1. The metric $\langle x, y\rangle=x^{0} y^{0}-x^{1} y^{1}-x^{2} y^{2}-x^{3} y^{3}$ in $\mathbb{R}^{1,3}$ induces by restriction a (pseudo) metric on tangent vectors to the surface $\left(x^{0}\right)^{2}-\cdots-\left(x^{3}\right)^{2}=-1$. What is the signature of this metric?
2. Consider a special conformal transformation K_{b} in $N^{p, q}$ and in $\mathbb{R}^{p, q}$. The set of points $x \in \mathbb{R}^{p, q}$ with $1-2<x, b>+x^{2} b^{2}=0$ is a singular in $\mathbb{R}^{p, q}$ with respect to K_{b}. How are the corresponding points transformed in $N^{p, q}$, i.e., where are the points $K_{b}(i(x))$ lying?
3. Let J be a nonsingular $(\operatorname{det} J \neq 0)$ real antisymmetric $2 n \times 2 n$ matrix and define the bilinear form $(x, y)=x^{t} J y$ in $\mathbb{R}^{2 n}$. The real symplectic group $\operatorname{Sp}(2 n)$ consists of matrices A such that $(A x, A y)=(x, y)$ for all $x, y \in \mathbb{R}^{2 n}$. Show that $S p(2 n)$ is indeed a Lie group. Compute its Lie algebra, following the Example 2 on page 10 in the lecture notes.
4. Show that $\operatorname{dim} S p(2 n)=n(2 n+1)$.
5. Let X, Y be $n \times n$ matrices. Show that

$$
e^{X} e^{Y}=e^{X+Y+\frac{1}{2}[X, Y]+\ldots}
$$

where the dots denote higher order terms in X, Y. This is the Baker-CampbellHausdorff formula. [See a Wiki article for more details!]
6. Let \mathfrak{g} and \mathfrak{a} be a Lie algebras and $\rho: \mathfrak{g} \rightarrow$ Der \mathfrak{a} a linear map to the algebra of derivations of \mathfrak{a}, i.e.,

$$
\rho(X)([A, B])=[\rho(X) A, B]+[A, \rho(X) B]
$$

Assume further that $\rho([X, Y])=\rho(X) \rho(Y)-\rho(Y) \rho(X)$ for all X, Y. Show that the bracket

$$
[(X, A),(Y, B)]=([X, Y], \rho(X) B-\rho(Y) B+[A, B])
$$

defines a Lie algebra structure in the direct sum $\mathfrak{g} \oplus \mathfrak{a}$ of vector spaces.

