Matematiikan ja tilastotieteen laitos Introduction to Algebraic Topology Fall 2011 Exercise 11 28.11-02.12.2011

1. Let n > 1 and suppose $f: S^{n-1} \to S^{n-1}$ is a continuous mapping. Write $S^n = \{(x,t) \in \mathbb{R}^{n-1} \times \mathbb{R} \mid |x|^2 + |t|^2 = 1\}$ and define $\Sigma f: S^n \to S^n$ by the formula

$$\Sigma f(x,t) = \begin{cases} (|x| \cdot f(x/|x|), t), & \text{if } x \neq 0, \\ (x,t), & \text{if } x = 0. \end{cases}$$

Prove that Σf is continuous.

2. Suppose $f: S^n \to S^n$ is **even**, i.e. f(x) = f(-x) for all $x \in S^n$. Prove that deg f is even integer and if n is even then deg f = 0. (Hint: f factors through the projective space $\mathbb{R}P^n$).

For every $m \in \mathbb{Z}$ give an example of an even mapping $f: S^1 \to S^1$ with deg f = 2m.

3. a) For every $x \in \overline{B}^n, x \neq 0$ let

$$\alpha(x) = 2\sqrt{\frac{1-|x|}{|x|}}$$

Define $h: \overline{B}^n \to S^n$ by

$$h(x) = \begin{cases} (\alpha(x)x_1, \alpha(x)x_2, \dots, \alpha(x)x_n, 1-2|x|), & \text{if } x \neq 0 \\ e_{n+1} = (0, \dots, 1), & \text{if } x = 0. \end{cases}$$

Prove that h is a well-defined continuous surjective mapping which restriction to B^n is a homeomorphism to $S^n \setminus \{-e_{n+1}\}$ and which maps S^{n-1} onto $-e_{n+1}$. Deduce that h induces a homeomorphism $\overline{B}^n/S^{n-1} \cong S^n$.

b) Define $f: S^n \to S^n$ so that $f|B_+ = h \circ g$, where g is a standard homeomorphism $B_+ \to \overline{B}^n$, $g(x_1, \ldots, x_n, x_{n+1}) = (x_1, \ldots, x_n)$ and $f|B_-$ is a constant mapping that maps everything to the south pole $-e_{n+1}$.

Prove that f is a well-defined continuous mapping and $f(x) \neq -x$ for all $x \in S^n$. Deduce that deg f = 1.

- 4. Suppose (X, A) is a topological pair and A is a closed subset of X. Let $f: A \to Y$ and let $p: X \sqcup Y \to X \cup_f Y$ be the canonical quotient projection. Then $p|X \setminus A$ is an open injection and p|Y is a closed injection. In particular both restriction are embeddings, $p(X \setminus A)$ is open in $X \cup_f Y$ and p(Y) is closed in $X \cup_f Y$.
- 5. Suppose Z is obtained from Y by attaching n-cells. Show that the set of open cells depends only on the pair (Z, Y) (Hint: consider components of $X \setminus Y$). Assuming Z is Hausdorff show that the same is true for closed cells.

- 6. Suppose $p: X \to Y$ is a quotient mapping and $A \subset Y$ is open or closed. Show that $p|p^{-1}A: p^{-1}A \to A$ is a quotient mapping.
- 7. a) Suppose Z is obtained Y by attaching n-cells and C is a compact subset of Z. Then Z intersects only finitely many open cells of Z.
 b) Suppose X is a CW-complex and C is a compact subset of Z. Then there exists n ∈ N such that C ⊂ Xⁿ.

Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points, 60% - 4 points, 75% - 5 points.

 $\mathbf{2}$