
Chapter 2

Homological algebra

2.1 Boundary operator

It is now time to put some algebra in algebraic topology.
Consider a (geometric) simplex [v0, . . . , vn] of some ∆-complex K (so that
some faces might be glued together). We would like to consider its boundary
as some sort of the ” sum ” of the (n − 1)-dimensional simplices it is made
of. Of course this boundary as a set is just the union

∪n
i=0[v0, . . . , v̂i, . . . , vn]

and every (n−1)-dimensional face has its natural order, but this order might
not ”suit” the orientation of the whole boundary/simplex itself. To see what
this means we must discuss the concept of the orientation of a simplex. Let
us first consider the cases n = 1, 2, 3.

It is easy to decide what is meant by the orientation of a 1-simplex [v0, v1]
- it is what we defined as ”order”. We can think of a this simplex as a directed
”arrow”, a path from the point v0 to the point v1. These points together form
the boundary of this path. If we change this direction to its opposite, we get
an arrow [v1, v0] which goes from v1 to v0. Hence it is natural to think that
[v1, v0] is [v0, v1] ”with an opposite sign”, hence we write

[v1, v0] = −[v0, v1].
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simplex [v1, v0]

Hence 1-simplex has two orientations. Interchange of the order of its ver-
tices switches the orientation to the opposite orientation.

Next we consider a triangle [v0, v1, v2].
Its boundary is a ”continuous” (meaning here ”connected”) closed path

from v0 to itself, going through v1 and v2. It has a natural orientation (see
the picture below) - first one goes from v0 to v1, i.e. ”travels” the edge [v0, v1],
then from v1 to v2, i.e. ”travels” the edge [v1, v2], and finally the edge [v2, v0].
This also defines a natural orientation of the whole triangle (indicated in the
picture by the arc-shaped arrow in the centre of the triangle) - which is ”
clockwise ” orientation in the case of this particular triangle.

v0

v1

v2

Hence if we think of the boundary ∂[v0, v1, v2] as a geometrical entity we
might want to write something like

∂[v0, v1, v2] = [v0, v1] + [v1, v2] + [v2, v0].

This makes geometrical sence, as explained above, but we see that when we
think about the matter in this way faces [v0, v1] and [v1, v2] preserve their
natural ordering inhereted from [v0, v1, v2], while the 3rd face [v2, v0] has an
opposite direction! If we remember our previous agreement that

[v2, v0] = −[v0, v2],

we obtain ”the formula”

∂[v0, v1, v2] = [v0, v1] + [v1, v2]− [v0, v2].
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Going back to the orientation questions, we now have intuitive idea of
the two possible natural ways to give the orientation to the boundary of the
triangle and hence the triangle itself - it is a clockwise way to travel a circle
(the boundary) and the counterwise way. If we interchange two vertices - say
v0 and v1, the orientation switches to the opposite, as the picture below shows.
Hence a 2-simplex has two orientations and they also have the property of
switching to the opposite, when two vertices are interchanged (Exercise 2.1).

v0

v1

v2 v1

v0

v2

Before going to the general formalities let us check the last case we can
draw - the 3-simplex [v0, v1, v2, v3] i.e. a tetrahedron. Now its 2-faces are
triangles, and we already know what we mean by the orientation (”clockwise”
or ”counterclockwise”) for triangles.

v0 v2

v1

v3

We see immediately that faces [v0, v1, v2] and [v1, v2, v3] have opposite ori-
entations. One can check all the triangles and compare their orientations
(exercise 2.2) in the same fashion. As a result one obtains that the faces
[v1, v2, v3] (0-face) and [v0, v1, v3] (2-face) have the same orientation, while
[v0, v2, v3] (1-face)and [v0, v1, v2] (3-face)also have the same orientation - op-
posite to the orientation of [v1, v2, v3] and [v0, v1, v3]. If we call the first
orientation ”positive” and the other one ” negative”, we obtain the formula
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∂[v0, v1, v2, v3] = [v1, v2, v3]− [v0, v2, v3] + [v0, v1, v3]− [v0, v1, v2].

It is now clear that the combination of these orientations of the triangles
in the boundary define what we should think of as an orientation of the whole
tetrahedron, although it is more difficult to give it a simple geometrical in-
terpretation as we did in the cases n = 1 and n = 2. Let us still observe what
will happen if we interchange the order of two vertices, v0 and v1. There are
two faces, the 2-face and the 3-face that contain both vertices, so in the in-
terchange their orientation switches to the opposite. What about 0-face and
1-face? Now the orientation of the 0-face does not change, since the order of
its vertices remain the same. But in the ”new” ordered simplex [v1, v0, v2, v3]
it is not 0-face anymore, it is 1-face, so its orientation is switched as well.
The same is true for the face [v1, v2, v3].
Hence the interchange of two vertices switches the orientation of all the faces,
in least in the case of vertices v0 and v1. The reader is invited to check all
the other cases as an exercise.

We are now ready to formalize these observations.
Recall that a permutation of the finite set {0, . . . , n} is a bijection α : {0, . . . , n} →
{0, . . . , n}. If v0 < v1 < . . . < vn is a particular ordering of the vertices of a
simplex and α is a permutation of the set {0, . . . , n} one can define another
ordering by

vα(0) < vα(1) < . . . < vα(n).

Also we can obtain any other ordering v′0 < v′1 < . . . < v′n of the same set
of vertices from the ordering v0 < v1 < . . . < vn in this way with a unique
permutation α - it is the only permutation that maps i to j = α(i) with
v′i = vj .
Recall that a permutation α of the set {0, . . . , n} is called a transpose if it
interchanges two elements leaving other elements fixed. To be more precise
there exist i, j ∈ {0, . . . , n}, i 6= j so that α(i) = j, α(j) = i and α(k) = k if
k 6= i, j. In this case one often writes α = (ij).
Every permutation of the set {0, . . . , n} can be written as a composition of
transposes. This representation is not unique, but the oddity of the amount
of transposes needed to represent a given permutation is an invariant of the
permutation. In other words if α is a permutation that can be written as a
composition of n transposes as well as the composition of m transposes, both
n and m are even or both are odd. In the former case permutation is called
even, in the latter case - odd. This fact is proved in the Linear Algebra I
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course.

Now suppose v0 < v1 < . . . < vn and v′0 < v′1 < . . . < v′n are two different
orderings of the same set of vertices of a simplex σ. Let α be the unique
permutation of the set {0, . . . , n} for which v′i = vα(i).
We say that ordered simplices [v0, . . . , vn] and [v′0, . . . , v

′
n] have the same

orientation (or oriented coherently) if α is even. If α is odd we say that
they have opposite orientation.
The relation ”[v0, . . . , vn] and [v′0, . . . , v

′
n] have the same orientation” is an

equivalance relation in the set of all orderings of the set {v0, . . . , vn}.
The orientation is an equivalence class of this relation. Every simplex has
two orientations, except if it a 0-simplex. A 0-simplex has only one orienta-
tion.

These definitions come from our observation that transposes (which are
odd permutations) must switch the orientation to the opposite. It is also nat-
ural to think that the composition of permutations is compatible with the
orientation switching. Since all permutations can be written as a composi-
tion, these two natural requirements define the notion of orientation uniquely.

Suppose [v0, . . . , vn] is an ordered simplex. Consider its ith face σi =
[v0, . . . , v̂i, . . . , vn] and its jth face σj = [v0, . . . , v̂j , . . . , vn], i < j. Now we
can think of σi and σj as ”models” for the same n−1-simplex, with the same
vertices v0, . . . , v̂i, . . . , v̂j , . . . , vn in the same order and the last vertex, which
is labelled vj in σi and vi in σj. Let us call this vertex b. Then σi and σj

are identified as ”the same ” simplex but with different ordering of vertices.
To get from the ordering [v0, . . . , vi−1, vi+1, . . . , vj−1, b, vj+1, . . . , vn] to the or-
dering [v0, . . . , vi−1, b, vi+1, . . . , vj−1, vj+1, . . . , vn] one needs j − i transposes -
first you interchange b with vj−1, then b with vj−2 and so on, until b riches
the ith place in the ordering.
Hence the orientations of σi and σj are coherent if j− i is even and opposite
if j − i is odd.
As a conclusion we see that (n − 1)-faces with even indexes all have the
same orientation, while faces with odd indexes also have the same orienta-
tion, opposite to the orientation of even-indexed faces. If we call the former
orientation positive and the latter - negative, we obtain the formula

∂[v0, . . . , vn] =
n∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vn].

The only problem that remains at this point is to give this formula a for-
mal algebraic meaning. We added and substracted simplices together, what
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does it mean? We didn’t define any addition operation on the set of sim-
plices!
It turns out we don’t really need to, since every set can be ”extended” to
an abelian group in a natural and universal way. This is what free abelian
groups are all about.

The idea of the construction is the following. Suppose a set A is ”imbed-
ded” in an abelian group G. Since G contains all elements a ∈ A it also
contains all integer multiplies na, n ∈ Z, a ∈ A. Again G must contain all
the possible finite sums of these elements

n1a1 + . . .+ nkak,

where ni ∈ Z, ai ∈ A. We can refer to such sums as ” formal sums” of
elements of A. Every formal sum can be identified with the indexed collection
of the integer coefficients (n1, . . . , nk). For the element a of A which does
not occur in the sum above (i.e. a 6= a1, . . . , an) we can think that it does
occur with the coefficient na = 0. In this manner we can extend the indexed
family (n1, . . . , nk) to the indexed family (na)a∈A. Such an indexed family
can be thought of as an element of ZA i.e. a function f : A → Z. Moreover
every indexed family that comes from a formal sum has the property that
only finite amount of indexes differ from the zero.

Definition 2.1.1. A function f : A → Z is said to be finetely supported
if

Bf = {a ∈ A | f(a) 6= 0}
is a finite subset of A. This set is called the carrier of f .

The subset of ZA consisting of the finitely supported functions is denoted
Z(A). It is clear that the element f ∈ ZA is finitely supported if and only if
there exists a finite B ⊂ A such that f(a) = 0 for all a /∈ B.
The set ZA has a natural structure of an abelian group, with addition defined
”pointwise”,

(f + g)(a) = f(a) + g(a) for all a ∈ A.

The neutral element is the constant zero function 0: A → Z and the inverse
element of f is −f defined pointwise by

(−f)(a) = −f(a), a ∈ A.

Lemma 2.1.2. Z(A) is a subgroup of ZA.

Proof. Exercise 2.3.

54



Of course if A is finite Z(A) = ZA.
If A = {a} is a singleton, we also write Z{a} = Z(a). Hence if A =
{a1, . . . , an} is finite, we have

Z(A) = Z(a1)⊕ Z(a2)⊕ . . .⊕ Z(an).

Definition 2.1.3. Suppose G is an abelian group. A subset A ⊂ G is called
independent if for all ak ∈ A, k = 1, . . . , n and n1, . . . , nk ∈ Z the condition

n1a1 + . . .+ nkak = 0

is equivalent to n1 = . . . = nk = 0. If independent subset A also generates
the whole group i.e. every element x ∈ G can be written as a finite sum

x = n1a1 + . . .+ nkak,

where ni ∈ Z, ai ∈ A, we say that A is a basis of G.

It follows straight from the definition that a subset A ⊂ G is a basis of G
if and only if every element x ∈ G has a unique representation as a formal
sum ∑

a∈A

naa,

where the family (na)a∈A is finitely supported.

Basis have the following important extension property.

Lemma 2.1.4. Suppose G is an abelian group and a subset A ⊂ G is a basis
of G. Suppose f : A → H, where H is an abelian group, is a mapping of
sets. Then there exists the unique group homomorphism g : G → H which is
an extension of f i.e. g(a) = f(a) for all a ∈ A.

Proof. Exercise 2.4.

Let us construct a canonical basis for Z(A). For every a ∈ A let

fa ∈ Z(A)

be defined by

fa(x) =

{
1, if x = a,

0, otherwise .

It is clear that fa 6= fb if a 6= b, so we identify a with fa and think of A as a
subset {fa | a ∈ A} of Z(A).
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Lemma 2.1.5. The set {fa | a ∈ A} is a basis of the abelian group Z(A).

Proof. Exercise 2.5.

Of course not all abelian groups have basis. For example Zn or Q do not
have any basis (exercises 2.7 and 2.8).
The equivalent way to describe the groups that do have a basis is the notion
of the free group.

Definition 2.1.6. Suppose A is a set. A pair (FA, i) , where FA is an abelian
group and i : A → FA is a mapping, is called a free abelian group on the
set A, if it satisfies the following universal property.

Suppose f : A → G is a mapping, where G is an abelian group. Then
there exists a unique group homomorphism g : FA → G such that g ◦ i = f .

A
f //

i

  A
AA

AA
AA

A G

FA

g
>>}}}}}}}}

An abelian group G is called free if there exists a set A and i : A → G
such that (G, i) is a free group on the set A.

Of course free group on the set A is not ”unique” - any isomorphic group
will also do the trick. But this is the worst that can happen.

Lemma 2.1.7. Suppose A is a set and (FA, i) as well as (F
′
A, i

′) are both free
abelian groups on the set A. Then there exists (unique) group isomorphism
g : FA → F ′

A such that g ◦ i = i′.

A

i~~~~
~~
~~
~~

i′

  @
@@

@@
@@

@

FA
g // F ′

A

Proof. Exercise 2.6.

This handles uniqueness. What about existence? Well, in fact we already
constucted an example of a free group for any set A, so it only remains to
prove it satisfies the definition.

Proposition 2.1.8. Suppose A is a set, G is an abelian group and j : A → G
is a mapping. Suppose j is injective and j(A) is a basis of G. Then (G, j)
is a free abelian group on the set A
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Proof. Suppose f : A → H is a mapping, where H is an abelian group.
Since j is an injection we can define the mapping f ′ : j(A) → H by f ′(j(a)) =
f(a).
Since {j(A) | a ∈ A} is a basis of G, we can extend this mapping to a unique
homomorphism g : G → H (Lemma 2.1.4). This mapping has the property
g ◦ j = f by constuction. Moreover any homomorphism g′ : G → H with the
same property must be g, by the uniqueness of the extension.

Proposition 2.1.9. Let A be a set. Define i : A → Z(A) by i(a) = fa.
Then (Z(A), i) is a free abelian group on the set A.

Proof. This follows from the previous proposition, since i in injective and

i(A) = {fa : a ∈ A}

is a basis of Z(A) by the Lemma 2.1.5.

By the 2.1.7 it follows now that every free group on the set A is isomorphic
to Z(A). Using this it is easy to prove the following result.

Proposition 2.1.10. Suppose G is a group, A is a set and j : A → G is a
mapping. Then (G, j) is free abelian on the set A if and only if j is injective
and j(A) is a basis for G.
An abelian group is free if and only if it has a basis.

Proof. If (G, j) is free abelian, by 2.1.7 there exists an isomorphism g : Z(A) →
G such that g ◦ i = j. Since i(A) is a basis for Z(A) and isomorphisms clearly
preserve bases, it follows that j(A) = g(i(A)) is a basis for G. Moreover
j = g ◦ i is an injection as a composition of injections.

Converse statement is proved in the proposition 2.1.8.

If A is a basis of an abelian group G we also call elements of A free
generators of G.
It can be shown that the size of the basis determine the free group uniquely up
to an isomorphism, i.e. Z(A) ∼= Z(B) if and only if there is a bijection between
the sets A and B. In the exercise 2.9 you are asked to prove this in the case
at least one of the sets A or B is finite, which will be enough for our purposes.

Returning to our main course, consider a ∆-complex K. For every n ∈ N
denote by Kn a collection of geometric n-simplices of K (i.e. two simplices
are considered the same if they are identified in |K|).
Define Cn(K) to be the free abelian group on the set Kn. We identify cor-
responding element of basis with an element of Kn, thus elements of Cn(K)
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are formal sums of geometric n-simplices with integer coefficients. The group
Cn(K) is called the group of simplicial n-chains of the complex K.

Example 2.1.11. Consider a ∆-complex K(σ) where σ is an ordered 2-
simplex [v0, v1, v2]. It consists of all the faces of σ, with no identifications.
Now Cn(K) is zero for n > 2, since complex do not have simplices in these
dimensions. For n = 2 there is only one 2-simplex, so C2(K) is a free group
based on one element [v0, v1, v2], hence isomorphic with Z. Its elements have
the form n[v0, v1, v2], n ∈ Z.
For n = 1 there are three 1-simplices, so C1(K) is a free group on 3 free
generators, isomorphic to Z(3). Elements can be written uniquely in the form

n[v0, v1] +m[v0, v2] + l[v1, v2], n,m, l ∈ Z.

Since there are 3 vertices, C0(K) is also free on 3 generators, with elements
of the form

nv0 +mv1 + lv2

(we write [v0] = v0 to simplify the notation).

If we identify all vertices of σ we obtain another ∆-complex K ′. This
has the same groups Cn(K

′) as Cn(K) for n 6= 0, but C0(K) is free on one
element v0 = v1 = v2, since all the vertices are the same now.
If we identify two 1-sides [v0, v1] and [v1, v2] we obtain another ∆-complex
K ′′, for which C2(K

′′) is free on two elements - one being [v0, v2] and the
other being [v0, v1] = [v1, v2].

Let us constuct another extremely important example.
Suppose X is a topological space. For every n ∈ N let

Singn(X) = {f : ∆n → X | f is continuous }.

Here ∆n is a canonical n-simplex defined by

∆n = {(x1, . . . , xn) |
n∑

i=1

xi ≤ 1}.

We consider ∆n as an ordered simplex (e0, e1, . . . , en), where e0 = 0 and ei is
an ith element of the standard basis of Rn.

Elements of Singn(X) are called the singular n-simplices in X .
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Definition 2.1.12. Suppose X is a topological space. For every n ≥ 0 we
define Cn(X) to be the free abelian group with basis Singn(X). Elements of
Cn(X) are called singular n-chains in X.

If K is a ∆-complex we have the group of simplicial n-chains Cn(K) and
the group of singular n-chains Cn(|K|). There is a natural way to consider
Cn(K) as a subgroup of Cn(|K|).
Suppose σ = [v0, . . . , vn] is a geometric n-simplex of K. Then we define
i(σ) = fσ ∈ Cn(|K|) to be a characteristic mapping of σ. Different geomet-
ric simplices define different characteristic mappings, hence i is an injection,
that maps a generator of Cn(K) to a generator of Cn(|K|). It follows that
i defines (by the universal property of a free group) an injective homomor-
phism Cn(K) → Cn(|K|). Hence we can identify σ = [v0, . . . , vn] with a
corresponding characteristic mapping and we will regard Cn(K) a subgroup
of Cn(|K|).

Next we define a boundary operator on Cn(X).
Suppose i ∈ {0, . . . , n}. There is a unique order-preserving simplicial map-
ping εin : ∆

n−1 → ∆n defined by

εin(e
n−1
j ) = ej, if j < i,

εin(e
n−1
j ) = ej+1, if j ≥ i,

Hence εin is the unique order-opreserving simplicial mapping ∆n−1 → ∆n

whose image is the ith face [e0, . . . , êi, . . . , en] of ∆
n.

For a generator f : ∆n → X of Cn(X) we define

∂i
n(f) = f ◦ εin : ∆n−1 → X.

Mapping ∂i
n(f) is evidently continuous, hence a (generator) element of Cn−1(X).

We call it the ith face of the singular simplex f .

Now for the generator f ∈ Singn(X) define its boundary by the formula

∂f =
n∑

i=0

(−1)i∂i
n(f) ∈ Cn−1(X),

which is inspired by the considerations in the beginning of this section.
By the universal property of the free groups, we can extend ∂ to a homomor-
phism ∂ = ∂n : Cn(X) → Cn−1(X) in a unique way. This homomorphism is
called a boundary operator.
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Suppose X = |K|, where K is a ∆-complex. Consider Cn(K) as a sub-
group of Cn(|K|) as above. Then for the generator [v0, . . . , vn] ∈ Cn(K) we
have

∂[v0, . . . , vn] =
n∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vn] ∈ Cn−1(K),

hence ∂ restricted to Cn(K) maps into Cn−1(K).

The basic property of the boundary operator and the starting point for
the homological methods is the following theorem.

Theorem 2.1.13. For all n ≥ 2

∂n−1 ◦ ∂n = 0.

Let us first prove the following technical result

Lemma 2.1.14. Suppose n > 1 and 0 ≤ j < i ≤ n. Then

∂j
n−1(∂

i
nf) = ∂i−1

n−1(∂
j
nf)

for all f ∈ Singn(X).

Proof. Exercise 2.10.

Prove of the theorem 2.1.13:

Proof. Let f ∈ Singn(X). Then

∂nf =
n∑

i=0

(−1)i∂i
n(f),

hence

∂n−1∂n(f) =

n∑

i=0

(−1)i∂n−1∂n(f) =

=

n∑

i=0

n−1∑

j=0

(−1)i(−1)j∂j
n−1∂

i
n(f) = A+B,

where
A =

∑

0≤i≤j≤n−1

(−1)i+j∂j
n−1∂

i
n(f),
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B =
∑

0≤j<i≤n

(−1)i+j∂j
n−1∂

i
n(f).

The change of index i to k = i − 1 in the last sum shows that we can also
write

B =
∑

0≤j≤k≤n−1

(−1)k+j+1∂j
n−1∂

k+1
n (f) =

= −
∑

0≤j≤k≤n−1

(−1)k+j∂k
n−1(∂

j
nf) = −A

where the previous lemma is used in the second to last equation. Hence
A+B = 0 and the claim is proved for the free generators. This suffies.

Theorem 2.1.13 shows that singular chain groups (as well as simplicial
chain groups) form an example of what is generally known as a chain com-
plex.

Definition 2.1.15. A chain complex (C, ∂) is a collection (Cn)n∈Z of
abelian groups indexed on the set Z, together with the collection of homomor-
phisms ∂n : Cn → Cn−1 (called boundary homomorphisms) defined for
every n ∈ Z such that

∂n−1 ◦ ∂n : Cn → Cn−2

is a zero homomorphism.

. . . // Cn+1
∂n+1 // Cn

∂n // Cn−1
// . . .

If Cn = 0 for n < 0 a chain complex is said to be non-negative. If all
groups Cn are free abelian groups, the complex C is said to be free.

Theorem 2.1.13 shows that the groups Cn(X) together with boundary
homomorphisms ∂n defined above form a chain complex. To be precise we
defined these groups only for n ≥ 0 (and ∂n only for n > 0). We extend the
definition by asserting Cn(X) = 0 for n < 0 and ∂n = 0 for n ≥ 0. Clearly
equation ∂n−1 ◦ ∂n = 0 is then satisfied also for n ≤ 1. Hence we obtain a
non-negative free chain complex C(X), called the singular chain complex
of the topological space X .

If X = |K|, K a ∆-complex, the subgroups Cn(K) equipped with the
restrictions of the boundary homomorphisms also form a non-negative free
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chain complex. This complex is called the simplicial chain complex of
the ∆-complex K.

Now suppose (C, ∂) is an arbitrary chain complex. Denote

Zn(C) = Ker ∂n,

Bn(C) = Im ∂n+1.

Both Zn(C) and Bn(C) are subgroups of Cn. Elements of Zn(C) are called
n-cycles of the complex C, elements of Bn(C) are called n-boundaries
of the complex C.
Suppose x ∈ Bn(C). Then x = ∂n+1y for some y ∈ Cn+1, hence

∂n(x) = ∂n∂n+1y = 0.

This implies that x ∈ Zn(C). We showed that

Bn(C) ⊂ Zn(C),

i.e. Bn(C) is a subgroup of Zn(C). Since our groups are abelian, all subgroups
are automatically normal, so we can form a quotient group

Hn(C) = Zn(C)/Bn(C).

This group is called the n-th homology group of the chain complex C.
The elements of Hn(C) are equivalence classes of the n-cycles x ∈ Zn(C),
denoted [x] = x + Bn(C) ∈ Hn(X). Two elements x, y of Zn(C) -define the
same homology class if and only if x−y ∈ Bn(C) i.e. x−y = ∂n+1z for some
z ∈ Cn+1.

By applying this construction to the singular chain complex C(X) we ob-
tain for every n ∈ N the homology group Hn(C(X)), which will be denoted
simply by Hn(X) and called the n-th singular homology group of the
topological space X .
Likewise for a ∆-complex K we obtain for every n ∈ Z the homology group
Hn(C(K)) of the simplicial chain complex C(K), which is denoted simply
by Hn(K) and called the n-th simplicial homology group of the ∆-
complex K.
Of course in both cases trivially Hn(X) = 0 = Hn(K) for n < 0, since com-
plexes are non-negative, so only non-negative dimensional homology groups
are interesting.
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At this point this seems like a purely abstract mathematical game. Surely
we can define quotient groups Zn(X)/Bn(X), but why should we?

To give a little bit of a geometrical motivation consider a boundary of a
2 simplex which algebraically is

[v0, v1] + [v1, v2]− [v0, v2]

and topologically is a sphere S1. Now if you consider its image in some
space X , corresponding singular chain is a cycle, since already as a subset
of a 2-simplex it is the boundary ∂[v0, v1, v2], so its own boundary is zero by
the basic property of the boundary operator. Hence it defines a class in the
homology group H1(X).
Geometrically this image looks like a sphere S1, in other words ”it looks like
a (1-dimensional) hole ”. Now if we can ”fill this hole”, in other words if we
can find the image of the 3-simplex [v0, v1, v2] in our space X , then we don’t
really have a hole in X , and on the other hand in homology our cycle will
be a boundary, hence a zero class in H1(X). But if, on contrary, we cannot
find the bigger simplex to fill this hole in X , this cycle won’t be a boundary
anymore, hence it will define a non-trivial element of H1(X).
Hence a non-trivial element of Hn(X) indicates that we found something like
an ”n-th dimensional hole” in the space X . Because of that homology groups
give an algebraic object which reflects topological properties of X .

Let us continue the study of general abstract homological algebra.
Suppose (C, ∂) and (C ′, ∂′) are chain complexes. Suppose that for every
n ∈ Z a group homomorphism fn : Cn → C ′

n is given. The collection f =
{fn | n ∈ Z} is called a chain mapping if its components fn commute
with boundary operators i.e. if

fn−1 ◦ ∂n = ∂′
n ◦ fn.

This can also be illustrated by the commutativity of the diagram

Cn
fn //

∂

��

C ′
n

∂′

��
Cn−1

fn−1 // C ′
n−1.

Let f : C → C ′ be a chain mapping. Let x ∈ Zn(C). Then

∂′fn(x) = fn−1∂(x) = 0,
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so fn(x) ∈ Zn(C
′). Suppose x = ∂n+1y i.e. x ∈ Bn(C). Then

fn(x) = fn∂(y) = ∂′(fn+1y) ∈ Bn(C
′).

In other words fn takes cycles to cycles and boundaries to boundaries, hence
induces the group homomorphism f∗ : Hn(C) → Hn(C

′).
Chain mappings can be composed - if f : C → C ′ and g : C ′ → C ′′ are

chain mappings, their composite is a chain mapping g ◦ f : C → C ′′, which
components are naturally gn ◦ fn (check that this collection indeed satisfies
the conditions for a chain mapping).
Also for every chain complex C there is an identity chain mapping id
defined degreewise to be the identity homomorphism idn : Cn → Cn.
A chain mapping f : C → C ′ is called an isomorphism of chain com-
plexes if there is a chain mapping g : C ′ → C (an inverse of f) such that
g ◦ f = id = f ◦ g. Clearly a chain mapping f is an isomorphism if and only
if it is a bijection in every degree. Its inverse is unique (because it is unique
in every degree).

Example 2.1.16. Suppose f : X → Y is a continuous mapping. If σ ∈
Singn(X) is a singular n-simplex σ : ∆n → X, then the composite

f♯(σ) = f ◦ σ ∈ Singn(Y )

is clearly a singular n-simplex in Y . Extend this mapping to a unique group
homomorphism f♯ = (f♯)n : Cn(X) → Cn(Y ). Then the collection f♯ =
((f♯)n) is a chain mapping C(X) → C(Y ) (Exercise 2.12a).

The homomorphism (f♯)∗ : Hn(X) → Hn(Y ) will be denoted simply by f∗.

Correspondence f 7→ f∗ is functorial, in the following sence.

Lemma 2.1.17. 1)Suppose f : X → Y and g : Y → Z are continuous map-
pings. Then in the singular homology we have

(g ◦ f)∗ = g∗ ◦ f∗.

2) For identity mapping id : X → X the induced mapping id∗ : Hn(X) →
Hn(X) is the identity homomorphism id : Hn(X) → Hn(X).

Proof. Exercise 2.12b).

This implies that singular homology is a topological invariant.

Corollary 2.1.18. Suppose f : X → Y is a homeomorphism. Then f∗ : Hn(X) →
Hn(Y ) is an isomorphism for all n ∈ N.
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Proof. Let g : Y → X be the inverse of f . Then

id = id∗ = (g ◦ f)∗ = g∗ ◦ f∗,

and similarly f∗ ◦ g∗ = id.Hence g∗ is the inverse of f∗.

Thus homeomorphic spaces have isomorphic singular homology groups.
The same is not so obvious for the simplicial homology. Indeed suppose K
and K ′ are ∆-complexes that have the same polyhedra, i.e. |K| and |K ′| are
homeomorphic as spaces. Are Hn(K) isomorphic to Hn(K

′) for all n ∈ N?
At this point the answer is not at all obvious. There are different ways to
triangulate a space, why would corresponding homologies have anything in
common? On the other hand if simplicial homology would not be a topolog-
ical invariant, it wouldn’t be of any good for topologist and would not help
us study topological spaces.

Later we will prove that it is indeed a topological invariant and in fact
the following is true.

Proposition 2.1.19. Suppose K is a ∆-complex. The inclusion i : C(K) →֒
C(|K|) (which is a chain mapping) induces isomorphisms in homology i.e.
i∗ : Hn(K) → Hn(|K|) is an isomorphism for all n ∈ N

We will prove the proposition 2.1.19 (at least for finite complexes, which
is enough for our purposes and applications) later, after we have developed
enough machinery. Nevertheless we will from now on keep in mind this re-
sult, which allows us to compute (singular) homology groups of some spaces
by triangulating them. Examples will be studied at the end of this section.

Subcomplexes and quotient complexes.
Let (C, ∂) be a chain complex. Supose for every n ∈ Z we are given a

subgroup C ′
n of Cn such that ∂n(C

′
n) ⊂ C ′

n−1 for all n ∈ Z. Then the collec-
tion C ′ = {C ′

n}n∈Z together with the restriction ∂′
n = ∂n|C ′

n as the boundary
operator for every n ∈ N obviously defines a chain complex (C ′, ∂′). We
say that (C ′, ∂) is a chain subcomplex of the chain complex (C, ∂). The
collection i = {in : C ′

n → Cn} of inclusions obviously defines a chain mapping
i : C ′ → C. We also say that (C,C ′) is a pair of chain complexes.

Suppose (C ′, ∂′) is a subcomplex of (C, ∂). Since ∂(C ′
n) ⊂ C ′

n−1 for all
n ∈ N, homomorphism ∂ induces a homomorphism

∂n : Cn/C
′
n → Cn−1/C

′
n−1
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for all n ∈ N. Hence if we denote Cn = Cn/C
′
n, we obtain a chain complex

(C, ∂), which is called a quotient chain complex of (C, ∂) and can also be
denoted by C/C ′.
The quotient mappings pn : Cn → Cn define a chain mapping p : C → C.

Examples 2.1.20. 1) Suppose L is a ∆-subcomplex of a ∆-complex K. Since
the set of generators of Cn(L) is a subset of the set of generators of Cn(K)
we can consider Cn(L) a subgroup of Cn(K) for every n ∈ Z. Since the
boundary operator on Cn(L) is obviously the same as the restriction of the
boundary operator on Cn(K), we see that C(L) is a subcomplex of C(K). The
corresponding quotient complex C(K)/C(L) is denoted C(K,L). It is easy
to see that this is a free complex with the set of free generators in one-to-one
correspondence with the set of the geometric n-simplices of K \ L.
The n-th homology group of C(K,L) is denoted Hn(K,L) and is called the
n-th relative homology group of the pair (K,L).

2) Suppose A is a subspace of a a topological space X. An element of
Singn(A) is a continuous mapping f : ∆n → A which can be identified with
an element f ∈ Singn(X), with f(∆n) ⊂ A. Conversely any such element
definies a unique element of Singn(A) in an obvious way. Hence the standard
set of the free generators of Cn(A) can be identified with the subset of the
standard set of the generators of Cn(X) and thus we can consider Cn(A) as
a subgroup of Cn(X) for all n ∈ Z.
Corresponding quotient complex C(X)/C(A) is denoted C(X,A). It is easy
to see that it is a free complex, with the set of generators of Cn(X,A) being
the set of all continuous mappings f : ∆n → X with the property

Im f ∩X \ A 6= ∅.

The n-th homology group of C(X,A) is denoted Hn(X,A) and is called the
relative n-th homology group of the pair (X,A).

The groups Hn(K) and Hn(X) defined earlier are often referred to as
the ”absolute” homology groups, as opposed to ”relative ” groups defined
for pairs. However notice that absolute groups can be considered a special
case of relative groups - just take L or A to be empty subcomplex/empty
subspace, then corresponding complexes C(L), C(A) are zero complexes, so
C(K,L) and C(X,A) can be identified with C(K) and C(X). It follows that
Hn(K) = Hn(K, ∅) and Hn(X) = Hn(X, ∅).
Hence from the technical point of view it is enough to consider the relative
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homology groups.

3) As we have already seen, C(K) is a subcomplex of C(|K|) for every
∆-complex K.

Suppose (C,C ′) and (D,D′) are pairs of chain complexes and f : C → D
is a chain mapping, such that f maps C ′ into D′, hence defines by restriction
a chain mapping f | : C ′ → D′. In this case we say that f is a chain map-
ping of pairs and denote f : (C,C ′) → (D,D′).
Since f(C ′) ⊂ D′, f defines a chain mapping f : C/C ′ → D/D′ in quotient
chain complexes.

Example 2.1.21. Suppose (X,A), (Y,B) are topological pairs. The map-
ping f : X → Y which maps A into B is called a mapping of topological
pairs. This is also denoted as f : (X,A) → (Y,A). In this case f defines by
restriction the mapping f | : A → B.

The induced chain mapping f♯ : C(X) → C(Y ) obviously maps C(A) into
C(B). Hence we have the induced homomorphism f♯ : C(X,A) → C(Y,B).
This mapping, in its turn, induces homomorphisms in relative homology.
These homomorphisms will be also denoted as f∗ : Hn(X,A) → Hn(Y,B).

To prevent us from completely sliding into theoretical abstract nonsence,
we will now step away from our general course to make some concrete com-
putations of homology groups, using ∆-complexes. This will also provide
some real feel and taste for the algebra we attempt to use.

Example 2.1.22. Let us start off with the 2-simplex ∆ = [a, b, c] and its
boundary ∂∆ considered as ∆-complexes (no identifications). For n < 0
or n > 2 both complexes have no simplices in dimension n, so Cn(∆) =
Cn(∂∆) = 0 for these values of n. For n = 0 or n = 1 both complexes have
the same set of simplices, C0 is a free group on 3 free generators a, b, c and
C1 is also a free group on 3 generators [a, b], [b, c] and [a, c]. In dimension
2 ∆ has one simplex, so C2(∆) is a free group generated by a single element
[a, b, c], while C2(∂∆) = 0.
Let’s start with H2. For ∂∆ it is obviously zero, since C2 = 0. For ∆ we
have

∂2([a, b, c]) = [a, b] + [b, c]− [a, c] = x,

where x ∈ C1 is obviously a non-zero element. Since in free group x 6= 0
implies nx 6= 0 for n 6= 0, we see that ∂2 is injective, hence Ker∂2 = 0. It
follows that H2(∆) is also zero, as a quotient of a zero group.
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Next let us investigate H1. Boundary operator ∂1 is the same in both case,
defined by

∂1(n[a, b]+m[b, c]+l[a, c]) = n(b−a)+m(c−b)+l(c−a) = (n−m)b+(m+l)c−(n+l)a.

Hence for x = n[a, b] + m[b, c] + l[a, c]) the condition x ∈ Ker ∂1 is equiva-
lent to n − m = m + l = n + l = 0, which is the same as n = m = −l.
It follows that Ker ∂1 is a free group on 1 element, generated by [a + b] +
[b, c] − [a, c]. Since in ∆ this element is precisely the boundary of the only
generator [a, b, c], we see that H1(∆) = 0. On the other hand in ∂∆ there
are no 2-simplices, so Im ∂2 = 0, hence H1(∂∆) = Ker ∂1 is a free group on 1
generator [a+ b]+ [b, c]− [a, c]. This illustrates precisely the idea of homology
- we have detected a 1-dimensional hole in the boundary of triangle, which is
represented by the closed loop, that goes around it. In the triangle this hole
is stuffed with the interior of triangle, so the hole itself vanishes, and the
corresponding homology group is trivial.

It remains to calculate H0. Since both complexes have the same 1-skeleton,
this will be the same for both. ∂0 is of course zero mapping (since C−1 = 0),
so Ker ∂0 = C0 is a free group on 3 elements a, b, c. The image of ∂1 consists
of the subgroup generated by the elements ∂[a, b] = b− a, ∂[a, c] = c− a and
∂[b, c] = b− c. Since

c− b = (c− a)− (b− a),

this is the same as the subgroup generated by c− a and b− a. One can show
that {c− a, b− a, a} is a basis of the free group C0 (Exercise 2.14a). Hence
it follows that

H0 = C0/ Im ∂1 = (Z(a)⊕Z(c− a)⊕Z(b− a))/(Z(c− a)⊕Z(b− a)) ∼= Z(a)

is a free group on 1 generator.

Since the boundary of a triangle is isomorphic to S1 we have calculated
the homology groups of the circle, assuming we believe our simplicial homol-
ogy is topological invariant.
Another obvious way to triangulate S1 is to take one 1-simplex and identify
its ends. As an exercise calculate the simplicial homology of this representa-
tion and verify that it gives the same groups as above.

It would be difficult to calculate homology of ∆n and ∂∆n in the same
brute-de-force way, but it is easy to calculate the relative homology of the pair
(∆n, ∂∆n). Indeed both have the same simplices in all dimensions except n,
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hence Ck(∆n, ∂∆n) = 0 for k 6= n, while Cn(∆n, ∂∆n) is clearly isomorphic
to Z, generated by the n-simplex ∆n itself. It follows easily that the homology
of this complex has the same desciption. In other words

Hm(∆n, ∂∆n) ∼=
{
Z, if m = n,

0, otherwise.

In the same fashion one can compute homology of the pair (Kn, Kn−1)
for any ∆-complex K (exercise 2.16), to obtain

Hm(K
n, Kn−1) =

{
Z(A), if m = n,

0, otherwise,

where A is the set of (geometric) n-simplices of K.

Later we will use this simple result in the proof of the theorem 2.1.19.

Example 2.1.23. Mobius band.
Let us calculate the homology of the Mobius band, using the familiar ∆-
complex structure, obtained from a square, as in the picture below. Notice
that the order of vertices is given by their integer indices.

U

V

a

a

b cd

v0 v1

v2v3

Now there are 2 triangles U and V , 4 edges a, b, c, d and 2 vertices -
v0 = v2 = x and v1 = v3 = y. First we calcluate H2 = Ker ∂2. Now

∂(nU+mV ) = n(a−d+c)+m(d−b+a) = (n+m)a+(m−n)d+nc−mb = 0

if and only if n = m = n+m = n−m = 0, hence n = m = 0. In other words
Ker ∂2 is trivial, so H2 = 0. What about the image of ∂2? By the calulation
above it consists of the points

{nc+mb+(n−m)a+(n+m)d = n(c+a+d)+m(b−a+d)|n,m ∈ Z} ⊂ C1

(the sign of m is switched for the convinience), so it clearly is a subgroup
generated by a + c + d and b − a + d (just put n = 1, m = 0 and n = 0,
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m = 1).
On the other hand

∂1(na+mb+kc+ld) = n(y−x)+m(y−x)+k(x−y)+l(y−y) = (n+m−k)y+(k−n−m)x = 0

if and only if n+m− k = 0 = k− n−m = −(n+m− k), hence if and only
if k = n+m. Thus

Ker ∂1 = {na+mb+ (n+m)c + ld = n(a + c) +m(b+ c) + ld|n,m, l ∈ Z}
is a free group on 3 generators a+c, b+c, d (as an exercise you can check that
these elements are independent, also we don’t really need that information).
Now a + c = (a + c + d) − d and b + c = (b − a + d) + (a + c + d) − 2d,
so the group generated by a + c, b + c and d is contained in the free group
generated by a+ c+ d, b− a+ d and d (as another exercise check that these
elements are independent!). Conversely a+c+d = (a+c)+d and b−a+d =
(b+c)−(a+c)+d, so the group generated by a+c+d, b−a+d, d is contained
in the group generated by a+ c, b+ c and d. Thus

Ker ∂1 = Z[a + c+ d]⊕ Z[b− a+ d]⊕ Z[d].

Hence

H1 = Ker ∂1/ Im ∂2 = (Z[a+c+d]⊕Z[b−a+d]⊕Z[d])/(Z[a+c+d]⊕Z[b−a+d]) ∼= Z[d] ∼= Z.

Notice that the homology group H1 of the Mobius band is generated by the
class of the idge d i.e. the diagonal of the square (which looks like the circle,
since its end points are identified).
It remains to calculate H0 = (Z[x] ⊕ Z[y])/ Im ∂1. Since

∂1(na+mb+kc+ld) = n(y−x)+m(y−x)+k(x−y)+l(y−y) = (n+m−k)y+(k−n−m)x =

= lx− ly = l(x− y),

where l = n+m− k, it follows that Im ∂1 = Z[x− y]. It is easy to check that
{x− y, y} is also a basis for C0. Hence it follows that

H0 = (Z[x− y]⊕ Z[y])/Z[x− y] ∼= Z[y] ∼= Z.

Both classes [x] and [y] generate H0. For [x] it follows from the equation
[x] = [x−y]+ [y] = [y], where the fact that x−y is a boundary in C0 is used.

Observe that S1 and the Mobius band have the same homology groups.
This is not a coincidence - although they are not homeomorphic as spaces,
they have the same homotopy type (proof of both claims will be an exercise
given to you later), and we will prove in the next part of the course that the
spaces with the same homotopy type has the same homology groups.
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Example 2.1.24. So far all the homology groups we have calculated were
simple free groups. As a more sophisticated example let us calculate the
homology of the projective plane using the familiar ∆-complex structure as
indicated in the picture.

U

V

a

a

bb

v0

v1v2

v3

c

Now C2 = Z[U ]⊕ Z[V ] and

∂2(nU+mV ) = n(c−b+a)+m(c−a+b) = (n−m)a+(m−n)b+(n+m)c = 0

if and only if n +m = n −m = 0 i.e. if n = m = 0. Hence ∂2 is injective,
so its kernel, and consequently H2, are zero.
Also Im ∂2 is a subgroup generated by c− b+ a = u and c− a+ b = v.
Denote v0 = v1 = x, v2 = v3 = y and observe that

∂1(na +mb+ lc) = n(y − x) +m(y − x) = (n+m)(y − x) = 0

if and only if n = −m. hence

Ker ∂1 = {n(a− b) + lc | n, l ∈ Z},

so that Ker ∂1 is a free group generated by a− b and c.
Now we use the fact (exercise 2.17) that if {α, β} is a basis of a free abelian
group, also {α ± β, β} is a basis. We apply it first to the elements {c− b +
a, c− a+ b} (check that they are independent, hence are a basis of the group
Im ∂2 they generate!) to obtain the basis {2c, c− (a− b)} for Im ∂2. Also the
same fact applayed to the basis {a− b, c} (check that it is a basis!) of Ker ∂1
gives the basis {c, c− (a− b)} for Ker ∂1. Hence

H1 = (Z[c]⊕Z[c−(a−b)])/(Z[2c]⊕Z[c−(a−b)]) ∼= Z[c]/Z[2c] ∼= Z/2Z = Z2.

Thus the first homology group of the projective plane is a group of two ele-
ments, generated by the only non-trivial element [c]. Since [c] = [c−(a−b)]+
[a−b], and c−(a−b) is a boundary element, it follows that [c] = [a−b], so we
can think of our generator as the image of the ” half-ark ” on the boundary
of the disk overlineB2. The homology class of this ark is not trivial, but if
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we add it to itself, thus ”travelling” it twice - back and forth as the picture
indicates - we obtain a trivial path.

It remains to calculate the 0-th homology. AgainH0 = (Z[x]⊕Z[y])/ Im ∂1.
Since

∂1(na +mb+ lc) = (n+m)(y − x),

we see that Im ∂1 = Z[y − x]. Since {y − x, x} is a basis for C0, we see as
above that H0

∼= Z[x] = Z[y] ∼= Z.

Further examples are given to you as exercises 2.19, 2.20, 2.21.

2.2 Some (homological) algebra

Suppose we have a sequence

. . . // An+1
fn+1 // An

fn // An−1
// . . .

of abelian groups and homomorphisms. It can be unlimited in both di-
rection (i.e. indexed on Z) or stop somewhere on the left or/and on the right.
We say that this sequence is exact at An if

Ker fn = Im fn+1.

If the sequence is exact at its everygroup, we say that this sequence is an
exact sequence (of abelian groups).

Since the condition Im fn+1 ⊂ Ker fn is equivalent to the condition fn+1 ◦
fn = 0, we see that the sequence above is exact at An if and only
1)fn+1 ◦ fn = 0 and
2)Ker fn ⊂ Im fn+1.

Let (C, ∂) be a chain complex. We can think of it as an unlimited sequence

. . . // Cn+1
∂n+1 // Cn

∂n // Cn−1
// . . .

of groups and homomorphisms. Now the condition ∂n+1 ◦ ∂n = 0 is
equivalent to the condition

Im ∂n+1 ⊂ Ker ∂n.

It follows that this sequence is exact at Cn if and only Hn(C) = 0. Hence
in some sence homology groups of a chain complex measure the extend to
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which the complex, thought of as a sequence as above, fails to be exact.

A chain complex (C, ∂) is called acyclic if it is exact as a sequence.
From the previous considerations we see that (C, ∂) is acyclic if and only if
Hn(C) = 0 for all n ∈ N.

An exact sequence of the form

0 // A
f // C

g // B // 0

is called a short exact sequence (of abelian groups).

Example 2.2.1. Suppose A is a subgroup of B. Denote the inclusion map-
ping by i : A → B and let p : B → B/A be the canonical projection to the
quotient group. Then the sequence

0 // A
i // B

p // B/A // 0

is exact.

Lemma 2.2.2. A sequence

0 // A
f // B

g // C // 0

is short exact if and only if
1) f is injection,
2) g is surjection,
3) Im f = Ker f

Proof. Exactness at A means that Im(0) = 0 = Ker f , which means precisely
that f is injection. Likewise exactness at C means that Im g = Ker 0 = C,
i.e. g is surjective.

It follows that every short exact sequence is essentially of the form 2.2.1.
Indeed since f is an injection, we can identify A with a subrgroup Im f of B,
so f becomes an inclusion under this identification. Since g is surjective and
its kernel equals a subgroup A, the first isomorphism theorem of the group
theory says that g defines an isomorpism A/B ∼= C. Under this identification
g corresponds to the canonical projection p.
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A sequence

0 // C ′ f // C
g // C // 0

of chain complexes and chain mappings is called a short exact sequence
if it is exact in every dimension as the sequence of abelian groups and homo-
morphisms i.e. if the sequence

0 // C ′
n

f // Cn
g // Cn

// 0

is short exact for every n ∈ Z.
It follows that in this case C ′ can be considered a subcomplex of C and C can
be identified with a quotient subcomplex C/C ′. In other words the sequence
is essentially isomorphic to the sequence

0 // C ′ i // C
p // C // 0

where i : C ′ →֒ C is an inclusion of s subcomplex and p : C → C/C ′ is a
canonical projection.

Suppose

0 // C ′ f // C
g // C // 0

is a short exact sequence of chain complexes. We shall construct for every
n ∈ Z a canonical mapping

∂ : Hn(C) → Hn−1(C
′),

called the boundary operator induced by this sequence.

Suppose x ∈ Cn is a cycle, i.e. an element of Ker(∂n). Since gn is a
surjection, there exists an element y ∈ Cn such that gn(y) = x. Then

gn(∂n(y)) = ∂n(gn(y)) = ∂n(x) = 0.

Since the sequence is exact this means that there is an element z ∈ C ′
n−1

such that fn−1(z) = ∂n(y). Moreover z is unique, since fn−1 is an injection.
Let us show that z is a cycle. We have

fn−2∂
′
n−1(z) = ∂n−1(fn−1(z)) = ∂n−1∂n(y) = 0.

Since fn−2 is an injection, it follows that ∂′
n−1(z) = 0 i.e. z in indeed a cycle

in C ′
n−1. Hence the class z ∈ Hn−1(C

′) is defined. We assert

∆(x) = [z].
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0 // C ′
n+1

f //

∂′

n+1

��

Cn+1
g //

∂n+1

��

Cn+1
//

∂n+1

��

0

0 // C ′
n

f //

∂′

n

��

Cn
g //

∂n

��

Cn
//

∂n

��

0

0 // C ′
n−1

f // Cn−1
g // Cn−1

// 0

Naturally we want ∆: Zn(C) → Hn−1(C
′) to be a well-defined mapping.

Our construction involved a choice of y ∈ Cn, so we need to show that ∆(x)
does not depend on this choice. Suppose y′ ∈ Cn is another element such that
gn(y

′) = x and let z′ ∈ Z ′
n−1 be the unique element with fn−1(z

′) = ∂n(y
′).

Since gn(y) = gn(y
′), it follows that y − y′ ∈ Ker gn = Im fn, so there is

u ∈ C ′
n such that fn(u) = y − y′. Now

fn−1∂
′
n(u) = ∂n(fn(u)) = ∂n(y)− ∂n(y

′) = fn−1(z − z′).

Sincefn−1 is an injection, it follows that

∂′
n(u) = z − z′,

hence z − z′ ∈ Bn−1(C
′), so [z] = [z′] in Hn−1(C

′). We have proved that the
construction as above defines a mapping ∆: Zn(C) → Hn−1(C

′).

Lemma 2.2.3. The mapping ∆ is a homomorphism and factors through
Bn(C), hence defines a homomorphism

∂ : Hn(C) → Hn−1(C
′).

Proof. Suppose x, x′ ∈ Zn(B). Let y, y′ ∈ Cn such that g(y) = x, g(y′) = x′.
Let z, z′ ∈ C ′

n−1 be such that f(z) = ∂n(y), f(z
′) = ∂n(y

′). Then f(z + z′) =
∂n(y + y′) and g(x+ x′) = y + y′. Thus

∆(x+ x′) = [z + z′] = [z] + [z′] = ∆(x) + ∆(x′).

Hence ∆ is a group homomorphism. Suppose x ∈ Bn(C) and let w ∈ Cn+1

be such that ∂n+1(w) = x and v ∈ Cn+1 be such that g(v) = w. Then

g(∂n+1v) = ∂n+1(g(v)) = ∂n+1(w) = x,

hence we can choose y = ∂n+1v to be the element of Cn with g(y) = x. Now
∂n(y) = ∂n∂n+1v = 0, so ∆(x) = 0, by the definition.
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The homomorphism ∂ is natural in the following sense.

Lemma 2.2.4. Suppose

0 // C ′ f //

α
��

C
g //

β

��

C //

γ
��

0

0 // D′ f ′

// D
g′ // D // 0

is a commutative diagram of chain complexes and chain mappings with exact
rows.
Then the diagram

Hn(C)
∂ //

γ∗
��

Hn−1(C
′)

α∗

��
Hn(D)

∂ // Hn−1(D
′)

is commutative.

Proof. Exercise 2.22a).

One of the most important basic results in homological algebra is the
existence of the long exact sequence of homology groups, induced by
the short exact sequence of chain complexes.

Theorem 2.2.5. Suppose

0 // C ′ f // C
g // C // 0

is a short exact sequence of chain complexes. Then the sequence

. . . // Hn+1(C) ∂ // Hn(C
′)

f∗ // Hn(C)
g∗ // Hn(C) ∂ // Hn−1(C

′) // . . .

is an exact sequence of abelian groups and homomorphisms.

Proof. 1) Exactness at Hn(C):
Since g◦f = 0, in homology we have g∗◦f∗ = (g◦f)∗ = 0. Conversely suppose
x ∈ Zn(C) is such that g∗[x] = 0 ∈ Hn(C). This means that g(x) = ∂n+1w
for some w ∈ Cn+1. Let v ∈ Cn+1 be such that g(v) = w. Then

g(∂n+1v) = ∂n+1g(v) = g(x),
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hence x− ∂n+1v ∈ Ker g = Im f . Consequently there is z ∈ C ′
n such that

x− ∂n+1v = f(z).

Since f is an injection it follows easily that z is a cycle; indeed

f(∂′
n(z)) = ∂nf(z) = ∂n(x− ∂n+1v) = 0.

Thus there is [z] ∈ Hn(C
′) and

f∗[z] = [f(z)] = [x− ∂n+1v] = [x],

since boundary element ∂n+1v becomes zero in homology.
We have proved that Ker g∗ ⊂ Im f∗.

2)Exactness at Hn(C): first we prove that ∆◦ g∗ = 0. This is straightfor-
ward - suppose y ∈ Zn(C), and let x = g(y). Then ∆(g∗([y])) = ∆([x]) = 0,
since ∂n(y) = 0.
The proof of the inclusion

Ker∆ ⊂ Im g∗

is left as an exercise.

3) Exactness at Hn(C
′): Exercise.

Long exact sequence is natural.

Proposition 2.2.6. Suppose

0 // C ′ f //

α
��

C
g //

β

��

C //

γ
��

0

0 // D′ f ′

// D
g′ // D // 0

is a commutative diagram of chain complexes and chain mappings with exact
rows.
Then the diagram

. . . // Hn+1(C)
∂ //

γ∗
��

Hn(C
′)

f∗ //

α

��

Hn(C)
g∗ //

β∗

��

Hn(C)
∂ //

γ∗
��

Hn−1(C
′) //

α

��

. . .

. . . // Hn+1(D)
∂ // Hn(D

′)
f∗ // Hn(D)

g∗ // Hn(D)
∂ // Hn−1(D

′) // . . .

is commutative.
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Proof. Exercise 2.23b).

Examples 2.2.7. Let (X,A) be a topological pair. Then by definitions the
exact sequence

0 // C(A)
i♯ // C(X)

j♯ // C(X,A) // 0

is a short exact sequence of chain complexes. Here i : A →֒ X is an inclusion
and j : (X, ∅) → (X,A) is a map of pairs.
By the theorem 2.2.5 there is a long exact sequence

. . . // Hn+1(X,A)
∂ // Hn(A)

i∗ // Hn(X)
j∗ // Hn(X,A)

∂ // Hn−1(A) // . . .

of singular homology groups. This exact sequence will be referred to as the
long exact homology sequence of the pair (X,A).

Suppose f : (X,A) → (Y,B) is a continuous mapping of the topological
pairs. Then f induces chain mappings f♯ between chain complexes C(X) →
C(Y ), C(A) → C(B) and C(X,A) → C(Y,B), and the diagram

0 // C(A)
i♯ //

f |♯
��

C(X)
j♯ //

f♯
��

C(X,A) //

f♯
��

0

0 // C(B)
i♯ // C(Y )

j♯ // C(Y,B) // 0

commutes. Hence Proposition 2.2.6 implies that there is a commutative dia-
gram

. . . // Hn+1(X,A) ∂ //

f∗
��

Hn(A)
i∗ //

f |∗
��

Hn(X)
j∗ //

f∗
��

Hn(X,A) ∂ //

f∗
��

Hn−1(A) //

f |∗
��

. . .

. . . // Hn+1(Y,B)
∂ // Hn(B)

i∗ // Hn(Y )
j∗ // Hn(Y,B)

∂ // Hn−1(B) // . . .

which rows are the long exact homology sequences of the pairs (X,A) and
(Y,B).

There is also a useful generalization for the triples. A topological triple
is a triple (X,A,B) of topological spaces where B ⊂ A ⊂ X. In this situation
we have a short exact sequence (exercise)

0 // C(A,B)
i♯ // C(X,B)

j♯ // C(X,A) // 0,

where i : (A,B) → (X,B) and j : (X,B) → (X,A) are obvious inclusions.
This implies the following result.
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Lemma 2.2.8. Suppose (X,A,B) is a topological triple. Then the sequence

. . . // Hn+1(X,A)
∂′

// Hn(A,B)
i∗ // Hn(X,B)

j∗ // Hn(X,A)
∂ // Hn−1(A,B)

i∗ // . . .

is exact. This sequence is called the long exact homology sequence of
the triple (X,A,B). It is natural with respect to the mappings of triples.
Moreover for the boundary operators of the long exact homology sequences of
the pair (X,A) and of the triple (X,A,B) we have the commutative diagram

Hn(A)

i∗

��

Hn+1(X,A)

∂
77ooooooooooo

∂′

''OO
OO

OO
OO

OO
O

Hn(A,B),

where i : A → (A,B) is an inclusion.

Proof. Exercise 2.25.

Similarly for the pair of ∆-complexes (K,L) there is the long exact
homology sequence of the pair (K,L)

. . . // Hn+1(K,L) ∂ // Hn(L)
i∗ // Hn(K)

j∗ // Hn(K,L) ∂ // Hn−1(L) // . . .

For the canonical inlusions k : C(K) → C(|K|) of the groups of the simpli-
cial chains into the groups of singular chains we have an obvious commutative
diagram

0 // C(L)
i♯ //

k
��

C(K)
j♯ //

k
��

C(K,L) //

k
��

0

0 // C(|L|) i♯ // C(|K|) j♯ // C(|K|, |L|) // 0

which induces then commutative diagram

. . . // Hn+1(K,L)
∂ //

k∗
��

Hn(L)
i∗ //

k∗
��

Hn(K)
j∗ //

k∗
��

Hn(K,L)
∂ //

k∗
��

Hn−1(L) //

k∗
��

. . .

. . . // Hn+1(|K|, |L|) ∂ // Hn(|L|) i∗ // Hn(|K|) j∗ // Hn(|K|, |L|) ∂ // Hn−1(|L|) // . . .

between long exact homology sequences.
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The last example also provides us with motivation for the next extremely
useful algebraic result. As is already mentioned, eventially we want to prove
that k∗ : Hn(K) → Hn(|K|) is an isomorphism for every n ∈ N. Now take a
look at the last commutative diagram between long exact sequences of the
pairs (K,L) and (|K|, |L|). Suppose we already know that the result is true
for the subcomplex L (for example in finite case L could have less simplices
than K, so we could use an inductive assumption) and for the pair (K,L).
Then in the diagram above all five vertical mappings are isomorphisms, ex-
cept for the one in the middle. Now if we could prove that under these
assumptions the mapping in the middle must also be an isomorphism, we
will have precisely the result we want. Luckily the so-called five lemma
tells us that this is precisely the case.

Lemma 2.2.9. Suppose we have a commutative diagram

G1
α1 //

f1
��

G2
α2 //

f2
��

G3
α3 //

f3
��

G4
α4 //

f4
��

G5

f5
��

H1
β1 // H2

β2 // H3
β3 // H4

β4 // H5

of groups and group homomorphisms with exact rows. Then
1) If f1 is surjective and f2, f4 are injective, also f3 is injective.
2) If f5 is injective and f2, f4 are surjective, also f3 is surjective.
In particular if f1, f2, f4, f5 are isomorphisms, also f3 is an isomorphism.

Proof. We will prove 1) and leave 2) as an exercise.
The proof is an example of so-called diagram chasing method. Suppose
f3(x) = 0 for some x ∈ G3. We must show that x = 0. Now

0 = β3(f3(x)) = f4(α3(x)).

Since f4 is injective, α3(x) = 0. Since the upper row is exact, x = α2(y) for
some y ∈ G2. We have

β2(f2(y)) = f3(α2(y)) = f3(x) = 0,

hence, since the lower row is exact, there is z ∈ H1 such that β1(z) = f2(y).
Now f1 is surjective, so there is u ∈ G1 such that f1(u) = z. Consequently

f2(α1(u)) = β1(f1(u)) = β1(z) = f2(y).

Since f2 is injective this implies that y = α1(u). Hence

x = α2(y) = α2(α1(u)) = 0

by exactness.
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We will see many examples of the applications of the five lemma.

Finally we discuss the splitting of the exact sequence.

Suppose 0 // A
f // C

g // B // 0 and 0 // A
f ′

// C ′ g′ // B // 0
are short exact sequences with the same first and third group. We say that
these sequences are isomorphic (in the strong sense) if there exists a
homomorphism α : C → C ′ such that the diagram

C

α

��

g

  A
AA

AA
AA

A

0 // A

f
>>}}}}}}}}

f ′

  A
AA

AA
AA

B // 0

C ′

g′
>>}}}}}}}

commutes. Observe that we can also write this diagram in the form

0 //

id
��

A
f //

id
��

C

α
��

g // B //

id
��

0

id
��

0 // A
f // C ′ g′ // B // 0.

Since identity mappings are obviously isomorphisms, the application of Lemma
2.2.9 implies that in this case α must be an isomorphism. This explains the
choice of the terminology.

Suppose A and B are abelian groups. We can always form the direct sum
A⊕ B. There are canonical inclusions i : A → A⊕B, j : A⊕B defined by

i(a) = (a, 0),

j(b) = (0, b)

and canonical projections p : A⊕ B → A, q : A⊕ B → B defined by

p(a, b) = a,

q(a, b) = b.

It is easy to see that the sequence

0 // A
i // A⊕B

q // B // 0,

is short exact. We shall call it a trivial short exact sequence .
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Definition 2.2.10. Suppose

0 // A
f // C

g // B // 0

is a short exact sequence. We say that this sequence splits if it is isomorphic
(in the strong sense) to the trivial sequence

0 // A
i // A⊕ B

q // B // 0.

In practice one usually uses other, alternative definitions, presented in
the next lemma.

Lemma 2.2.11. Suppose

0 // A
f // C

g // B // 0

is a short exact sequence of abelian groups. Then the following conditions
are equivalent.
1) The sequence splits.
2) There is a homomorphism f ′ : C → A such that f ′ ◦ f = id.
3) There is a homomorphism g′ : B → C such that g ◦ g′ = id.

Proof. Suppose sequence splits, then there is an isomorphism α : C → A⊕B
such that

C

α

��

g

##G
GG

GG
GG

GG

0 // A

f
;;wwwwwwwww

i

##G
GG

GG
GG

GG
B // 0

A⊕ B

q
;;wwwwwwwww

Define f ′ = p ◦ α : C → A, g′ = α−1 ◦ j. Then

f ′(f(a)) = pαf(a) = pi(a) = p(a, 0) = a,

g(g′(b)) = gα−1j = qj(b) = q(0, b) = b,

hence f ′ ◦ f = id and g ◦ g′ = id.
Hence 1) implies 2) and 3).

Suppose f ′ : C → A is such that f ′ ◦ f = id. Define α : C → A⊕ B by

α(c) = (f ′(c), g(c)).
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Then qα(c) = g(c), i.e. q ◦ α = g. Also αf(a) = (f ′(f(a), g(f(a)) = (a, 0),
hence α ◦ f = i. In other words the diagram

C

α

��

g

##G
GG

GG
GG

GG

0 // A

f
;;wwwwwwwww

i

##G
GG

GG
GG

GG
B // 0

A⊕ B

q
;;wwwwwwwww

commutes.
The proof that 3) implies 1) is similar and is left to the reader.

Lemma 2.2.12. Suppose

0 // A
f // C

g // B // 0

is a short exact sequence. If B is a free abelian group, then this sequence
splits.

Proof. Exercise 2.27.

As an example suppose (X,A) is a topological pair and (K,L) is a pair
of ∆-complexes. Since Cn(X,A) (Cn(K,L)) is a free abelian group for every
n ∈ N, it follows that the sequences

0 // Cn(A)
i♯ // Cn(X)

j♯ // Cn(X,A) // 0

0 // Cn(L)
i♯ // Cn(K)

j♯ // Cn(K,L) // 0

split for every n ∈ N.

2.3 Exercises

2.3.1 Boundary operator

1. Go through all the permutations of the set {0, 1, 2} and make sure that
the orientation of the triangle [v0, v1, v2] does change or does not change
according to the oddity of the permutation.
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2. Go through all the pairs of the 2-faces of a tetrahedron [v0, v1, v2, v3] and
check that their orientations are the same or not the same according
to the oddity of their indices. Draw pictures!

3. Show that Z(A) is a subgroup of ZA for any set A.

4. Suppose G is an abelian group that has a basis A ⊂ G. Show that for
every mapping (of sets) f : A → H , where H is an abelian group, there
exists a unique group homomorphism g : G → H which is an extension
of f i.e. g(a) = f(a) for all a ∈ A.

5. Let A be a set. For every a ∈ A define fa : A → Z by

fa(x) =

{
1, if x = a,

0, otherwise .

Prove that the set {fa | a ∈ A} is a basis of the abelian group Z(A).

6. Suppose A is a set and (FA, i) as well as (F
′
A, i

′) are both free abelian
groups on the set A. Show that then there exists (unique) group iso-
morphism g : FA → F ′

A such that g ◦ i = i′.

7. Prove that a free abelian group G is torsion-free i.e. for every g ∈ G
and n ∈ N the equation

ng = 0

is true if and only if n = 0 or g = 0.
Conclude that Zn, n ∈ N or Q/Z are not free abelian.

8. Suppose A ⊂ Q contains at least 2 points. Show that A is not inde-
pendent.
Conclude that Q is not a free abelian group, although it is torsion-free.

9. a) Let G be an abelian group and denote

2G = {2g | g ∈ G}.
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Prove that 2G is a subgroup of G and show that if G ∼= H , then
G/2G ∼= H/2H .
b) Suppose A and B are sets, A is finite. Prove that Z(A) ∼= Z(B) if and
only if B is finite and has the same amount of elements as A (Hint: use
a).

10. Suppose X is a topological space, n > 1 and 0 ≤ j < i ≤ n. Prove that

∂j
n−1(∂

i
nf) = ∂i−1

n−1(∂
j
nf)

for all f ∈ Singn(X).

11. Suppose X is a topological space. Singular 1-simplices in X are map-
pings f : I = [0, 1] → X and are also called pathes inX . If f(0) = f(1)
the path f is called the loop. Show that as an element of C1(X) the
path f is a cycle if and only if it a loop.
Suppose f, g : I → X are pathes and g(0) = f(1). Then we can defined
their product fcdotg : I → X by

(f · g)(t) =
{
f(2t), if 0 ≤ t ≤ 1/2,

g(2t− 1), if 1/2 ≤ t ≤ 1.

Prove that in this case f + g− f · g is a boundary element in C1(X) by
constucting the explicit 2-simplex in X , whose boundary is f+g−f ·g.
(Hint: see the picture below.)

f

g

f

g
f

g

Conclude that if f and g are loops, then

[f ] + [g] = [f · g] ∈ H1(X).
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12. a) Suppose f : X → Y is a continuous mapping. Show that f♯ : C(X) →
C(Y ) defined on generators by f♯(σ) = f ◦ σ is a chain mapping.
b) Let g : Y → Z be another continous mapping. Prove that

g♯ ◦ f♯ = (g ◦ f)♯,

id♯ = id .

Deduce the same for mappings between singular homology groups.

13. Suppose f : C → D is a chain mapping between chain complexes. Prove
that
1) the collection of groups Ker fn ⊂ Cn form a subcomplex of C, de-
noted by Ker f ,
2) the collection of groups Im fn ⊂ Dn form a subcomplex of D, de-
noted by Im f .
Deduce that f induces a chain isomorphism C/Ker f ∼= Im f of chain
complexes.

2.3.2 Simplicial homology calculations

14. a)Let G be a free group on 3 free generators a, b, c. Show that {c −
a, b− a, a} is also a basis of G.
b) Let G be a free group on 4 free generators a, b, c, d. Prove that the
set {a+ c+ d, b− a+ d, d} is independent.

15. Consider S1 as a polyhedron of a ∆-complex, generated by a single
1-simplex, whose vertices are identified. Calculate the simplicial ho-
mology of this complex.
Verify that the result is the same as calculated in the lectures using the
triangulation of S1 as a boundary of a 2-simplex.

16. Suppose K is a ∆-complex. Prove that

Hm(K
n, Kn−1) ∼=

{
Z(A), if m = n,

0, otherwise,

where A is the set of (geometrical) n-simplices of K.
Also show that the classes [σ] ∈ Hn(K

n, Kn−1), where σ ∈ A form a
basis of the group Hn(K

n, Kn−1).
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17. Suppose {α, β} is a basis of a group G. Prove that {α± β, β} is also a
basis of G.

18. Suppose G is a free group with basis {a, b, c}. Prove that the sets
{c− b+ a, c− a+ b} and {a− b, c} are independent.

19 Calculate the homology groups of the Klein bottle, using the familiar
∆-complex structure given on the picture above.

U

V

a

a

bb

Remember to order simplices!

20. Calculate the homology groups of the torus, using the ∆-complex struc-
ture

U

V

a

a

bb

21. Calculate the homology groups of the Mobius band using the ∆-complex
structure as in exercise 1.25, having one triangle with two sides inden-
tified.

a
a
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Check that you end up with the same result as in the lecture notes
(where we used completely different triangulation of the Mobius band).

2.3.3 Homological algebra

22. Find two short exact sequences of the form

0 // Z
f // C

g // Z2
// 0,

0 // Z
f // C ′ g // Z2

// 0,

where C and C ′ are not isomorphic as groups.

23. a) Suppose

0 // C ′ f //

α
��

C
g //

β

��

C //

γ
��

0

0 // D′ f ′

// D
g′ // D // 0

is a commutative diagram of chain complexes and chain mappings with
exact rows.
Prove that the diagram

Hn(C)
∂ //

γ∗
��

Hn−1(C
′)

α∗

��
Hn(D)

∂ // Hn−1(D
′)

is commutative. Here ∂ are boundary operators induced by the hori-
zontal short exact sequences.
b) Prove that the long exact sequence in homology is natural i.e. the
diagram

. . . // Hn+1(C) ∂ //

γ∗
��

Hn(C
′)

f∗ //

α∗

��

Hn(C)
g∗ //

β∗

��

Hn(C) ∂ //

γ∗
��

Hn−1(C
′) //

α∗

��

. . .

. . . // Hn+1(D) ∂ // Hn(D
′)

f∗ // Hn(D)
g∗ // Hn(D) ∂ // Hn−1(D

′) // . . .

is commutative.
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24. Consider the sequence

. . . // Hn+1(C)
∂ // Hn(C

′)
f∗ // Hn(C)

g∗ // Hn(C)
∂ // Hn−1(C

′) // . . .

a) Prove that
Ker∆ ⊂ Im g∗.

b) Prove the exactness at Hn(C
′).

25. Suppose (X,A,B) is a topological triple.
a)Prove that

0 // C(A,B)
i♯ // C(X,B)

j♯ // C(X,A) // 0,

where i : (A,B) → (X,B) and j : (X,B) → (X,A) are obvious inclu-
sions, is a short exact sequence. Deduce the existence of the long exact
sequence

. . . // Hn+1(X,A)
∂′

// Hn(A,B)
i∗ // Hn(X,B)

j∗ // Hn(X,A)
∂ // Hn−1(A,B) // . . . .

b) Show that for the boundary operators of the long exact homology
sequences of the pair (X,A) and of the triple (X,A,B) there is a com-
mutative diagram

Hn(A)

i∗

��

Hn+1(X,A)

∂
77ooooooooooo

∂′

''OO
OO

OO
OO

OO
O

Hn(A,B),

where i : A → (A,B) is an inclusion. (Hint: naturality of the long
exact homology sequence.)

26. Prove the second part of the Five-Lemma: Suppose the diagram of
groups and homomorphisms

G1
α1 //

f1
��

G2
α2 //

f2
��

G3
α3 //

f3
��

G4
α4 //

f4
��

G5

f5
��

H1
β1 // H2

β2 // H3
β3 // H4

β4 // H5
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is commutative, rows are exact, f5 is injective and f2, f4 are surjective.
Then f3 is surjective.

27. SupposeH is a free abelian group, G is an abelian group and f : G → H
is a surjective homomorphism. Prve that there is a homomorphism
f ′ : H → G such that f ◦ f ′ = id. Deduce that every short exact
sequence

0 // A
f // C

g // B // 0,

where B is free abelian, splits.
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