Matematiikan ja tilastotieteen laitos Introduction to Algebraic Topology Fall 2011 Exercise 10 21.11-25.11.2011

- 1. Suppose (X; U, V) is a proper triad such that $U \cap V \neq \emptyset$. Prove the existence of the reduced exact Mayer-Vietoris sequence
- $\dots \longrightarrow \widetilde{H}_{n+1}(X) \xrightarrow{\partial} \widetilde{H}_n(U \cap V) \xrightarrow{i_*} \widetilde{H}_n(U) \oplus \widetilde{H}_n(V) \xrightarrow{j_*} \widetilde{H}_n(X) \xrightarrow{\partial} \widetilde{H}_{n-1}(U \cap V) \longrightarrow \dots$ (Hint: ordinary Mayer-Viatoris+Lemma 3.1.7).
- 2. Construct the explicit formula for the mapping g defined in the proof of the Brouwer's fixed point Theorem (theorem 3.4.6) and show that g is continuous retract $\overline{B}^n \to S^{n-1}$.
- 3. a) Suppose V is an open subset of Rⁿ, n ≥ 2 and x ∈ V. Using excision property show that H₁(V, V \ {x}) ≅ H₁(Rⁿ, Rⁿ \ {x}) and deduce that H₁(V, V \ {x}) = 0. Using this, prove that V \ {x} is path-connected, if V is path-connected.
 b) Suppose n ≥ 2 and S ⊂ Rⁿ is homeomorphic to Sⁿ⁻¹. Prove that Rⁿ \ S has exactly two path components U and V, where U is bounded, V is not and S = ∂U = ∂V. What happens if n = 1?
- 4. Suppose U is an open subset of Rⁿ and f: U → Rⁿ is a continuous injection. Prove that f is open, in particular V = f(U) is open and f: U → V is a homeomorphism.
 (Hint: Invariance of Domain and local compactness of Rⁿ.)
- 5. Suppose M is an m-manifold, N is an n-manifold. Prove that

 If m > n there are no continuous injections M → N.
 If m = n and M has no boundary, then any continuous injection f: M → N is an open embedding, i.e. a homeomorphism to the image f(M), which is open in N (and is a subset of int M).
 If M ≅ N, then m = n.
- 6. Suppose M is an n-manifold. Prove that
 1) The sets ∂M and int M are disjoint.
 2)int M is open in M and itself is an n-manifold without boundary.
 3)∂M is closed in M and is an (n − 1)-manifold without boundary (if non-empty).
- 7. Let M be a Mobius band. Prove that M is a manifold with boundary and $\partial M \cong S^1$. What is the dimension of M as a manifold? Let $i: \partial M \hookrightarrow M$ be inclusion. Prove that $i_*: H_1(\partial M) \to H_1(M)$ is essentially a homomorphism $\mathbb{Z} \to \mathbb{Z}$, $n \mapsto 2n$. Conclude that ∂M is not a retract of M.

Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points, 60% - 4 points, 75% - 5 points.