Matematiikan ja tilastotieteen laitos
Introduction to Algebraic Topology
Fall 2011
Exercise 11
Solutions

1. Let $n>1$ and suppose $f: S^{n-1} \rightarrow S^{n-1}$ is a continuous mapping. Write $S^{n}=\left\{(x, t) \in \mathbb{R}^{n-1} \times\left.\mathbb{R}| | x\right|^{2}+|t|^{2}=1\right\}$ and define $\Sigma f: S^{n} \rightarrow S^{n}$ by the formula

$$
\Sigma f(x, t)=\left\{\begin{array}{l}
(|x| \cdot f(x /|x|), t), \text { if } x \neq 0 \\
(x, t), \text { if } x=0
\end{array}\right.
$$

Prove that Σf is continuous.
Solution: Continuity in the open subset $S^{n} / \backslash\left\{e_{n+1},-e_{n+1}\right\}$ is clear, so it enough to show the continuity in the points $(0, \pm 1)$. This follows from the observation that
$|\Sigma f(x, t)-\Sigma f(0, \pm 1)|^{2}=|x|^{2} \cdot|f(x /|x|)|^{2}+\left|t-(\pm 1)^{2}=\left|x^{2}\right|+|t-(\pm 1)|^{2}\right.$
clearly goes to zero when (x, t) approaches $(0, \pm 1)$.
2. Suppose $f: S^{n} \rightarrow S^{n}$ is even, i.e. $f(x)=f(-x)$ for all $x \in S^{n}$. Prove that $\operatorname{deg} f$ is an even integer and if n is even then $\operatorname{deg} f=0$. (Hint: f factors through the projective space $\mathbb{R} P^{n}$).
For every $m \in \mathbb{Z}$ give an example of an even mapping $f: S^{1} \rightarrow S^{1}$ with $\operatorname{deg} f=2 m$.

Solution: Since $f(x)=f(-x)$ for all $x \in S^{n}, f$ factors through the projective plane $\mathbb{R} P^{n}$, i.e. there exists continuous $g: \mathbb{R} P^{n} \rightarrow S^{n}$ such that $f=g \circ \pi$, where $\pi: S^{n} \rightarrow \mathbb{R} P^{n}$ is a canonical quotient.
Hence in particular $f_{*}=\pi_{*} \circ g_{*}: H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}\right)$.
If n is even, $H_{n}\left(\mathbb{R} P^{n}\right)=0$, hence $\pi_{*}=0$ and so $f_{*}=0$ i.e. $\operatorname{deg} f=0$.
If n is odd $H_{n}\left(\mathbb{R} P^{n}\right) \cong \mathbb{Z} \cong H_{n}\left(S^{n}\right)$ and up to isomorphisms the mapping $\pi_{*}: H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(\mathbb{R} P^{n}\right)$ is a homomorphism $\mathbb{Z} \rightarrow Z, n \mapsto 2 n$. Hence if e is a generator of $H_{n}\left(S^{n}\right)$,

$$
f_{*}(e)=\pi_{*}\left(g_{*}(e)\right)= \pm 2 g_{*}(e),
$$

so $\operatorname{deg} f$ must be an even number.
Suppose $m \in N$ and let $p_{2 m}: S^{1} \rightarrow S^{1}$ be mapping $p(x)=x^{2 n}$. Then p is even and $\operatorname{deg} p_{2 m}=2 m$.
3. a) For every $x \in \bar{B}^{n}, x \neq 0$ let

$$
\alpha(x)=2 \sqrt{\frac{1-|x|}{|x|}} .
$$

Define $h: \bar{B}^{n} \rightarrow S^{n}$ by

$$
h(x)=\left\{\begin{array}{l}
\left(\alpha(x) x_{1}, \alpha(x) x_{2}, \ldots, \alpha(x) x_{n}, 1-2|x|\right), \text { if } x \neq 0 \\
e_{n+1}=(0, \ldots, 1), \text { if } x=0
\end{array}\right.
$$

Prove that h is a well-defined continuous surjective mapping which restriction to B^{n} is a homeomorphism to $S^{n} \backslash\left\{-e_{n+1}\right\}$ and which maps S^{n-1} onto $-e_{n+1}$. Deduce that h induces a homeomorphism $\bar{B}^{n} / S^{n-1} \cong S^{n}$.
b) Define $f: S^{n} \rightarrow S^{n}$ so that $f \mid B_{+}=h \circ g$, where g is a standard homeomorphism $B_{+} \rightarrow \bar{B}^{n}, g\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=\left(x_{1}, \ldots, x_{n}\right)$ and $f \mid B_{-}$is a constant mapping that maps everything to the south pole $-e_{n+1}$. Prove that f is a well-defined continuous mapping and $f(x) \neq-x$ for all $x \in S^{n}$. Deduce that $\operatorname{deg} f=1$.

Solution: a) First we need to check that f is well-defined, i.e. that $h(x) \in S^{n}$ for all $x \in \bar{B}^{n}$. This is a simple computation.

$$
|h(x)|^{2}=\alpha(x)^{2}|x|^{2}+(1-2|x|)^{2}=4(1-|x|)|x|+\left(1-4|x|+4|x|^{2}\right)=1 .
$$

To prove continuity it is enough to check that h is continuous at 0 . We have
$|h(x)-h(0)|^{2}=\left|h(x)-e_{n+1}\right|^{2}=\alpha(x)^{2}|x|^{2}+4|x|^{2}=4\left((1-|x|)|x| 2+|x|^{2}\right.$,
which clearly goes to zero, when x approaches 0 .
Suppose $z \in S^{n} \backslash\left\{e_{n+1},-e_{n+1}\right\}$, i.e. $z_{n+1} \neq \pm 1$. Suppose $x \in \bar{B}^{n}$ is such that $h(x)=z$. Then $z_{i}=\alpha(x) x_{i}, i=1, \ldots, n$ and $z_{n+1}=1-2|x|$. Then

$$
\left.|x|=\left(1-z_{n+1}\right) / 2 \in\right] 0,1[,
$$

in particular

$$
\alpha(x)=2 \sqrt{\frac{1-|x|}{|x|}}=2 \sqrt{\frac{1+z_{n+1}}{1-z_{n+1}}}
$$

Hence

$$
x=\left(z_{1} / 2 \sqrt{\frac{1+z_{n+1}}{1-z_{n+1}}}, \ldots, z_{n} / 2 \sqrt{\frac{1+z_{n+1}}{1-z_{n+1}}}\right) .
$$

On the other hand if we define x by that formula, we easily see that $x \in$ $B^{n} \backslash\{0\}$ and $h(x)=z$. Hence $h^{-1}(z)$ is a singleton $\{x\}$.
Suppose $h(x)=e_{n+1}, x \neq 0$. Then

$$
1-2|x|=1,
$$

hence $x=0$, which is a contradiction. Hence $h^{-1}\left(e_{n+1}\right)$ is also singleton $\{0\}$. Finally suppose $h(x)=-e_{n+1}$. Then

$$
1-2|x|=-1
$$

which implies that $|x|=1$, i.e. $x \in S^{n-1}$. Conversely it is easy to see that $h(x)=-e_{n+1}$ for all $x \in S^{n-1}$. Hence $h^{-1}\left(-e_{n+1}\right)=S^{n-1}$.

In particular h is surjective. Moreover, since it is surjective, continuous mapping between a compact space and a Hausdorff space, h is a quotient
mapping. By general topology (Topology II) h induces a homeomorphism $\bar{h}: \bar{B}^{n} / \sim_{h} \rightarrow S^{n}$, where \sim_{f} is an equivalence relation defined by

$$
x \sim_{h} y \Longleftrightarrow h(x)=h(y) .
$$

But the calculations above show that \bar{B}^{n} / \sim_{h} is exactly \bar{B}^{n} / S^{n-1}. Also we know that $h \mid B^{n}: B^{n} \rightarrow S^{n} \backslash\left\{-e_{n+1}\right\}$ is a continuous bijection. Exercise 10.4 implies that it is a homeomorphism (alternatively one can apply an exercise 6 below to h and open subset $S^{n} \backslash\left\{-e_{n+1}\right\}$ of S^{n}).
b) Suppose $x \in S^{n}$ is such that $f(x)=-x$. Suppose first $x \in B_{+}$. Since $f\left(e_{n+1}\right)=e_{n+1} \neq-e_{n+1}$, we may assume $x_{i} \neq 0$ for some $i=1, \ldots, n$, so from $\alpha(x) x_{i}=-x_{i}$ we obtain $\alpha(x)=-1$, which is impossible.

On the other hand if $x \notin B_{+}$, then $x_{n+1}<0$, while $f(x)=-e_{n+1}$, which last coordinate is -1 , so there cannot be $f(x)=-x$.

By Lemma 3.7.3 f is homotopic to identity mapping, in particular $\operatorname{deg} f=$ $\operatorname{deg} \mathrm{id}=1$.
4. Suppose (X, A) is a topological pair and A is a closed subset of X. Let $f: A \rightarrow Y$ and let $p: X \sqcup Y \rightarrow X \cup_{f} Y$ be the canonical quotient projection. Then $p \mid X \backslash A$ is an open injection and $p \mid Y$ is a closed injection. In particular both restriction are embeddings, $p(X \backslash A)$ is open in $X \cup_{f} Y$ and $p(Y)$ is closed in $X \cup_{f} Y$.
Solution: Suppose U is open in $X \backslash A$. Then it is open in X (since $X \backslash A$ is open in X) and

$$
\begin{aligned}
p^{-1}(p(U)) \cap X & =U, \\
p^{-1}(p(U)) \cap Y & =\emptyset
\end{aligned}
$$

Hence $p(U)$ is open in $X \cup_{f} Y$. It follows that the restriction $p \mid X \backslash A: X \backslash A \rightarrow$ $X \cup_{f} Y$ is an open mapping. It is also injective. Hence it is homeomorphism to its image, which is open in $X \cup_{f} Y$.

Suppose F is closed in Y. Then

$$
\begin{gathered}
p^{-1}(p(F)) \cap X=f^{-1}(F), \\
\quad P^{-1}(p(U)) \cap Y=F .
\end{gathered}
$$

Since f is continuous, $f^{-1} F$ is closed in A, and since A is closed in $X, f^{-1} F$ is closed in X. Hence $p(F)$ is closed in $X \cup_{f} Y$. It follows that the restriction $p \mid Y: Y t o X \cup_{f} Y$ is a closed mapping. It is also injective. Hence it is homeomorphism to its image, which is closed in $X \cup_{f} Y$.
5. Suppose Z is obtained from Y by attaching n-cells. Show that the set of open cells depends only on the pair (Z, Y). Assuming Z is Hausdorff show that the same is true for closed cells.
Solution: The space $Z \backslash Y$ is a disjoint union of open n cells e_{α}, which are open in Z, hence also in $Z \backslash Y$. Hence $Z \backslash Y$ is a disjoint union of open sets e_{α}. Since e_{α} is a continuous image of an open ball B^{n}, it is connected. Hence $\left\{e_{\alpha}\right\}$ is exactly the collection of connected components of $Z \backslash Y$, which clearly
depends only on the pair (Z, Y).
From the general properties of continuous mappings we obtain

$$
f\left(\bar{B}^{n}\right) \subset \bar{f}\left(B^{n}\right)=\overline{e_{\alpha}} .
$$

On the other hand if Z is Hausdorff, $f\left(\bar{B}^{n}\right)$ is compact, hence closed, so contains closure of e_{α}. Hence closed cell \bar{e}_{α} is exactly the closure of the corresponding open cell e_{α}. It follows that the collection of closed cells coincides with the collection of topological closures of the components of $Z \backslash Y$, hence depends only on the set (Z, Y).
6. Suppose $p: X \rightarrow Y$ is a quotient mapping and $A \subset Y$ is open or closed. Show that $p \mid p^{-1} A: p^{-1} A \rightarrow A$ is a quotient mapping.

Solution: Suppose A is open in Y. Since p is surjective, $p \mid p^{-1} A$ is surjective - every $a \in A$ has at least one inverse image x that maps to a, and then x belongs to $p^{-1} A$ by definition.
Suppose $U \subset A$ is such that $\left.p\right|^{-1}(U)=p^{-1} U$ is open in $p^{-1} A$. Since A is open in $Y, p^{-1} A$ is open in X, hence $p^{-1}(U)$ is open in X. Since p is a quotient mapping, U is open in Y. In particular it is open in A.

The case A is closed is handled in the same way.
7. a) Suppose Z is obtained Y by attaching n-cells and C is a compact subset of Z. Then Z intersects only finitely many open cells of Z.
b) Suppose X is a CW-complex and C is a compact subset of Z. Then there exists $n \in \mathbb{N}$ such that $C \subset X^{n}$.

Solution: a) Choose a point $x_{\alpha} \in C \cap e_{\alpha}$ for every α such that $C \cap e_{\alpha} \neq \emptyset$. It is enough to show that the set

$$
A=\left\{x_{\alpha} \mid C \cap e_{\alpha} \neq \emptyset\right\}
$$

is finite.
Let F be any subset of A. Then F intersects Y in the empty set and the inverse image $f_{\alpha}^{-1}(F)$ is empty or a singleton for every α. Hence F is closed in Z. Hence every subset of A is closed in A, so A is discrete. On the other hand A is a closed subset of C, which is compact, so A is a compact discrete space. Hence A has to be finite.
b) This is similar to a). Make a counter-assumption and construct an increasing infinite sequence

$$
n_{0}<n_{1}<n_{2} \ldots<n_{k}<n_{k+1}
$$

of integers, so that there exists a point $x_{m} \in C \cap\left(X^{n_{m}} \backslash X^{n_{m-1}}, m \geq 1\right.$. Then the set

$$
A=\left\{x_{m} \mid m \in \mathbb{N}\right\}
$$

is a subset of C, such that its every subset F is closed in X. This is because every closed n-cell does not intersect $X \backslash X^{n}$, so F intersects every closed cell
in a finite, hence closed subset. Hence A is a compact discrete space. On the other hand by construction it is infinite. We obtain a contradiction.

Bonus points for the exercises: $25 \%-1$ point, $40 \%-2$ points, $50 \%-3$ points, $60 \%-4$ points, $75 \%-5$ points.

