CONFORMAL FIELD THEORY, EXERCISE SET 8

1. Derive the formula $i\left[Q_{k}, \Phi_{a}(x)\right]=\left(x^{2} \partial_{k}-2 x_{k} E-2 \Delta_{a} x_{k}\right) \Phi_{a}$ for the generators Q_{k} of special conformal transformations, starting from the formula $x \mapsto x^{b}=$ $\left(1+2 x \cdot b+x^{2} b^{2}\right)^{-1}\left(x+x^{2} b\right)$ for finite special conformal transformations. Here Φ_{a} is a field of conformal weight Δ_{a} and $E=\sum_{k} x^{k} \partial_{k}$.
2. Prove the formulas

$$
\begin{aligned}
{[T, Y(a, z, \bar{z})] } & =\partial_{z} Y(a, z, \bar{z}) \\
{[H, Y(a, z, \bar{z})] } & =\left(z \partial_{z}+\Delta_{a}\right) Y(a, z, \bar{z} \\
{\left[T^{*}, Y(a, z, \bar{z}]\right.} & =\left(z^{2} \partial_{z}+2 \Delta_{a} z\right) Y(a, z, \bar{z})
\end{aligned}
$$

with $Y(a, z, \bar{z})=(1+z)^{-2 \Delta_{a}}(1+\bar{z})^{-2 \bar{\Delta}_{a}} \Phi_{a}(t, \bar{t})$ in a two dimensional conformal field theory. Here $t=x_{0}-x_{1}$ and $\bar{t}=x_{0}+x_{1}$ and

$$
\begin{aligned}
P & =\frac{1}{2}\left(P_{0}-P_{1}\right) \\
Q & =-\frac{1}{2}\left(Q_{0}+Q_{1}\right) \\
T & =\frac{1}{2}(P+[P, Q]-Q) \\
H & =\frac{1}{2}(P+Q) \\
T^{*} & =\frac{1}{2}(P-[P, Q]-Q) .
\end{aligned}
$$

3. Let $\mid 0>$ be the vacuum vector in a 2 d conformal field theory. Show that $H\left|a>=\Delta_{a}\right| a>$ and $T^{*}\left[a>=0\right.$ where $\left|a>=\Phi_{a}(t, \bar{t})\right| 0>$ at $t=i, \bar{t}=i$ (in the light cone coordinates), that is, $z=0=\bar{z}$ for $z=\frac{1+i t}{1-i t}, \bar{z}=\frac{1+i \bar{t}}{1-i \bar{t}}$. Use the results of the previous exercise! Note that assuming the Wightman spectral condition for P_{k} and a similar condition for Q_{k} leads to $\Delta_{a} \geq 0$.
4. Prove the Wightman locality for the free real scalar field $\phi(x)=\phi^{+}(x)+\phi^{-}(x)$ (decomposition to positive and negative frequencies) in four space-time dimensions starting from $\left[\phi^{+}(x), \phi^{-}(y)\right]=\Delta^{+}(x-y)$ with

$$
\Delta^{+}(x)=\frac{1}{(2 \pi)^{3}} \int \frac{d^{3} \mathbf{p}}{2 p_{0}} e^{-i p \cdot x}
$$

with $p_{0}=+\sqrt{\mathbf{p}^{2}+m^{2}}$.

