F ′′(s,Bs)ds

almost surely. Hence along the chosen subsequence∑
F ′′(tk, ηk)(Btk+1 −Btk)2 →

∫ t

0

F ′′(s,Bs)ds (1.10)

almost surely giving the claim for
∑
ck.

Now we have shown that for fixed t, Itô’s formula (1.8) holds almost surely. Therefore it holds
almost surely for all rational t. Finally, by continuity of both sides in t, it holds almost surely for all
t.
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1.5.2 Itô’s formula for semimartingales

From now on, we’ll write the time parameter of the integrands explicitly. Let

Xt =
∫ t

0

fsdBs, Yt =
∫ t

0

gsdBs

where f, g ∈ L2
loc. Then their (quadratic) covariation process is defined as

〈X,Y 〉t =
∫ t

0

fsgsds.

Note that it satisfies
4〈X,Y 〉t = 〈X + Y 〉t − 〈X − Y 〉t.

Hence XtYt − 〈X,Y 〉t is a local martingale and along partitions of [0, t]

lim
mesh(π)→0

m(π)−1∑
k=0

(Xtk+1 −Xtk)(Ytk+1 − Ytk) = 〈X,Y 〉t

in probability. This claim and similar claims below are not verified here in detail.
If (B(1), B(2)) is a standard two-dimensional Brownian motion and

Xt =
∫ t

0

fs dB(1)
s , Yt =

∫ t

0

gs dB(2)
s

where f, g ∈ L2
loc, then XtYt is a local martingale and the covariation process is naturally

〈X,Y 〉t = 0.

This can be seen by showing first for bounded, simple processes (ft) and (gs) that XtYt is a martingale
and then extend to other cases.

In the most general case, let (B(1)
t , B

(2)
t , . . . , B

(m)
t ) be a standard m-dimensional Brownian motion.

Let

Xt = X0 +
∫ t

0

fsds+
m∑
k=1

∫ t

0

g(k)
s dB(k)

s (1.11)

Yt = Y0 +
∫ t

0

f̂sds+
m∑
k=1

∫ t

0

ĝ(k)
s dB(k)

s

where X0 and Y0 are F0-measurable random variables, g(k), ĝ(k) ∈ L2
loc and f, f̂ are measurable,

adapted to (Ft)t∈R+ and satisfy

P
(∫ t

0

|fs|ds <∞ for all t ∈ R+

)
= 1.

Then since integrals
∫ t
0
fsds have (locally) finite total variation, by the above it is natural to define

〈X〉t =
m∑
k=1

∫ t

0

(
g(k)
s

)2

ds, 〈Y 〉t =
m∑
k=1

∫ t

0

(
ĝ(k)
s

)2

ds, 〈X,Y 〉t =
m∑
k=1

∫ t

0

g(k)
s ĝ(k)

s ds

which are the quadratic variation and covariation processes also in the sense of Definition 1.3.8.

Definition 1.5.2. We call a process of the form (1.11) a semimartingale and use a shorthand notation

dXt = ftdt+
m∑
k=1

g
(k)
t dB(k)

t .
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Remark. This is a slight abuse of standard termilogy. More generally semimartingale is a process that
is sum of an adapted finite variation process and a local martingale.

Theorem 1.5.3 (Itô’s formula for semimartingales). Let 1 ≤ l ≤ n. Let X(j)
t be semimartingales

dX(j)
t = f

(j)
t dt+

m∑
k=1

g
(j,k)
t dB(k)

t

for 1 ≤ j ≤ n where f (j) and g(j,k) are as above. Assume that g(j,k) = 0 identically for j > l. Let
F : Rn → R be continuous function such that ∂xiF exists and is continuous for all 1 ≤ i ≤ n and that
∂xi xjF exists and is continuous for all 1 ≤ i, j ≤ l.

Then Yt = F (X(1)
t , . . . , X

(n)
t ) is a semimartingale and almost surely

dYt =
n∑
j=1

{
∂xjF (X(1)

t , . . . , X
(n)
t )f (j)

t dt+
m∑
k=1

∂xjF (X(1)
t , . . . , X

(n)
t )g(j,k)

t dB(k)
t

}

+
1
2

l∑
i,j=1

m∑
k=1

∂xi,xjF (X(1)
t , . . . , X

(n)
t ) g(i,k)

t g
(j,k)
t dt

for all t ∈ R+. This is written shortly as

dYt =
n∑
j=1

(∂jF ) dX(j)
t +

1
2

l∑
i,j=1

(∂ijF ) d
〈
X(i), X(j)

〉
t
.

Remark. Note that the theorem includes the case when F depends explicitly on time: let l < n and
take X(n)

t = t. Theorem 1.5.1 is a special case of Theorem 1.5.3.

1.5.3 Rules for stochastic calculus

Let Yt = F (X(1)
t , . . . , X

(n)
t ). Then the reader can memorize Itô’s formula for Yt by writing formally

Zt+dt = Zt+dZt for any semimartingale Zt and then take the Taylor expansion of F at (X(1)
t , . . . , X

(n)
t )

and then use the rules

dt2 = 0, dtdB(i)
t = 0, dB(i)

t dB(j)
t = δijdt.

1.5.4 Examples

Example 1.5.4. Let F (x) = x2/2 and let (Bt)t∈R+ be a one-dimensional Brownian motion with
B0 = 0, then by Theorem 1.5.1

1
2
B2
t =

∫ t

0

BsdBs +
1
2

∫ t

0

ds

and hence after rearranging the terms ∫ t

0

BsdBs =
1
2
B2
t −

1
2
t

which is in agreement with the result we obtained by directly applying the definition of Itô integral.

Example 1.5.5. Let (B(1)
t , . . . , B

(m)
t ) be m-dimensional standard Brownian motion, m ≥ 2, started

from (B(1)
0 , . . . , B

(m)
0 ) 6= 0 and let F (x1, . . . , xm) =

(∑m
k=1 x

2
k

)1/2. Then by Itô’s formula Yt =
F (B(1)

t , . . . , B
(n)
t ) satisfies

dYt =
∑
k

B
(k)
t dB(k)

t

Yt
+
m− 1

2Yt
dt

as shown in the exercises.
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1.6 Further topics in stochastic analysis

1.6.1 Usual conditions

Let’s comment on some assumptions usually assumed in textbooks on stochastic analysis. If we are
given a probability space (Ω,F ′,P) and a filtration (F ′t)t∈R, then we can complete F ′ by including all
null sets and use the usual augmentation of (F ′t)t∈R which is defined by including all the null sets in
the filtration and making the filtration right continuous:

N = {A ⊂ Ω : A ⊂ E for some E ∈ F s.t. P(E) = 0}
F = σ(F ′ ∪N )

F t = σ(F ′t ∪N )

Ft =
⋂
s>t

Fs.

The filtration (Ft)t∈R+ constructed in this way is right-continuous in the sense that Ft =
⋂
s>t Fs.

We will now assume that F is complete and that (Ft)t∈R+ satisfies the usual conditions, i.e., it is
complete and right-continuous. The right-continuity of the filtration affects the set of stopping times.
Here is an example result.

Lemma 1.6.1. If (Ft)t∈R+ is right-continuous and (Xt)t∈R+ is a continuous, adapted Rd-valued pro-
cess, then the hitting-time of a open or closed set H ⊂ Rd

τH = inf{t ∈ R+ : Xt ∈ H}

is a stopping time.

1.6.2 Optional stopping

In this section we present second martingale tool which we need for our theory.

Definition 1.6.2. If τ is a stopping time with respect to (Ft)t∈R+ , define the stopping time σ-algebra
as

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for all t ∈ R+}

In the same way, as Ft can be thought as the information available at time t, a stopping time
σ-algebra Fτ can be thought as the information available at a random time τ . The following set of
results extends the martingale property to random times.

Theorem 1.6.3. Let (Mt)t∈R+ be a continuous martingale and τ and σ stopping times with respect
to (Ft)t∈R+ . Then for each t ∈ R+

E(Mt∧τ |Fσ) = Mt∧σ∧τ

Remark. As seen below, we have to care about the integrability of quantities such as Mτ . Here the
non-random number t in Mt∧τ guarantees that E|Mt∧τ | <∞.

Corollary 1.6.4. Let (Mt)t∈R+ be a continuous martingale and τ be a stopping time with respect to
(Ft)t∈R+ . Then the process (Mτ

t )t∈R+ defined by

Mτ
t = Mt∧τ

is a continuous martingale with respect to (Ft)t∈R+ .

Remark. Stopped local martingales are local martingales by the same argument.

Definition 1.6.5. A collection C of random variables is said to be uniformly integrable if

lim
m→∞

sup
X∈C

E(|X| ; |X| ≥ m) = 0.
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Corollary 1.6.6. Let (Mt)t∈R+ be a continuous martingale and τ and σ almost surely finite stopping
times with respect to (Ft)t∈R+ . Assume that σ ≤ τ . Then

E(Mτ |Fσ) = Mσ

under any of the following conditions:

• For some constant C > 0, σ ≤ τ ≤ C

• For some constant C > 0, |Mt| ≤ C for all t.

• The collection of random variables Mt, t ∈ R+, is uniformly integrable.

Remark. In some sense, the first two cases are special cases of the last case.

Remark. In the last case, Mσ = E(Mτ |Fσ) = E(M∞|Fσ) for some random variable M∞ and Mt →M∞
in L1.

Example 1.6.7. The martingale strategy presented in Example 1.4.14 is not uniformly integrable and
limn→∞Mn doesn’t exist in L1 although limn→∞Mn = 1 almost surely.

The reader can find more about optional stopping from Section 3.1 of Seppäläinen’s book and
Section II.3 of Revuz&Yor: “Continuous martingales and Brownian motion.”

1.6.3 Time-change of local martingales

The following theorem is an application of Itô’s formula. It is a special case of more general result that
any continuous local martingale is a time-change of a Brownian motion. The proof of the general result
would follow the same lines if we had established the theory of the stochastic integral with respect to
local martingales and we had corresponding Itô’s formula available.

Theorem 1.6.8. Let (Xt)t∈R+ be a local martingale defined by

Xt =
m∑
k=1

∫ t

0

g(k)
s dB(k)

s

where g(k)
t ∈ L2

loc. Let (σr)r∈R+ be the set of stopping times

σr = inf{t ≥ 0 : 〈X〉t ≥ r}

where

〈X〉t =
m∑
k=1

∫ t

0

(
g(k)
s

)2

ds

is the quadratic variation process as before. Assume that almost surely 〈X〉t → ∞ as t → ∞. Then
the process (Yt)t∈R+ defined by

Yt = Xσt

is a standard one-dimensional Brownian motion with respect to the filtration (Fσt)t∈R+ .

Proof. Since 〈X〉t → ∞ as t → ∞, each σr is almost surely finite. By the continuity of the mapping
t 7→ 〈X〉t, we have that 〈X〉σr = r.

Let

Mt = exp
(
iθXt +

θ2

2
〈X〉t

)
.

By Itô’s formula (Mt)t∈R+ is a continuous local martingale. Note that (Mt)t∈R+ is a complex valued
process, but this causes no problems: we can apply Itô’s formula separately for its real and imaginary
parts. The statement that it is a local martingale means that both its real and imaginary parts are
local martingales. Since Mσr

t = Mt∧σr is bounded, (Mσr
t )t∈R+ is a martingale. Namely, if τn is
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the localizing sequence of (Mt)t∈R+ , then (Mσr∧τn
t )t∈R+ is a martingale. Hence by boundedness of

(Mσr
t )t∈R+ and by the fact that τn ↗∞ almost surely as n→∞,

E( Mσr∧τn
t︸ ︷︷ ︸

→Mσr
t in L1

|Fs) = Mσr∧τn
s︸ ︷︷ ︸

→Mσr
s in L1, as n→∞

and therefore
E(Mσr

t |Fs) = Mσr
s

Hence (Mσr
t )t∈R+ is a continuous bounded martingale.

Now we can apply the optional stopping theorem for stopping times σs ≤ σr, 0 ≤ s ≤ r, to show
that

E(Mσr |Fσs) = Mσs .

This implies that for any 0 ≤ s ≤ r and for any θ ∈ R,

E (exp (iθ(Xσr −Xσs)) |Fσs) = exp
(
−θ

2

2
(r − s)

)
.

The right-hand side of this equation is the characteristic function of a normal random variable with
mean 0 and variance r − s. The left-hand side is a conditional version of characteristic function
of Xσr − Xσs . That characteristic function is now constant as a Fσs-measurable random variable.
Therefore the fact that the characteristic function determines the distribution uniquely shows that
Xσr −Xσs is independent from Fσs and also that Xσr −Xσs is normally distributed with mean 0 and
variance r − s.

1.6.4 Strong Markov property

For the sake of completeness, let’s state the following property of Brownian motion which extends the
Markov property of Brownian motion (the property that for each s ∈ R+, the process Yt = Bt+s −Bs
is a standard Brownian motion independent from Fs).

Theorem 1.6.9 (Strong Markov property). For any stopping time τ which is almost surely finite, the
process (Yt)t∈R+ defined by

Yt = Bτ+t −Bτ
is a standard Brownian motion independent of Fτ .

Remark. Note that in the independence property, an “infinitesimal peek to the future” is allowed
because the filtration (Ft)t∈R+ is right-continuous and hence Fτ =

⋂
h>0 Fτ+h.

1.6.5 Stochastic differential equations

LetXt be an Rn valued continuous stochastic process and let Bt be a standardm-dimensional Brownian
motion. We say that Xt satisfies the stochastic differential equation (SDE)

dXt = F (t,Xt)dt+G(t,Xt)dBt

with initial condition X0 = Z if for each t

Xt = Z +
∫ t

0

F (s,Xs) ds+
∫ t

0

G(s,Xs) dBs

Here G(s,Xs) dBs is understood as a matrix product so that the i’th component, 1 ≤ i ≤ n, is∑m
j=1G

(i,j)(s,Xs) dB(j)
s .

Theorem 1.6.10. Let Bt be m-dimensional Brownian motion and let

F :[0, T ]× Rn → Rn

G :[0, T ]× Rn → Rn×m
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be measurable maps. Let Z be Rn-valued square integrable random variable which is independent from
σ(Bt, t ∈ R+). Suppose that

|F (t, x)|+ |G(t, x)| ≤ C(1 + |x|)
|F (t, x)− F (t, y)|+ |G(t, x)−G(t, y)| ≤ D |x− y|

where for any matrix A, |A| =
√∑

i,j Ai,j.

Then there exist a unique continuous solution (Xt)t∈[0,T ] to the stochastic differential equation

X0 = Z, dXt = F (t,Xt)dt+G(t,Xt)dBt, t ∈ [0, T ],

with the property that Xt is adapted to the filtration F (B,Z)
t generated by Z and Bs, s ∈ [0, t]. Further-

more

E

[∫ T

0

|Xt|2dt

]
<∞.

Remark. In the time-homogeneous case, F (t, x) = F (x) and G(t, x) = G(x), these solutions Xt are
called diffusions. Another viewpoint to diffusions is that it is a family of processes with one element for
each starting point x ∈ Rn. The uniqueness of the solution together with the strong Markov property
of Brownian motion imply that diffusions have the following strong Markov property : Xτ+t conditioned
on Fτ is distributed as a independent copy of the diffusion X̃t send from Xτ .

1.7 Conformal invariance of two-dimensional Brownian mo-
tion

As usual complex number z is represented in terms of its real and imaginary parts as z = x + iy,
similarly complex valued function of a complex variable is divided into its real and imaginary parts as
f(z) = u(z) + i v(z). Define as usual the following partial differential operators

∂ =
1
2

(∂x − i∂y), ∂ =
1
2

(∂x + i∂y).

Let U be a open set in the complex plane C and let z0 ∈ U . The basic result of complex analysis is
that the following statements about a function f : U → C are equivalent:

• The function f is holomorphic near z0: the complex derivative

f ′(z) = lim
h→0

f(z + h)− f(z)
h

exists and is continuous in a neighborhood of z0. This is equivalent to that the statement that
f has continuous partial derivatives ∂xf , ∂yf and satisfies ∂f(z) = 0 in a neighborhood of z0.
Hence the complex derivative f ′(z) = limh→0 h

−1(f(z + h) − f(z)) satisfies f ′(z) = ∂f(z) =
∂xf(z) = −i∂yf(z).

• The real and imaginary parts of f satisfies Cauchy–Riemann equations near z0:

∂xu = ∂yv, ∂xv = −∂yu

• The function f is (complex) analytic at z0: f(z) =
∑∞
n=0 cn(z− z0)n which converges absolutely

when |z − z0| ≤ r for some r > 0.

Remember that u and v are harmonic: ∆u = 0 = ∆v (say, by the Cauchy–Riemann equations
uxx + uyy = vxy − vxy = 0).

Define a complex Brownian motion send from z0 ∈ C as

Bt = BC
t = z0 +B

(1)
t + i B

(2)
t

The complex Brownian motion is conformally invariant (up to a time-change) as shown next.
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Theorem 1.7.1. Let U ⊂ C be a domain (non-empty connected open set) and let f : U → C be
analytic. Let z0 ∈ U and let Bt be a complex Brownian motion send from z0 ∈ C. Let τ = inf{t ≥ 0 :
Bt /∈ U}. Let Zt = f(Bσ(t)) for 0 ≤ t < S(τ) where σ(t) = S−1(t) and

S(t) =
∫ t

0

|f ′(Bs)|2ds

for 0 ≤ 0 < τ . Then Zt is a complex Brownian motion send from f(z0) and stopped at S(τ).

Proof. As above write f = u+ i v. Define

Xt = u(Bt), Yt = v(Bt)

Since u and v are harmonic and satisfy the Cauchy–Riemann equations,

dXt = u1(Bt)dB
(1)
t + u2(Bt)dB

(2)
t

dYt = −u2(Bt)dB
(1)
t + u1(Bt)dB

(2)
t

by Itô’s formula, where u1 = ∂xu and u2 = ∂yu are the partial derivatives of u. Therefore (Xt)t∈R+

and (Yt)t∈R+ are local martingales. Now

〈X〉t = 〈Y 〉t =
∫ t

0

u1(Bs)2 + u2(Bs)2 ds =
∫ t

0

|f ′(Bs)|2ds

and 〈X,Y 〉t = 0. Here we used the fact that f ′(z) = u1(z)− i u2(z). A slight modification of the proof
of Theorem 1.6.8 shows that for any θ1, θ2 ∈ R

exp
(
iθ1Xt +

θ21
2
〈X〉t

)
exp

(
iθ2Yt +

θ22
2
〈Y 〉t

)
is a local martingale and that (Xσt)t∈R+ and (Yσt)t∈R+ are independent Brownian motions.

Remark. In the previous proof, it was crucial that (Xt)t∈R+ and (Yt)t∈R+ had the same quadratic
variation. There is no general time-change result for multidimensional continuous local martingales of
the form of Theorem 1.6.8.


