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Exercise 10

Solutions

1. Suppose (X;U,V) is a proper triad such that U NV # (). Prove the existence
of the reduced exact Mayer-Vietoris sequence

e Hy(X) =2 B (U N V) —% B (U) @ Ho (V) Ho(X) —2 Hy y(UN V) —— ...

Solution: The following diagram is commutative.

0 0 0 0 0.

Moreover all columns are short exact sequences, middle and lower rows are
also exact. It follows (Lemma 3.1.7) that also the upper row is exact.
2. Construct the explicit formula for the mapping g defined in the proof of the
Brouwer’s fixed point Theorem (theorem 3.4.6) and show that g is continuous
retract B — "1,

Solution: Let f: B" — B" be a continuous mapping without fixed points.
For every z € B consider a half-line

Ly = {f(x) +t(x — f(z)) [ t > 0}

and let g(z) be the unique point L, NS™!. Let us show that g is well-defined
and continuous. Now y = f(z) + t(z — f(z)) € S"! if and only if

yI* = |f(@)* + 2t <2 = f(2), f(z) > +]x = f2) = L.
This equation has solutions
t(z) = (=2 < a—f(x), f(x) > £V/4 <z — f(2), f(x) >2 +4]z — f(2)]P(1 = |f(@)[?))/2lz—f (@) )

The expression under square root is always even strictly positive, since | f(z)| <
1 for all z € B" and |z — f(z)| > 0 by assumption. Moreover it follows that




only solution with plus sign satisfies condition ¢(z) > 0.
Hence we obtain formula

g(x) = f(x) + t(x)(x — f(x)), where
t) = V<o — fz), f(2) > +|z = f@)P1 = [f(2)?)~ < 2= f(2), f(2) >)/]a—f ().

Clearly g: B — S ! is then continuous well-defined mapping. It remains
to check that g(x) = x for all x € S™~1. It is enough to show that ¢(z) = 1 in
this case. If |z| = 1, then

o — f(@)* = |2’ =2 <z, f(z) > +|f(@)" =1 -2 <=, f(z) > +]f(2)]",

hence

<z — f(z), f(x) >* +|z = f@)]PQ = |f(2)]*) =
=<, f(z) >* +|f(2)|*~2 <@, f(2) > |f(2)+1-2 < f(z),2 > +[f(2)*~|f(2)P+2 < f(2),2 >
=<, f(z)>* =2 < f(z), 2> +1 = (1— <z, f(x) >)%
By Cauchy’s inequality
<z, f(z) >< |zf - [f(2)] < 1,

hence

t(z) = (1= <=, f(x) >)= <, f(z) > +[f(2))/(1-2 <, f(x) > +[f(2)]*) = L.
3. a) Suppose V is an open subset of R" n > 2 and = € V. Using excision
property show that H{(V,V \ {z}) = H;(R",R" \ {z}) and deduce that
Hi(V,V\ {}) = 0.
Using this, prove that V' \ {z} is path-connected, if V' is path-connected.
b) Suppose n > 2 and S C R™ is homeomorphic to S"!.
Prove that R™ \ S has exactly two path components U and V', where U is
bounded, V is not and S = 90U = 9V
What happens if n = 17

Solution: a) Let A =R"\ V and W = R" \ {z}. Then the closure of A is
contained in the interior of W, hence by excision property H;(R™\ A, W\ A) =
H(R",R"\ {z}). But

(R*\ A, WA A) = (V, VA {z}),

so the first claim follows.

To show that Hy(V,V \ {z}) = 0 it is sufficient to show that H;(R",R™\
{z}) = 0. But

Hi(R",R™\ {a}) = Hy(R" \ {«}) =0,

by the reduced long exact homology sequence of the pair R”, R™\ {z} and the
fact that R™ has trivial reduced groups. R"\{z} is path-connected since n > 1.

Next suppose V is path-connected. Then Hy(V') = 0. Since Hy(V, V\{z}) =
0, reduced long exact homology sequence of the pair (V, V' \ {z}) implies that

Hy(V \ {z}) = 0, hence V \ {z} is path-connected.

b) Since R" is homeomorphic to the subspace 5™\ {e,+1} of S™, we can con-
sider S a subspace of S™. Jordan-Brouwer separation theorem 3.6.4 S™\ S has
exactly two path-components U and W, where we may assume that e,,.1 € W.



Also OU = 9V = S, where boundary is taken in S™.

By stereographic projection W is homeomorphic to a subset of R™, hence
by a) V.= W\ {e,t1} is path-connected. Also both sets U and V' are open in
S™, hence also in R, so it follows that U and V" are path-components of R™\ S.

Since both U and V' are open we have

Oen (U) = clan (U) \ U,
Orn (V) = clgn (V) \ V.

Also

clgn (U) = clgn(U)NR"=(UUS)NR"=UUS,
Can (V) = ClSn(V) N Rn
It follows immediately that
Orn(U) =(UUS)\U = S.

Also

clgn (V) = clgn (W).
To see this it enough to prove that e,.1 € clgn (V). Let A be a neighbourhood
of e,41. Then ANW is a neighbourhood of e, ;1 and since S™ is not discrete,
there is a point x € ANW,x # e,41, hence A contains a point from V.
Hence we obtain

clgn (V) =clgn(W)NR" = (WUS)NR" =V US, so
Opn (V)= (VUS)\V =5.
It remains to show that one of the components of R™ \ S is bounded and
the other one is not. Let R > 0 be big enough so that S C B(0, R). Since
n > 1, the set R™\ B(0, R) is path-connected and does not intersect S, hence

it is contained entirely in one of the components, say V', which then must be
unbounded. It follows that in this case U C B(0, R), so U must be bounded.

If n = 1 the Jordan-Brouwer separation theorem is not true in R!. Indeed
a subset of R which is homeomorphic to S° is just two points, so R\ S has
exactly 3 path-components. Also S is then a boundary of only one of them.

. Suppose U is an open subset of R" and f: U — R" is a continuous injection.
Prove that f is open, in particular V' = f(U) is open and f: U — V is a
homeomorphism.

Solution: It is enough to show that f is locally open, i.e. every point x € U
has a neighbourhood W C U such that f|W is open.

Since R™ is locally compact, we can choose W > z such that W C U
is compact. Then f|W is a continuous injection from compact space to the
Hausdorff space R”, hence is an embedding. It follows that also f|WW is an
embedding as well. Now Invariance of Domain (Theorem 3.6.5) implies that
for every open A C W f(A) is open, hence f|W is an open mapping.
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5. Suppose M is an m-manifold, NV is an n-manifold. Prove that

1) If m > n there are no continuous injections M — N.

2) If m = n and M has no boundary, then any continuous injection f: M —
N is an open embedding, i.e. a homeomorphism to the image f(M), which is
open in N (and is a subset of int M).

3) If M = N, then m = n.

Solution: ¢) follows directly from a). To prove a) take x € int M and let
V' be an open subset of N, which contains f(x) and is homeomorphic to an
open subset of H,,. Since f is continuous, there exists open neighbourhood
U of x in M such that f(U) C V. We may assume that U is homeomorphic
to an open subset of R™. Hence f|U defines a continuous injection U — R™.
Since R" can be thought of as a subset of R™ defined by

Rn:{(ll'l,...,l'n,...,l’m)eRm|l.n+1:.”:1’m}

we obtain a continuous injection g: U — R™. By the previous exercise f(U)
is open in R™. But this cannot be true, since f(U) is a subset of R", which
has no interior points with respect to R™.

To prove b) it is enough to prove that f is locally open i.e. every point
x € M has an open neighbourhood U such that f|U is open mapping. We
can choose U to be a neighbourhood of  which is homeomorphic to an open
subset of R™ such that f(U) C V, where V is open in N and homeomorphic
to a subset of R". Previous exercise then implies that f|U is open embedding.

Suppose M is an n-manifold. Prove that

1) The sets OM and int M are disjoint.

2)int M is open in M and itself is an n-manifold without boundary.

3)0M is closed in M and is an (n — 1)-manifold without boundary (if non-

empty).

Solution: 1) Suppose x € OM Nint M. Then there exists open neighbour-
hoods U,V of x and homeomorphisms f: U — f(U) € R" and g: V —
f(V) Cc H", where f(U) is open in R and g(z) € R"™'. Then flUNV —
f(UNV)and glUNV — g(UNV) and homeomorphisms, where f(U NV)
is open in R" and g|U NV (x) € R"™!, so we may assume U = V.

Now go f~': f(U) — g¢(U) is a homeomorphism between open subset of
R™ and non-open subset g(U) of R™. This contradicts Invariance of Domain
(Theorem 3.6.5).

2) Suppose x € int M and let f: U — f(U) be a homeomorphism, U > x
open in M and f(U) open in R™. Then by definition U C int M, so int M is
open in M. Also f serves as a chart for x in int M, so int M is n-manifold
without boundary (it is always non-empty, since M has at least one chart).

3) Since by 1)
OM = M\ int M,
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2) implies that OM is closed in M. Suppose x € OM and let f: U — f(U)
be a homeomorphism,where U > z open in M and f(U) open in H" and
f(z) € R*L Tt follows that

UNnoM = f YR,

so the restriction f|: U N OM — R™! is a continuous embedding, where
fIUNOM) = f(U)NR™ ! is open in R"™L. It follows that M is an n — 1-
manifold without boundary.

. Let M be a Mobius band. Prove that M is a manifold with boundary and
OM = S'. What is the dimension of M as a manifold?

Let i: OM — M be inclusion. Prove that i,: H;(OM) — H;(M) is essentially
a homomorphism Z — Z, n +— 2n. Conclude that OM is not a retract of M.
Solution: Represent Mobius band triangulated as a polyhedron of a A-
complex with two 2-simplices, as usual.

x ¢ y
U
d
b Y ¢
.
() a> x

Let L be a subcomplex generated by 1-simplices b and c. |L| looks like a

sphere S*. )

Using simplicial homology we see that H;(|L|) = Z with generator [c — b].
On the other hand in the Example 2.1.23 we calculated that H,(|K|) = Z
with generator [d]. On the other hand

oU=d—a+c¢,dV=d+a—0>,
so in homology [d] = [¢ — a] = [a — b]. Hence
ix([c =) =[c—=b] =[c—a] + [a—b] = 2d,

so up to isomorphism i,: Z — 7Z is a mapping n — 2n.

If there would exist retraction r: |K| — |L|, then r o = id, so 7, o ix = id,
so in particular r,: Z — Z is a surjective homomorphism. But the only sur-
jective homomorphisms from Z to itself are identity mapping or mapping
n — —n, and both are in fact bijections. Hence r, is bijective, so it follows
that 4, = r_ ! is bijective. But this contradicts the calculation above, since



the mapping n — 2n is not surjective mapping Z — Z.
Thus we have shown that |L| is not a retract of |K].

It remains to show that |K| is a 2-manifold and |L| is its boundary. The
picture below illustrates typical neighbourhood of the points of |K|. U is a
typical neighbourhood of the interior point of b and it is homeomorphic to
the open subset of H2. Neighbourhoods of the points in the interior of ¢ look
the same. V' is a neighbourhood of the vertex x, which in the picture consists
of two parts, but after identification along side a V' is a neighbourhood that is
homeomorphic to the open subset of H?. Same works for the other vertex y. W
is a neighbourhood of a point in the interior of @ and it is homeomorphic to the
open disk B2. Points in the interior of a square clearly have a neighbourhood
homeomorphic to B2. This concludes the proof of the claim.
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Bonus points for the exercises: 25% - 1 point, 40% - 2 points, 50% - 3 points,
60% - 4 points, 75% - 5 points.



