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1. Suppose (X,A) is a CW-complex and (X;, A;), ¢ € [ is a collection of
subcomplexes of X. Prove that (| J,c; Xi, U, Ai) and ((;e; Xis [ier Ai) are
both subcomplexes of X.

Solution: ( The proof of) Lemma 4.1.4 implies that (Y, B) is a subcomplex
of (X, A) if and only if

1) B={aeA|e,NY # 0},

and

2) e NY # () implies that e, C Y.

Now
eaﬂ(UXi) +#0) = e, NX; #0for someiel <
iel
Sac A forsomeiEI@aEUAi,
iel
and e, N (U, Xi) # 0 implies that e, N X; # 0 for some 4 € I which implies

that e, C X, for some ¢ € I. In particular
e C X
icl

Hence (;c; Xi; U;es Ai) is a subcomplex.

Let us check the same for the intersection. Suppose e, N[ )..; X; # 0. Then

in particular e, N X; # () for all i € I, so

iel

éaCXZ‘

for all i € I. Hence €, C [;c; X;. In particular condition 2) above is satisfied
and if o € {a € A | ea N[;e; Xi # 0}, then o € N, As.
Conversely suppose o € (),c; A;. Then o € A; for all i € I, so

ey C XZ
for all i € I, since (X;,.A;) is a subcomplex for all i € I. Hence
2. C X
i€l

In particular e, NU;c; Xi # 0,50 a € {a € A| ea N[, Xi # 0}

2. a) Suppose X is a CW-complex and A is a path-component of X. Prove that
A is a subcomplex of X.



b) Suppose X is a CW-complex. Prove that the following claims are equi-
valent:
1) X is connected.
2) X is path-connected.
3) X! is path-connected.
4) Every two vertices in X can be joined by a path that lies in X'

Solution: a) Suppose ¢, N A # () and let z € e, N A. Now &, is a path-
connected subset of X (since it is a continuous image of the path connec-
ted space B for some n € N, which contains z. By the definition of path-
component, €, C A.

By Lemma 4.1.4 A is a subcomplex of A.

b) 1) & 2):
All path-connected space are connected, so 2) implies 1) trivially.
Suppose X is a connected CW-complex and let A be the set of all path-
connected components of X. If A is empty, X is empty, so it is trivially
path-connected. Otherwise fix a path-component A € A and define

B= |J B

BEA,B£A

Then AUB = X, AN B = (. A is a subcomplex by a), so it is in particular
closed in X. Also every B € B, B # A is a subcomplex for the same reason.
By the exercise 1 B is a subcomplex, hence also B is closed in X. Hence
B must be empty, since otherwise A|B would be a separation of connected
space X. Hence there is only one path-component A, which means that X is
path-connected.

2)< 3):
By Lemma 4.2.1c) the inclusion i: X' — X induces an isomorphism i, : Ho(X?') —
Hy(X), hence in particular

Ho(X™") = Ho(X)

Since a space Y is path-connected if and only if Hy(Y) = Z, it follows that
X is path-connected if and only if X is path-connected.

3)e 4):
Every point x of X! can be joined by the path to a vertex a € X9, since
x € €, for some f,: Fl, where €, is path-connected and e, intersects X° (in
subset f,(SY)).
Hence X' is path-connected if and only if all vertices (i.e. points of X°) be-
long to the same path-component of X!,

. Suppose K is a simplicial complex and a, b are vertices of K. An edge-path
from a to b is a finite sequence of vertices a = ag,...,a, = b of K such that
forall = 0,...,n a; and a;11 belong to the same 1-simplex 7;. In this case
also the sequence 7y, ..., 7,1 is also called an edge-path from a to b.

Prove that | K| is connected if and only if for every pair of vertices a,b € K



there is an edge-path from a to b.

Solution: Suppose |K| is connected and let a be a vertex of a. Define
subcomplex L, N of K as following. A simplex ¢ € K belongs to L if and
only if all vertices of ¢ can be joined to a via an edge-path. A simplex 0 € K
belongs to N if and only if none of the vertices of o can be joined to a via an
edge-path.

Suppose ¢ € K is a simplex and o ¢ N. Then one vertex v of o can be
joined to a via edge-path a = ag,ay,...,a, = v. Let v’ be any other vertex
of 0. Then 1-simplex with vertices v and v’ is a face of o, so belongs to K.
Hence a = ag,aq,...,a, = v,a,.1 = v’ is an edge-path from a to v'. Hence
ce€L,so K=LUN.

It follows that |K| = |L| U |N]. Clearly |L| N |N| = (. Since L,N are
subcomplex of K, |L| and |N| are closed in |K|. Since |L| is non-empty
(a € |L|), and |K]| is connected, N must be empty, since otherwise |L||| V] is
a separation of |K]|.

In particular all vertices are in L, so every vertex can be joined to a by an
edge-path.

Conversely suppose for every pair a, b of vertices there is an edge-path from
a to b. Since edge-path clearly defines a continuous path from a to b in | K|, all
vertices belong to the same path-component of | K|. Since every point z € | K|
belong to some simplex o € K, which is path-connected and contains at least
one vertex, every point belongs to the path-component of some vertex. These
observations now easily imply that |K| is path-connected, in particular con-
nected.

. Suppose g € N (g > 1). Show that M, (IN,) is a connected compact 2-
manifold without boundary, which can be triangulated.

Solution: Clearly all these surfaces are compact and connected spaces, since
they are quotient spaces of compact and connected polygon.

My = S% and N; = RP? are known tobe 2-manifolds without boundary, so
may assume g > 1 (g > 2).

Let X be 4¢(2g)-polygon and p: X — M,(N,) be a canonical quotient pro-
jection. Then the restriction of p to the interior of X is a homeomorphism to
its image (for instance because by the exercise 11.6 it is a quotient mapping,
which is also injective), which is also open in M, (INV,) so the points in the
image of interior have neighbourhoods homeomorphic to Bs.

Suppose z is an interior point of an edge 7 in X. Then p~!(p(x)) = {z, 2'},
where 2’ is an interior point of another edge, identified with 7. Both have
small enough neighbourhoods in X, which do not intersect other edges and
are homeomorphic to {(z,y) € B?| y > 0}, where the homeomorphism maps
{(x,0) € B?} and only points in that set to the edge. Clearly both homeo-
morphisms can be chosen so that they can be fitted together as an embedding



B?* — M,(N,) with image being an open neighbouhood of M (N,). Hence
p(x) has a neighbourhood homeomorphic to B2

We are left with the point that correspond to all vertices of the polygon.
For every vertex we choose a small enough neighbourhood of a vertex, that do
not contain any pairs of identified points, i.e. p is injection restricted to that

neighbourhood. Then we stick them together as the picture below indicated
for M,.
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The case of a vertex for N, is done the same way.

It remains to prove that M, and IV, are trianguable. It is enough to trian-
gulate them using some A-complex (). Choose a vertex ag in the interior
of a polygon. Let aq,...,a, be vertices of the polygon. Then 2-simplices
[ag, a;, a;+1], where a,.; = a; and their faces form a triangulation of a poly-
gon with ordering of simplices indicated by their indices. This triangulation
defines a A-complex triangulation for any space obtained from a polygon by
identifying edges in an obvious way.

. Suppose K is a 2-dimensional simplicial complex and 7 € K is a 1-simplex
which is a face of exactly n 2-simplices. Suppose z is an interior point of 7.
Prove that

H,y(|Lk(x)]) = 2"

Solution: Lk(x) consists of all 1-faces (and their vertices) of simplices oy,
that are not 7, so |Lk(z)| is homeomorphic to the space obtained from n dis-
joint copies Iy, Is, . . ., I, of the unit interval I = [0, 1] by identifying all points
0el;,i=1,...,m to a single point and also all points 1 € I;;,7=1,...,m
to a single point - see the picture below.
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This space can be triangulated as a polyhedron |K| of a A-complex K,
that consists of n 1-simplices 71, ..., 7,, with their corresponding vertices a, b



identified. We order every edge as a simplex [a, b], then in C(K)
or,=b—a
foralle=1,...,n. Hence
O(mym +mare + ... +myumy) = (Mg +mo+...4+my)(b—a) =0
if and only if m,, = —my — my — ... m,_1. It follows that
{M =T, T2 = Ta, o+ o, Tae1 — Tn}

is a basis of the free abelian group Ker 0;. Since there are no 2-simplices, for
the simplicial homology we have

Hl(K> = Ker81 = Zn_l.

The claim follows since the simplicial homology is isomorphic to the singular
homology.

. Suppose K is a finite simplicial complex such that |K| is an n-dimensional
manifold, possibly with boundary. Prove that |Lk(z)| has the homotopy type
of S"~1 if x € |K]| is an interior point and contractible if z is the boundary
point.

Assuming n = 2 prove that |K| is 2-dimensional as simplicial complex and
every l-simplex of K is a face of two or one 2-simplex. Moreover if L is a
subcomplex of K generated by 1-simplices that are faces of exactly one 2-
simplex, then |L| = 0| K]|.

Solution: For every x € |K| exists a homeomorphism f: B" —» U, U con-
tains an open neighbourhood of x in |K| and f(y) = « if = is an interior point
for y = 0, f(y) = x for some y € S"~1 if x is a boundary point. Triangulate
B" as |K(0)|, where o is an n-simplex. If z is a boundary point, we may as-
sume that y above is a vertex point of o.

Now Proposition 4.3.5 implies that |Lk(y)| and |Lk(z)| have the same homo-
topy type. If z is an interior point |Lk(y)| is homeomorphic to S"~1. If z is
a boundary point, Lk(y) is a subcomplex generated by n — 1-face of o oppo-
site to y, so |Lk(y)| is contractible. This concludes the proof of the first claim.

Suppose n = 2. If K would have a maximal simplex ¢ of dimension m > 2,
then the interior point of this simplex would have link homeomorhic to S™1.
However S™! does not have the same homotopy type of S™~! neither it
is contractible. This is a contradiction with what we already proved. Hence
dim K < 2. Since K is not empty, there is at least one vertex a , and there has
to be at least one 1-simplex that contains this vertex, since otherwise a would
be an open discrete point in | K|, which is impossible for 2-manifold. Hence it
is enough to prove that every 1-simplex of K is a face of two or one 2-simplex,
since that would also imply that there is at least one 2-simplex, so dim K = 2.

Let 7 be 1-simplex and z be an interior point of 7. Suppose 7 is a face
of exactly m 2-simplices. Then previous exercise shows that Hi(|Lk(z)|) =
Z™=1. On the other hand we already know that H,(|Lk(x)| = Z, if x is an in-

terior point and H;(|Lk(x)) = 0, if x is a boundary point. Hence m—1 =10, 1,



ie.m=1orm=2.

Suppose L is a subcomplex of K which consists of all 1-simplices of K,
that are faces of exactly one 2-simplex and all their vertices. We claim that
|L| = 0|K]|.

Suppose 7 is a 1-simplex that is a face of exactly one 2-simplex ¢ € K and let
x be an interior point of 7. Now x has clearly has a neighbourhood which is
contained entirely in ¢ and does not intersect other faces of o. Moreover we
can choose this neighbourhood to be homeomorphic to {(z,y) € B? | y > 2}.
Hence z € 0|K|.

If, one the other hand x is a vertex in L, its arbitrary neighbourhood inter-
sects interior of some 1-simplex of L, which we already proved to be contained
in 0|K|. Hence x € 0|K|. But 0|K]| is closed, so x € 9|K|. We have shown
that |L| C 0|K]|.

To prove the opposite that = be a boundary point of |K|. There are 3-
possibilities - x is a vertex, x is an interior point of 1-simplex or z is an
interior point of 2-simplex. In the latter case x clearly has small neighbour-
hood homeomorphic to B2, so x is not a boundary point. Suppose z is an
interior point of 1-simplex 7. If 7 is a face of 2 simplices, their union is ho-
meomorphic to the square, with = being an interior point of square. Hence
as above we see that x is an interior point of the manifold, contradicition.
Hence 7 faces only one triangle, so is an element of L. In this case = € |L].
We are left with the case x is a vertex. Let

St(z) = U{inta | x € o}.

Then St(x) is an open neighbourhood of z (Lemma 1.2.7), that does not
contain any other vertex of K, except z itself. Suppose all simplices of K
that contain x are not in L. Then all points of St(z) except x are interior
points of 2-simplices or 1-simplices that face two 2-simplices. But we alrea-
dy showed above that such points are not in the boundary of |K|. Hence
St(x) N O|K| = {x}, so x is a discrete point of J|K]|, since St(x) was open.
But this is not possible, since J| K| is a 1-manifold (exercise 10.6). This cont-
radiction shows that there is at least one 1-simplex in L that contains x, so
x € |L|.

Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points,
60% - 4 points, 75% - 5 points.



