
Matematiikan ja tilastotieteen laitosIntrodu
tion to Algebrai
 TopologyFall 2011Exer
ise 10Solutions1. Suppose (X ;U, V ) is a proper triad su
h that U ∩V 6= ∅. Prove the existen
eof the redu
ed exa
t Mayer-Vietoris sequen
e
. . . // H̃n+1(X)

∂
// H̃n(U ∩ V )

i∗
// H̃n(U)⊕ H̃n(V )

j∗
// H̃n(X)

∂
// H̃n−1(U ∩ V ) // . . .Solution: The following diagram is 
ommutative.
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. . . 0 0 0 0 0.Moreover all 
olumns are short exa
t sequen
es, middle and lower rows arealso exa
t. It follows (Lemma 3.1.7) that also the upper row is exa
t.2. Constru
t the expli
it formula for the mapping g de�ned in the proof of theBrouwer's �xed point Theorem (theorem 3.4.6) and show that g is 
ontinuousretra
t Bn
→ Sn−1.Solution: Let f : Bn

→ B
n be a 
ontinuous mapping without �xed points.For every x ∈ B

n 
onsider a half-line
Lx = {f(x) + t(x− f(x)) | t ≥ 0}and let g(x) be the unique point Lx∩Sn−1. Let us show that g is well-de�nedand 
ontinuous. Now y = f(x) + t(x− f(x)) ∈ Sn−1 if and only if

|y|2 = |f(x)|2 + 2t < x− f(x), f(x) > +t2|x− f(x)|2 = 1.This equation has solutions
t(x) = (−2 < x−f(x), f(x) > ±

√
4 < x− f(x), f(x) >2 +4|x− f(x)|2(1− |f(x)|2))/(2|x−f(x)|2).The expression under square root is always even stri
tly positive, sin
e |f(x)| ≤

1 for all x ∈ B
n and |x− f(x)| > 0 by assumption. Moreover it follows that



2 only solution with plus sign satis�es 
ondition t(x) > 0.Hen
e we obtain formula
g(x) = f(x) + t(x)(x− f(x)),where

t(x) =
√
< x− f(x), f(x) >2 +|x− f(x)|2(1− |f(x)|2)− < x−f(x), f(x) >)/|x−f(x)|2.Clearly g : B

n
→ Sn−1 is then 
ontinuous well-de�ned mapping. It remainsto 
he
k that g(x) = x for all x ∈ Sn−1. It is enough to show that t(x) = 1 inthis 
ase. If |x| = 1, then

|x− f(x)|2 = |x|2 − 2 < x, f(x) > +|f(x)|2 = 1− 2 < x, f(x) > +|f(x)|2,hen
e
< x− f(x), f(x) >2 +|x− f(x)|2(1− |f(x)|2) =

=< x, f(x) >2 +|f(x)|4−2 < x, f(x) > |f(x)|2+1−2 < f(x), x > +|f(x)|2−|f(x)|2+2 < f(x), x > |

=< x, f(x) >2 −2 < f(x), x > +1 = (1− < x, f(x) >)2.By Cau
hy's inequality
< x, f(x) >≤ |x| · |f(x)| ≤ 1,hen
e

t(x) = (1− < x, f(x) >)− < x, f(x) > +|f(x)|2)/(1−2 < x, f(x) > +|f(x)|2) = 1.3. a) Suppose V is an open subset of Rn, n ≥ 2 and x ∈ V . Using ex
isionproperty show that H1(V, V \ {x}) ∼= H1(R
n,Rn \ {x}) and dedu
e that

H1(V, V \ {x}) = 0.Using this, prove that V \ {x} is path-
onne
ted, if V is path-
onne
ted.b) Suppose n ≥ 2 and S ⊂ R
n is homeomorphi
 to Sn−1.Prove that R

n \ S has exa
tly two path 
omponents U and V , where U isbounded, V is not and S = ∂U = ∂V .What happens if n = 1?Solution: a) Let A = R
n \ V and W = R

n \ {x}. Then the 
losure of A is
ontained in the interior ofW , hen
e by ex
ision property H1(R
n\A,W \A) ∼=

H1(R
n,Rn \ {x}). But

(Rn \ A,W \ A) = (V, V \ {x}),so the �rst 
laim follows.To show that H1(V, V \ {x}) = 0 it is su�
ient to show that H1(R
n,Rn \

{x}) = 0. But
H1(R

n,Rn \ {x}) ∼= H̃0(R
n \ {x}) = 0,by the redu
ed long exa
t homology sequen
e of the pair Rn,Rn\{x} and thefa
t that Rn has trivial redu
ed groups. Rn\{x} is path-
onne
ted sin
e n > 1.Next suppose V is path-
onne
ted. Then H̃0(V ) = 0. Sin
eH1(V, V \{x}) =

0, redu
ed long exa
t homology sequen
e of the pair (V, V \{x}) implies that
H̃0(V \ {x}) = 0, hen
e V \ {x} is path-
onne
ted.b) Sin
e Rn is homeomorphi
 to the subspa
e Sn\{en+1} of Sn, we 
an 
on-sider S a subspa
e of Sn. Jordan-Brouwer separation theorem 3.6.4 Sn\S hasexa
tly two path-
omponents U andW , where we may assume that en+1 ∈ W .



3Also ∂U = ∂V = S, where boundary is taken in Sn.By stereographi
 proje
tion W is homeomorphi
 to a subset of Rn, hen
eby a) V = W \ {en+1} is path-
onne
ted. Also both sets U and V are open in
Sn, hen
e also in R

n, so it follows that U and V are path-
omponents of Rn\S.Sin
e both U and V are open we have
∂Rn(U) = 
lRn(U) \ U,

∂Rn(V ) = 
lRn(V ) \ V.Also 
lRn(U) = 
lSn(U) ∩ R
n = (U ∪ S) ∩ R

n = U ∪ S,
lRn(V ) = 
lSn(V ) ∩ R
n.It follows immediately that

∂Rn(U) = (U ∪ S) \ U = S.Also 
lSn(V ) = 
lSn(W ).To see this it enough to prove that en+1 ∈ 
lSn(V ). Let A be a neighbourhoodof en+1. Then A∩W is a neighbourhood of en+1 and sin
e Sn is not dis
rete,there is a point x ∈ A ∩W,x 6= en+1, hen
e A 
ontains a point from V .Hen
e we obtain
lRn(V ) = 
lSn(W ) ∩ R
n = (W ∪ S) ∩ R

n = V ∪ S, so
∂Rn(V ) = (V ∪ S) \ V = S.It remains to show that one of the 
omponents of Rn \ S is bounded andthe other one is not. Let R > 0 be big enough so that S ⊂ B(0, R). Sin
e

n > 1, the set Rn \B(0, R) is path-
onne
ted and does not interse
t S, hen
eit is 
ontained entirely in one of the 
omponents, say V , whi
h then must beunbounded. It follows that in this 
ase U ⊂ B(0, R), so U must be bounded.If n = 1 the Jordan-Brouwer separation theorem is not true in R
1. Indeeda subset of R whi
h is homeomorphi
 to S0 is just two points, so R \ S hasexa
tly 3 path-
omponents. Also S is then a boundary of only one of them.4. Suppose U is an open subset of Rn and f : U → R

n is a 
ontinuous inje
tion.Prove that f is open, in parti
ular V = f(U) is open and f : U → V is ahomeomorphism.Solution: It is enough to show that f is lo
ally open, i.e. every point x ∈ Uhas a neighbourhood W ⊂ U su
h that f |W is open.Sin
e R
n is lo
ally 
ompa
t, we 
an 
hoose W ∋ x su
h that W ⊂ Uis 
ompa
t. Then f |W is a 
ontinuous inje
tion from 
ompa
t spa
e to theHausdor� spa
e R

n, hen
e is an embedding. It follows that also f |W is anembedding as well. Now Invarian
e of Domain (Theorem 3.6.5) implies thatfor every open A ⊂ W f(A) is open, hen
e f |W is an open mapping.



45. Suppose M is an m-manifold, N is an n-manifold. Prove that1) If m > n there are no 
ontinuous inje
tions M → N .2) If m = n and M has no boundary, then any 
ontinuous inje
tion f : M →
N is an open embedding, i.e. a homeomorphism to the image f(M), whi
h isopen in N (and is a subset of intM).3) If M ∼= N , then m = n.Solution: 
) follows dire
tly from a). To prove a) take x ∈ intM and let
V be an open subset of N , whi
h 
ontains f(x) and is homeomorphi
 to anopen subset of Hn. Sin
e f is 
ontinuous, there exists open neighbourhood
U of x in M su
h that f(U) ⊂ V . We may assume that U is homeomorphi
to an open subset of Rm. Hen
e f |U de�nes a 
ontinuous inje
tion U → R

n.Sin
e R
n 
an be thought of as a subset of Rm de�ned by

R
n = {(x1, . . . , xn, . . . , xm) ∈ R

m | xn+1 = . . . = xm}we obtain a 
ontinuous inje
tion g : U → R
m. By the previous exer
ise f(U)is open in R

m. But this 
annot be true, sin
e f(U) is a subset of Rn, whi
hhas no interior points with respe
t to R
m.To prove b) it is enough to prove that f is lo
ally open i.e. every point

x ∈ M has an open neighbourhood U su
h that f |U is open mapping. We
an 
hoose U to be a neighbourhood of x whi
h is homeomorphi
 to an opensubset of Rn su
h that f(U) ⊂ V , where V is open in N and homeomorphi
to a subset of Rn. Previous exer
ise then implies that f |U is open embedding.6. Suppose M is an n-manifold. Prove that1) The sets ∂M and intM are disjoint.2)intM is open in M and itself is an n-manifold without boundary.3)∂M is 
losed in M and is an (n − 1)-manifold without boundary (if non-empty).Solution: 1) Suppose x ∈ ∂M ∩ intM . Then there exists open neighbour-hoods U, V of x and homeomorphisms f : U → f(U) ⊂ R
n and g : V →

f(V ) ⊂ H
n, where f(U) is open in R

n and g(x) ∈ R
n−1. Then f |U ∩ V →

f(U ∩ V ) and g|U ∩ V → g(U ∩ V ) and homeomorphisms, where f(U ∩ V )is open in R
n and g|U ∩ V (x) ∈ R

n−1, so we may assume U = V .Now g ◦ f−1 : f(U) → g(U) is a homeomorphism between open subset of
R

n and non-open subset g(U) of Rn. This 
ontradi
ts Invarian
e of Domain(Theorem 3.6.5).2) Suppose x ∈ intM and let f : U → f(U) be a homeomorphism, U ∋ xopen in M and f(U) open in R
n. Then by de�nition U ⊂ intM , so intM isopen in M . Also f serves as a 
hart for x in intM , so intM is n-manifoldwithout boundary (it is always non-empty, sin
e M has at least one 
hart).3) Sin
e by 1)

∂M = M \ intM,



52) implies that ∂M is 
losed in M . Suppose x ∈ ∂M and let f : U → f(U)be a homeomorphism,where U ∋ x open in M and f(U) open in H
n and

f(x) ∈ R
n−1. It follows that

U ∩ ∂M = f−1(Rn−1),so the restri
tion f | : U ∩ ∂M → R
n−1 is a 
ontinuous embedding, where

f |(U ∩ ∂M) = f(U) ∩ R
n−1 is open in R

n−1. It follows that ∂M is an n− 1-manifold without boundary.7. Let M be a Mobius band. Prove that M is a manifold with boundary and
∂M ∼= S1. What is the dimension of M as a manifold?Let i : ∂M →֒ M be in
lusion. Prove that i∗ : H1(∂M) → H1(M) is essentiallya homomorphism Z → Z, n 7→ 2n. Con
lude that ∂M is not a retra
t of M .Solution: Represent Mobius band triangulated as a polyhedron of a ∆-
omplex with two 2-simpli
es, as usual.
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VLet L be a sub
omplex generated by 1-simpli
es b and c. |L| looks like asphere S1.
b

b

b
c

y

x

Using simpli
ial homology we see that H1(|L|) ∼= Z with generator [c− b].On the other hand in the Example 2.1.23 we 
al
ulated that H1(|K|) ∼= Zwith generator [d]. On the other hand
∂U = d− a+ c, ∂V = d+ a− b,so in homology [d] = [c− a] = [a− b]. Hen
e

i∗([c− b]) = [c− b] = [c− a] + [a− b] = 2d,so up to isomorphism i∗ : Z → Z is a mapping n 7→ 2n.If there would exist retra
tion r : |K| → |L|, then r ◦ i = id, so r∗ ◦ i∗ = id,so in parti
ular r∗ : Z → Z is a surje
tive homomorphism. But the only sur-je
tive homomorphisms from Z to itself are identity mapping or mapping
n 7→ −n, and both are in fa
t bije
tions. Hen
e r∗ is bije
tive, so it followsthat i∗ = r−1

∗
is bije
tive. But this 
ontradi
ts the 
al
ulation above, sin
e



6 the mapping n 7→ 2n is not surje
tive mapping Z → Z.Thus we have shown that |L| is not a retra
t of |K|.It remains to show that |K| is a 2-manifold and |L| is its boundary. Thepi
ture below illustrates typi
al neighbourhood of the points of |K|. U is atypi
al neighbourhood of the interior point of b and it is homeomorphi
 tothe open subset of H2. Neighbourhoods of the points in the interior of c lookthe same. V is a neighbourhood of the vertex x, whi
h in the pi
ture 
onsistsof two parts, but after identi�
ation along side a V is a neighbourhood that ishomeomorphi
 to the open subset ofH2. Same works for the other vertex y.Wis a neighbourhood of a point in the interior of a and it is homeomorphi
 to theopen disk B2. Points in the interior of a square 
learly have a neighbourhoodhomeomorphi
 to B2. This 
on
ludes the proof of the 
laim.
a
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y x

b cU
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Bonus points for the exer
ises: 25% - 1 point, 40% - 2 points, 50% - 3 points,60% - 4 points, 75% - 5 points.


