Matematiikan ja tilastotieteen laitos Introduction to Algebraic Topology Fall 2011 Exercise 11 Solutions

1. Let n > 1 and suppose $f: S^{n-1} \to S^{n-1}$ is a continuous mapping. Write $S^n = \{(x,t) \in \mathbb{R}^{n-1} \times \mathbb{R} \mid |x|^2 + |t|^2 = 1\}$ and define $\Sigma f: S^n \to S^n$ by the formula

$$\Sigma f(x,t) = \begin{cases} (|x| \cdot f(x/|x|), t), & \text{if } x \neq 0, \\ (x,t), & \text{if } x = 0. \end{cases}$$

Prove that Σf is continuous.

Solution: Continuity in the open subset $S^n / \setminus \{e_{n+1}, -e_{n+1}\}$ is clear, so it enough to show the continuity in the points $(0, \pm 1)$. This follows from the observation that

$$|\Sigma f(x,t) - \Sigma f(0,\pm 1)|^2 = |x|^2 \cdot |f(x/|x|)|^2 + |t - (\pm 1)^2 = |x^2| + |t - (\pm 1)|^2$$

clearly goes to zero when (x, t) approaches $(0, \pm 1)$.

2. Suppose $f: S^n \to S^n$ is **even**, i.e. f(x) = f(-x) for all $x \in S^n$. Prove that deg f is an even integer and if n is even then deg f = 0. (Hint: f factors through the projective space $\mathbb{R}P^n$).

For every $m \in \mathbb{Z}$ give an example of an even mapping $f: S^1 \to S^1$ with deg f = 2m.

Solution: Since f(x) = f(-x) for all $x \in S^n$, f factors through the projective plane $\mathbb{R}P^n$, i.e. there exists continuous $g: \mathbb{R}P^n \to S^n$ such that $f = g \circ \pi$, where $\pi: S^n \to \mathbb{R}P^n$ is a canonical quotient.

Hence in particular $f_* = \pi_* \circ g_* \colon H_n(S^n) \to H_n(S^n)$. If *n* is even, $H_n(\mathbb{R}P^n) = 0$, hence $\pi_* = 0$ and so $f_* = 0$ i.e. deg f = 0.

If n is odd $H_n(\mathbb{R}P^n) \cong \mathbb{Z} \cong H_n(S^n)$ and up to isomorphisms the mapping $\pi_* \colon H_n(S^n) \to H_n(\mathbb{R}P^n)$ is a homomorphism $\mathbb{Z} \to Z$, $n \mapsto 2n$. Hence if e is a generator of $H_n(S^n)$,

$$f_*(e) = \pi_*(g_*(e)) = \pm 2g_*(e),$$

so deg f must be an even number.

Suppose $m \in N$ and let $p_{2m} \colon S^1 \to S^1$ be mapping $p(x) = x^{2n}$. Then p is even and deg $p_{2m} = 2m$.

3. a) For every $x \in \overline{B}^n, x \neq 0$ let

$$\alpha(x) = 2\sqrt{\frac{1-|x|}{|x|}}.$$

Define $h: \overline{B}^n \to S^n$ by

$$h(x) = \begin{cases} (\alpha(x)x_1, \alpha(x)x_2, \dots, \alpha(x)x_n, 1-2|x|), & \text{if } x \neq 0\\ e_{n+1} = (0, \dots, 1), & \text{if } x = 0. \end{cases}$$

Prove that h is a well-defined continuous surjective mapping which restriction to B^n is a homeomorphism to $S^n \setminus \{-e_{n+1}\}$ and which maps S^{n-1} onto $-e_{n+1}$. Deduce that h induces a homeomorphism $\overline{B}^n/S^{n-1} \cong S^n$.

b) Define $f: S^n \to S^n$ so that $f|B_+ = h \circ g$, where g is a standard homeomorphism $B_+ \to \overline{B}^n$, $g(x_1, \ldots, x_n, x_{n+1}) = (x_1, \ldots, x_n)$ and $f|B_-$ is a constant mapping that maps everything to the south pole $-e_{n+1}$. Prove that f is a well-defined continuous mapping and $f(x) \neq -x$ for all $x \in S^n$. Deduce that deg f = 1.

Solution: a) First we need to check that f is well-defined, i.e. that $h(x) \in S^n$ for all $x \in \overline{B}^n$. This is a simple computation.

$$|h(x)|^{2} = \alpha(x)^{2}|x|^{2} + (1 - 2|x|)^{2} = 4(1 - |x|)|x| + (1 - 4|x| + 4|x|^{2}) = 1.$$

To prove continuity it is enough to check that h is continuous at 0. We have

$$|h(x) - h(0)|^{2} = |h(x) - e_{n+1}|^{2} = \alpha(x)^{2}|x|^{2} + 4|x|^{2} = 4((1 - |x|)|x|^{2} + |x|^{2},$$

which clearly goes to zero, when x approaches 0.

Suppose $z \in S^n \setminus \{e_{n+1}, -e_{n+1}\}$, i.e. $z_{n+1} \neq \pm 1$. Suppose $x \in \overline{B}^n$ is such that h(x) = z. Then $z_i = \alpha(x)x_i$, $i = 1, \ldots, n$ and $z_{n+1} = 1 - 2|x|$. Then

$$|x| = (1 - z_{n+1})/2 \in]0, 1[,$$

in particular

$$\alpha(x) = 2\sqrt{\frac{1-|x|}{|x|}} = 2\sqrt{\frac{1+z_{n+1}}{1-z_{n+1}}},$$

Hence

$$x = (z_1/2\sqrt{\frac{1+z_{n+1}}{1-z_{n+1}}}, \dots, z_n/2\sqrt{\frac{1+z_{n+1}}{1-z_{n+1}}}).$$

On the other hand if we define x by that formula, we easily see that $x \in B^n \setminus \{0\}$ and h(x) = z. Hence $h^{-1}(z)$ is a singleton $\{x\}$. Suppose $h(x) = e_{n+1}, x \neq 0$. Then

$$1 - 2|x| = 1,$$

hence x = 0, which is a contradiction. Hence $h^{-1}(e_{n+1})$ is also singleton $\{0\}$. Finally suppose $h(x) = -e_{n+1}$. Then

$$1-2|x|=-1,$$

which implies that |x| = 1, i.e. $x \in S^{n-1}$. Conversely it is easy to see that $h(x) = -e_{n+1}$ for all $x \in S^{n-1}$. Hence $h^{-1}(-e_{n+1}) = S^{n-1}$.

In particular h is surjective. Moreover, since it is surjective, continuous mapping between a compact space and a Hausdorff space, h is a quotient

mapping. By general topology (Topology II) h induces a homeomorphism $\overline{h}: \overline{B}^n / \sim_h \to S^n$, where \sim_f is an equivalence relation defined by

$$x \sim_h y \Longleftrightarrow h(x) = h(y).$$

But the calculations above show that \overline{B}^n / \sim_h is exactly \overline{B}^n / S^{n-1} . Also we know that $h|B^n: B^n \to S^n \setminus \{-e_{n+1}\}$ is a continuous bijection. Exercise 10.4 implies that it is a homeomorphism (alternatively one can apply an exercise 6 below to h and open subset $S^n \setminus \{-e_{n+1}\}$ of S^n).

b) Suppose $x \in S^n$ is such that f(x) = -x. Suppose first $x \in B_+$. Since $f(e_{n+1}) = e_{n+1} \neq -e_{n+1}$, we may assume $x_i \neq 0$ for some $i = 1, \ldots, n$, so from $\alpha(x)x_i = -x_i$ we obtain $\alpha(x) = -1$, which is impossible.

On the other hand if $x \notin B_+$, then $x_{n+1} < 0$, while $f(x) = -e_{n+1}$, which last coordinate is -1, so there cannot be f(x) = -x.

By Lemma 3.7.3 f is homotopic to identity mapping, in particular deg f =deg id = 1.

4. Suppose (X, A) is a topological pair and A is a closed subset of X. Let $f: A \to Y$ and let $p: X \sqcup Y \to X \cup_f Y$ be the canonical quotient projection. Then $p|X \setminus A$ is an open injection and p|Y is a closed injection. In particular both restriction are embeddings, $p(X \setminus A)$ is open in $X \cup_f Y$ and p(Y) is closed in $X \cup_f Y$.

Solution: Suppose U is open in $X \setminus A$. Then it is open in X (since $X \setminus A$ is open in X) and

$$p^{-1}(p(U)) \cap X = U,$$

$$p^{-1}(p(U)) \cap Y = \emptyset.$$

Hence p(U) is open in $X \cup_f Y$. It follows that the restriction $p|X \setminus A : X \setminus A \to X \cup_f Y$ is an open mapping. It is also injective. Hence it is homeomorphism to its image, which is open in $X \cup_f Y$.

Suppose F is closed in Y. Then

$$p^{-1}(p(F)) \cap X = f^{-1}(F),$$

 $P^{-1}(p(U)) \cap Y = F.$

Since f is continuous, $f^{-1}F$ is closed in A, and since A is closed in X, $f^{-1}F$ is closed in X. Hence p(F) is closed in $X \cup_f Y$. It follows that the restriction $p|Y: YtoX \cup_f Y$ is a closed mapping. It is also injective. Hence it is homeomorphism to its image, which is closed in $X \cup_f Y$.

5. Suppose Z is obtained from Y by attaching n-cells. Show that the set of open cells depends only on the pair (Z, Y). Assuming Z is Hausdorff show that the same is true for closed cells.

Solution: The space $Z \setminus Y$ is a disjoint union of open n cells e_{α} , which are open in Z, hence also in $Z \setminus Y$. Hence $Z \setminus Y$ is a disjoint union of open sets e_{α} . Since e_{α} is a continuous image of an open ball B^n , it is connected. Hence $\{e_{\alpha}\}$ is exactly the collection of connected components of $Z \setminus Y$, which clearly

depends only on the pair (Z, Y).

From the general properties of continuous mappings we obtain

$$f(\overline{B}^n) \subset \overline{f}(B^n) = \overline{e_\alpha}.$$

On the other hand if Z is Hausdorff, $f(\overline{B}^n)$ is compact, hence closed, so contains closure of e_{α} . Hence closed cell \overline{e}_{α} is exactly the closure of the corresponding open cell e_{α} . It follows that the collection of closed cells coincides with the collection of topological closures of the components of $Z \setminus Y$, hence depends only on the set (Z, Y).

6. Suppose $p: X \to Y$ is a quotient mapping and $A \subset Y$ is open or closed. Show that $p|p^{-1}A: p^{-1}A \to A$ is a quotient mapping.

Solution: Suppose A is open in Y. Since p is surjective, $p|p^{-1}A$ is surjective - every $a \in A$ has at least one inverse image x that maps to a, and then x belongs to $p^{-1}A$ by definition.

Suppose $U \subset A$ is such that $p|^{-1}(U) = p^{-1}U$ is open in $p^{-1}A$. Since A is open in Y, $p^{-1}A$ is open in X, hence $p^{-1}(U)$ is open in X. Since p is a quotient mapping, U is open in Y. In particular it is open in A.

The case A is closed is handled in the same way.

7. a) Suppose Z is obtained Y by attaching n-cells and C is a compact subset of Z. Then Z intersects only finitely many open cells of Z.

b) Suppose X is a CW-complex and C is a compact subset of Z. Then there exists $n \in \mathbb{N}$ such that $C \subset X^n$.

Solution: a) Choose a point $x_{\alpha} \in C \cap e_{\alpha}$ for every α such that $C \cap e_{\alpha} \neq \emptyset$. It is enough to show that the set

$$A = \{ x_{\alpha} \mid C \cap e_{\alpha} \neq \emptyset \}$$

is finite.

Let F be any subset of A. Then F intersects Y in the empty set and the inverse image $f_{\alpha}^{-1}(F)$ is empty or a singleton for every α . Hence F is closed in Z. Hence every subset of A is closed in A, so A is discrete. On the other hand A is a closed subset of C, which is compact, so A is a compact discrete space. Hence A has to be finite.

b) This is similar to a). Make a counter-assumption and construct an increasing infinite sequence

$$n_0 < n_1 < n_2 \ldots < n_k < n_{k+1}$$

of integers, so that there exists a point $x_m \in C \cap (X^{n_m} \setminus X^{n_{m-1}}, m \ge 1$. Then the set

$$A = \{x_m \mid m \in \mathbb{N}\}$$

is a subset of C, such that its every subset F is closed in X. This is because every closed *n*-cell does not intersect $X \setminus X^n$, so F intersects every closed cell in a finite, hence closed subset. Hence A is a compact discrete space. On the other hand by construction it is infinite. We obtain a contradiction.

Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points, 60% - 4 points, 75% - 5 points.