
Matematiikan ja tilastotieteen laitosIntrodution to Algebrai TopologyFall 2011Exerise 10Solutions1. Suppose (X ;U, V ) is a proper triad suh that U ∩V 6= ∅. Prove the existeneof the redued exat Mayer-Vietoris sequene
. . . // H̃n+1(X)

∂
// H̃n(U ∩ V )

i∗
// H̃n(U)⊕ H̃n(V )

j∗
// H̃n(X)

∂
// H̃n−1(U ∩ V ) // . . .Solution: The following diagram is ommutative.
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. . . 0 0 0 0 0.Moreover all olumns are short exat sequenes, middle and lower rows arealso exat. It follows (Lemma 3.1.7) that also the upper row is exat.2. Construt the expliit formula for the mapping g de�ned in the proof of theBrouwer's �xed point Theorem (theorem 3.4.6) and show that g is ontinuousretrat Bn
→ Sn−1.Solution: Let f : Bn

→ B
n be a ontinuous mapping without �xed points.For every x ∈ B

n onsider a half-line
Lx = {f(x) + t(x− f(x)) | t ≥ 0}and let g(x) be the unique point Lx∩Sn−1. Let us show that g is well-de�nedand ontinuous. Now y = f(x) + t(x− f(x)) ∈ Sn−1 if and only if

|y|2 = |f(x)|2 + 2t < x− f(x), f(x) > +t2|x− f(x)|2 = 1.This equation has solutions
t(x) = (−2 < x−f(x), f(x) > ±

√
4 < x− f(x), f(x) >2 +4|x− f(x)|2(1− |f(x)|2))/(2|x−f(x)|2).The expression under square root is always even stritly positive, sine |f(x)| ≤

1 for all x ∈ B
n and |x− f(x)| > 0 by assumption. Moreover it follows that



2 only solution with plus sign satis�es ondition t(x) > 0.Hene we obtain formula
g(x) = f(x) + t(x)(x− f(x)),where

t(x) =
√
< x− f(x), f(x) >2 +|x− f(x)|2(1− |f(x)|2)− < x−f(x), f(x) >)/|x−f(x)|2.Clearly g : B

n
→ Sn−1 is then ontinuous well-de�ned mapping. It remainsto hek that g(x) = x for all x ∈ Sn−1. It is enough to show that t(x) = 1 inthis ase. If |x| = 1, then

|x− f(x)|2 = |x|2 − 2 < x, f(x) > +|f(x)|2 = 1− 2 < x, f(x) > +|f(x)|2,hene
< x− f(x), f(x) >2 +|x− f(x)|2(1− |f(x)|2) =

=< x, f(x) >2 +|f(x)|4−2 < x, f(x) > |f(x)|2+1−2 < f(x), x > +|f(x)|2−|f(x)|2+2 < f(x), x > |

=< x, f(x) >2 −2 < f(x), x > +1 = (1− < x, f(x) >)2.By Cauhy's inequality
< x, f(x) >≤ |x| · |f(x)| ≤ 1,hene

t(x) = (1− < x, f(x) >)− < x, f(x) > +|f(x)|2)/(1−2 < x, f(x) > +|f(x)|2) = 1.3. a) Suppose V is an open subset of Rn, n ≥ 2 and x ∈ V . Using exisionproperty show that H1(V, V \ {x}) ∼= H1(R
n,Rn \ {x}) and dedue that

H1(V, V \ {x}) = 0.Using this, prove that V \ {x} is path-onneted, if V is path-onneted.b) Suppose n ≥ 2 and S ⊂ R
n is homeomorphi to Sn−1.Prove that R

n \ S has exatly two path omponents U and V , where U isbounded, V is not and S = ∂U = ∂V .What happens if n = 1?Solution: a) Let A = R
n \ V and W = R

n \ {x}. Then the losure of A isontained in the interior ofW , hene by exision property H1(R
n\A,W \A) ∼=

H1(R
n,Rn \ {x}). But

(Rn \ A,W \ A) = (V, V \ {x}),so the �rst laim follows.To show that H1(V, V \ {x}) = 0 it is su�ient to show that H1(R
n,Rn \

{x}) = 0. But
H1(R

n,Rn \ {x}) ∼= H̃0(R
n \ {x}) = 0,by the redued long exat homology sequene of the pair Rn,Rn\{x} and thefat that Rn has trivial redued groups. Rn\{x} is path-onneted sine n > 1.Next suppose V is path-onneted. Then H̃0(V ) = 0. SineH1(V, V \{x}) =

0, redued long exat homology sequene of the pair (V, V \{x}) implies that
H̃0(V \ {x}) = 0, hene V \ {x} is path-onneted.b) Sine Rn is homeomorphi to the subspae Sn\{en+1} of Sn, we an on-sider S a subspae of Sn. Jordan-Brouwer separation theorem 3.6.4 Sn\S hasexatly two path-omponents U andW , where we may assume that en+1 ∈ W .



3Also ∂U = ∂V = S, where boundary is taken in Sn.By stereographi projetion W is homeomorphi to a subset of Rn, heneby a) V = W \ {en+1} is path-onneted. Also both sets U and V are open in
Sn, hene also in R

n, so it follows that U and V are path-omponents of Rn\S.Sine both U and V are open we have
∂Rn(U) = lRn(U) \ U,

∂Rn(V ) = lRn(V ) \ V.Also lRn(U) = lSn(U) ∩ R
n = (U ∪ S) ∩ R

n = U ∪ S,lRn(V ) = lSn(V ) ∩ R
n.It follows immediately that

∂Rn(U) = (U ∪ S) \ U = S.Also lSn(V ) = lSn(W ).To see this it enough to prove that en+1 ∈ lSn(V ). Let A be a neighbourhoodof en+1. Then A∩W is a neighbourhood of en+1 and sine Sn is not disrete,there is a point x ∈ A ∩W,x 6= en+1, hene A ontains a point from V .Hene we obtainlRn(V ) = lSn(W ) ∩ R
n = (W ∪ S) ∩ R

n = V ∪ S, so
∂Rn(V ) = (V ∪ S) \ V = S.It remains to show that one of the omponents of Rn \ S is bounded andthe other one is not. Let R > 0 be big enough so that S ⊂ B(0, R). Sine

n > 1, the set Rn \B(0, R) is path-onneted and does not interset S, heneit is ontained entirely in one of the omponents, say V , whih then must beunbounded. It follows that in this ase U ⊂ B(0, R), so U must be bounded.If n = 1 the Jordan-Brouwer separation theorem is not true in R
1. Indeeda subset of R whih is homeomorphi to S0 is just two points, so R \ S hasexatly 3 path-omponents. Also S is then a boundary of only one of them.4. Suppose U is an open subset of Rn and f : U → R

n is a ontinuous injetion.Prove that f is open, in partiular V = f(U) is open and f : U → V is ahomeomorphism.Solution: It is enough to show that f is loally open, i.e. every point x ∈ Uhas a neighbourhood W ⊂ U suh that f |W is open.Sine R
n is loally ompat, we an hoose W ∋ x suh that W ⊂ Uis ompat. Then f |W is a ontinuous injetion from ompat spae to theHausdor� spae R

n, hene is an embedding. It follows that also f |W is anembedding as well. Now Invariane of Domain (Theorem 3.6.5) implies thatfor every open A ⊂ W f(A) is open, hene f |W is an open mapping.



45. Suppose M is an m-manifold, N is an n-manifold. Prove that1) If m > n there are no ontinuous injetions M → N .2) If m = n and M has no boundary, then any ontinuous injetion f : M →
N is an open embedding, i.e. a homeomorphism to the image f(M), whih isopen in N (and is a subset of intM).3) If M ∼= N , then m = n.Solution: ) follows diretly from a). To prove a) take x ∈ intM and let
V be an open subset of N , whih ontains f(x) and is homeomorphi to anopen subset of Hn. Sine f is ontinuous, there exists open neighbourhood
U of x in M suh that f(U) ⊂ V . We may assume that U is homeomorphito an open subset of Rm. Hene f |U de�nes a ontinuous injetion U → R

n.Sine R
n an be thought of as a subset of Rm de�ned by

R
n = {(x1, . . . , xn, . . . , xm) ∈ R

m | xn+1 = . . . = xm}we obtain a ontinuous injetion g : U → R
m. By the previous exerise f(U)is open in R

m. But this annot be true, sine f(U) is a subset of Rn, whihhas no interior points with respet to R
m.To prove b) it is enough to prove that f is loally open i.e. every point

x ∈ M has an open neighbourhood U suh that f |U is open mapping. Wean hoose U to be a neighbourhood of x whih is homeomorphi to an opensubset of Rn suh that f(U) ⊂ V , where V is open in N and homeomorphito a subset of Rn. Previous exerise then implies that f |U is open embedding.6. Suppose M is an n-manifold. Prove that1) The sets ∂M and intM are disjoint.2)intM is open in M and itself is an n-manifold without boundary.3)∂M is losed in M and is an (n − 1)-manifold without boundary (if non-empty).Solution: 1) Suppose x ∈ ∂M ∩ intM . Then there exists open neighbour-hoods U, V of x and homeomorphisms f : U → f(U) ⊂ R
n and g : V →

f(V ) ⊂ H
n, where f(U) is open in R

n and g(x) ∈ R
n−1. Then f |U ∩ V →

f(U ∩ V ) and g|U ∩ V → g(U ∩ V ) and homeomorphisms, where f(U ∩ V )is open in R
n and g|U ∩ V (x) ∈ R

n−1, so we may assume U = V .Now g ◦ f−1 : f(U) → g(U) is a homeomorphism between open subset of
R

n and non-open subset g(U) of Rn. This ontradits Invariane of Domain(Theorem 3.6.5).2) Suppose x ∈ intM and let f : U → f(U) be a homeomorphism, U ∋ xopen in M and f(U) open in R
n. Then by de�nition U ⊂ intM , so intM isopen in M . Also f serves as a hart for x in intM , so intM is n-manifoldwithout boundary (it is always non-empty, sine M has at least one hart).3) Sine by 1)

∂M = M \ intM,



52) implies that ∂M is losed in M . Suppose x ∈ ∂M and let f : U → f(U)be a homeomorphism,where U ∋ x open in M and f(U) open in H
n and

f(x) ∈ R
n−1. It follows that

U ∩ ∂M = f−1(Rn−1),so the restrition f | : U ∩ ∂M → R
n−1 is a ontinuous embedding, where

f |(U ∩ ∂M) = f(U) ∩ R
n−1 is open in R

n−1. It follows that ∂M is an n− 1-manifold without boundary.7. Let M be a Mobius band. Prove that M is a manifold with boundary and
∂M ∼= S1. What is the dimension of M as a manifold?Let i : ∂M →֒ M be inlusion. Prove that i∗ : H1(∂M) → H1(M) is essentiallya homomorphism Z → Z, n 7→ 2n. Conlude that ∂M is not a retrat of M .Solution: Represent Mobius band triangulated as a polyhedron of a ∆-omplex with two 2-simplies, as usual.
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Using simpliial homology we see that H1(|L|) ∼= Z with generator [c− b].On the other hand in the Example 2.1.23 we alulated that H1(|K|) ∼= Zwith generator [d]. On the other hand
∂U = d− a+ c, ∂V = d+ a− b,so in homology [d] = [c− a] = [a− b]. Hene

i∗([c− b]) = [c− b] = [c− a] + [a− b] = 2d,so up to isomorphism i∗ : Z → Z is a mapping n 7→ 2n.If there would exist retration r : |K| → |L|, then r ◦ i = id, so r∗ ◦ i∗ = id,so in partiular r∗ : Z → Z is a surjetive homomorphism. But the only sur-jetive homomorphisms from Z to itself are identity mapping or mapping
n 7→ −n, and both are in fat bijetions. Hene r∗ is bijetive, so it followsthat i∗ = r−1

∗
is bijetive. But this ontradits the alulation above, sine



6 the mapping n 7→ 2n is not surjetive mapping Z → Z.Thus we have shown that |L| is not a retrat of |K|.It remains to show that |K| is a 2-manifold and |L| is its boundary. Thepiture below illustrates typial neighbourhood of the points of |K|. U is atypial neighbourhood of the interior point of b and it is homeomorphi tothe open subset of H2. Neighbourhoods of the points in the interior of c lookthe same. V is a neighbourhood of the vertex x, whih in the piture onsistsof two parts, but after identi�ation along side a V is a neighbourhood that ishomeomorphi to the open subset ofH2. Same works for the other vertex y.Wis a neighbourhood of a point in the interior of a and it is homeomorphi to theopen disk B2. Points in the interior of a square learly have a neighbourhoodhomeomorphi to B2. This onludes the proof of the laim.
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Bonus points for the exerises: 25% - 1 point, 40% - 2 points, 50% - 3 points,60% - 4 points, 75% - 5 points.


