Matematiikan ja tilastotieteen laitos
Introduction to Algebraic Topology
Fall 2011
Exercise 10
21.11-25.11.2011

1. Suppose $(X ; U, V)$ is a proper triad such that $U \cap V \neq \emptyset$. Prove the existence of the reduced exact Mayer-Vietoris sequence
$\ldots \longrightarrow \widetilde{H}_{n+1}(X) \xrightarrow{\partial} \widetilde{H}_{n}(U \cap V) \xrightarrow{i_{*}} \widetilde{H}_{n}(U) \oplus \widetilde{H}_{n}(V) \xrightarrow{j_{*}} \widetilde{H}_{n}(X) \xrightarrow{\partial} \widetilde{H}_{n-1}(U \cap V) \longrightarrow \ldots$
(Hint: ordinary Mayer-Viatoris+Lemma 3.1.7).
2. Construct the explicit formula for the mapping g defined in the proof of the Brouwer's fixed point Theorem (theorem 3.4.6) and show that g is continuous retract $\bar{B}^{n} \rightarrow S^{n-1}$.
3. a) Suppose V is an open subset of $\mathbb{R}^{n}, n \geq 2$ and $x \in V$. Using excision property show that $H_{1}(V, V \backslash\{x\}) \cong H_{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash\{x\}\right)$ and deduce that $H_{1}(V, V \backslash\{x\})=0$.
Using this, prove that $V \backslash\{x\}$ is path-connected, if V is path-connected.
b) Suppose $n \geq 2$ and $S \subset \mathbb{R}^{n}$ is homeomorphic to S^{n-1}.

Prove that $\mathbb{R}^{n} \backslash S$ has exactly two path components U and V, where U is bounded, V is not and $S=\partial U=\partial V$.
What happens if $n=1$?
4. Suppose U is an open subset of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}^{n}$ is a continuous injection. Prove that f is open, in particular $V=f(U)$ is open and $f: U \rightarrow V$ is a homeomorphism.
(Hint: Invariance of Domain and local compactness of \mathbb{R}^{n}.)
5. Suppose M is an m-manifold, N is an n-manifold. Prove that

1) If $m>n$ there are no continuous injections $M \rightarrow N$.
2) If $m=n$ and M has no boundary, then any continuous injection $f: M \rightarrow$ N is an open embedding, i.e. a homeomorphism to the image $f(M)$, which is open in N (and is a subset of int M).
3) If $M \cong N$, then $m=n$.
6. Suppose M is an n-manifold. Prove that
1) The sets ∂M and int M are disjoint.
2) int M is open in M and itself is an n-manifold without boundary.
3) ∂M is closed in M and is an $(n-1)$-manifold without boundary (if nonempty).
7. Let M be a Mobius band. Prove that M is a manifold with boundary and $\partial M \cong S^{1}$. What is the dimension of M as a manifold?
Let $i: \partial M \hookrightarrow M$ be inclusion. Prove that $i_{*}: H_{1}(\partial M) \rightarrow H_{1}(M)$ is essentially a homomorphism $\mathbb{Z} \rightarrow \mathbb{Z}, n \mapsto 2 n$. Conclude that ∂M is not a retract of M.

Bonus points for the exercises: $25 \%-1$ point, $40 \%-2$ points, $50 \%-3$ points, $60 \%-4$ points, $75 \%-5$ points.

