Matematiikan ja tilastotieteen laitos
Introduction to Algebraic Topology
Fall 2011
Exercise 9
Solutions

1. Prove that the singular homology has compact carriers in the following precise sense.
a) Suppose $x \in H_{n}(X)$ (X a top. space). Prove that there exists compact $C \subset X$ such that x belongs to the image of

$$
i_{*}: H_{n}(C) \rightarrow H_{n}(X)
$$

(where $i: C \rightarrow X$ inclusion).
b) Suppose $C \subset X$ is compact, $i: C \rightarrow X$ an inclusion and $x \in H_{n}(C)$ is such that $i_{*}(x)=0 \in H_{n}(X)$. Prove that there exists a compact $D \subset X$ such that $C \subset D$ and $j_{*}(x)=0 \in H_{n}(D)$, where $j: C \rightarrow D$ is inclusion.
Also prove a) and b) for reduced homology groups \tilde{H}_{n}.

Solution: a) Suppose $x \in H_{n}(X)$. Then there exist $m \in \mathbb{N}$, singular n simplices $\sigma_{i}: \Delta_{n} \rightarrow X, i=0, \ldots, m$ and integers n_{0}, \ldots, n_{m} such that

$$
x=\left[\sum_{i=0}^{m} n_{i} \sigma_{i}\right],
$$

where $y=\sum_{i=0}^{m} n_{i} \sigma_{i} \in Z_{n}(X)$ is a cycle.
Define

$$
C=\bigcup_{i=0}^{m} \sigma_{i}\left(\Delta_{n}\right) .
$$

Then C is a compact subset of X and by restricting image of σ_{i} for all $i=0, \ldots, m$ we may regard y as an element in $C_{n}(C)$. Moreover y is still a cycle in C, so there is

$$
x^{\prime}=[y] \in H_{n}(C)
$$

and $i_{*}\left(x^{\prime}\right)=x$.
If $x \in \tilde{H}_{0}(X)$, then y above has property $\varepsilon(y)=0$, so it has the same property considered as an element of $C_{0}(C)$ as well. It follows that $x^{\prime}=[y] \in$ $\tilde{H}_{0}(C)$.
b) As above represent x as a class $[y]$, where

$$
y=\sum_{i=0}^{m} n_{i} \sigma_{i},
$$

for some singular n-simplices $\sigma_{i}: \Delta_{n} \rightarrow C$. Since $i_{*}(x)=0 \in H_{n}(X)$, this implies that there exists

$$
z=\sum_{j=0}^{k} n_{j} \tau_{j} \in C_{n+1}(X)
$$

so that $\partial(z)=y$. Let

$$
D=\bigcup_{j=0}^{l} \tau_{j}\left(\Delta_{n+1}\right) \cup C
$$

Then D is compact and $C \subset D$. Moreover $z \in C_{n+1}(D)$ and $\partial(z)=j_{\sharp}(y)$ i.e. $j_{\sharp}(y)$ is a boundary in D. Hence $j_{*}(y)=0$.

This time reduced groups don't affect conclusion in any way, so the claim is trivially true also for \tilde{H}_{0}.
2. Suppose K is a Δ-complex.
a) Let C be a compact subset of $|K|$. Show that there is a finite subcomplex L of K such that $C \subset L$.
b) Assume the theorem 3.4.3 (the equivalence of simplicial and singular homologies) is true for all finite subcomplexes of K. Prove that $i_{*}: H_{n}(K) \rightarrow$ $H_{n}(|K|)$ is an isomorphism for all $n \in \mathbb{N}$. (Hint: a) and the previous exercise).

Solution: a) It is enough to show that C intersects $\operatorname{int} \sigma$ for finitely many $\sigma \in K$ only, since then the subcomplex L formed by these simplices and all their faces is also finite.
For every $\sigma \in K$ such that $C \cap \operatorname{int} \sigma \neq \emptyset$ choose one point $x_{\sigma} \in C \cap \operatorname{int} \sigma$ and consider the set

$$
B=\left\{x_{\sigma} \mid \sigma \in K, C \cap \operatorname{int} \sigma \neq \emptyset\right\}
$$

Then $B \subset C$. It is enough to prove B is finite. Suppose $A \subset B$ and $\sigma \in K$ arbitrary. Since A intersects every interior of a simplex in at most one point and σ intersects finitely many interiors of simplices, it follows that $A \cap \sigma$ is finite, in particularly closed in σ. Since $|K|$ has weak topology, it follows that A is closed in $|K|$. In follows that every subset of B is closed, hence B has discrete topology and B itself is a closed subset of C, hence compact. Since compact and discrete space is always finite, claim follows.
b) Suppose $y \in H_{n}(|K|)$. By exercise 1 there exists compact $C \subset|K|$ such that $y=j_{*}\left(y^{\prime}\right)$ for some $y^{\prime} \in H_{n}(C) j: C \rightarrow|K|$ inclusion. By a) there exists finite subcomplex L of K such that $C \subset|L|$, so $y=k_{*}\left(y^{\prime \prime}\right)$, where $y^{\prime \prime}=j_{*}^{\prime}\left(y^{\prime}\right) \in H_{n}(L), j^{\prime}: C \rightarrow|L|, k:|L| \rightarrow|K|$ inclusions. Consider commutative diagram

where $l: L \rightarrow K$ is inclusion of Δ-complexes. Since $i_{*}: H_{n}(L) \rightarrow H_{n}(|L|)$ is surjection by assumption, there exists $x^{\prime \prime} \in H_{n}(L)$ such that $i_{*}\left(x^{\prime \prime}\right)=y^{\prime \prime}$. Let $\left.x=l_{(} x^{\prime \prime}\right)$. Then

$$
i_{*}(x)=i_{*}\left(l_{*}\left(x^{\prime \prime}\right)\right)=k_{*}\left(i_{*}\left(x^{\prime \prime}\right)\right)=k_{*}\left(y^{\prime \prime}\right)=y
$$

Hence i_{*} is surjection.
Suppose $x \in H_{n}(K)$ such that $i_{*}(x)=0 \in H_{n}(|K|)$. Now

$$
x=\left[\sum_{i=1}^{m} n_{i} \sigma_{i}\right],
$$

where $m \in \mathbb{N}, \sigma_{i} \in K, i=1, \ldots, m$. The subcomplex L generated by simplices $\sigma_{i}, i=1, \ldots, m$ and all their faces is finite and $x^{\prime}=\left[\sum_{i=1}^{m} n_{i} \sigma_{i}\right] \in H_{n}(L)$ is such that $l_{*}\left(x^{\prime}\right)=x$ for inclusion $l: L \rightarrow K$. Let $k:|L| \rightarrow|K|$ be an inclusion. From the commutativity of the diagram

we see that

$$
k_{*}\left(i_{*}\left(x^{\prime}\right)\right)=i_{*}\left(l\left(x^{\prime}\right)\right)=i_{*}(x)=0 .
$$

Since L is finite, $|L|$ is compact, so by the exercise 1 b) there exists compact $D \supset|L|$ such that $k_{*}^{\prime}\left(i_{*}(x)\right)=0$ for $k:|L| \rightarrow D$ is an inclusion. By enlarging D to a finite subcomplex (which exists according to a)) we may assume $D=$ $\left|L^{\prime}\right|$, where L^{\prime} is a finite subcomplex. We have a commutative diagram

Now if $l^{\prime}: L \rightarrow L^{\prime}$ denote a simplicial inclusion we have

$$
i_{*}\left(l_{*}^{\prime}\left(x^{\prime}\right)\right)=k_{*}^{\prime}\left(i_{*}\left(x^{\prime}\right)\right)=0,
$$

so by assumption $l_{*}^{\prime}\left(x^{\prime}\right)=0 \in H_{n}\left(L^{\prime}\right)$. It follows that

$$
x=l_{*}\left(x^{\prime}\right)=l_{*}^{\prime \prime}\left(l_{*}^{\prime}\left(x^{\prime}\right)\right)=0,
$$

where $l^{\prime \prime}: L^{\prime} \rightarrow K$ is a simplicial inclusion.
Hence i_{*} is an injection.
3. Consider the Mobius band X triangulated as usual.

a) Calculate the simplicial homology of the "boundary"i.e. a subcomplex generated by the 1 -simplices a, b, c.
b) Deduce that Mobius band and S^{1} are not homeomorphic (remove a point and use a)).

Solution: a)

Let L be a subcomplex generated by 1 -simplices a, b, c. Since L is 1 -dimensional it is enough to calculate only groups $H_{1}(L)=\operatorname{Ker} \partial_{1}$ and $H_{0}(L)$. There are two vertices, x and y (see the picture) and

$$
\partial_{1}(a)=\partial_{1}(b)=\partial_{1}(c)=x-y,
$$

hence

$$
\partial_{1}(m a+n b+l c)=(m+n+l)(y-x)=0
$$

if and only if $l=-(m+n)$. It follows that $H_{1}(L)=\operatorname{Ker} \partial_{1}$ is a free abelian group on two generators $a-c$ and $b-c$, i.e. isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$.
It also follows that the image $B_{0}(L) \subset C_{0}(L)$ is a subgroup generated by $x-y$. Since $\{x, x-y\}$ is a basis of $C_{0}(L)$, it follows that

$$
H_{0}(L)=C_{0}(L) / B_{0}(L) \cong \mathbb{Z}[x] \cong \mathbb{Z}
$$

b)If Mobius band and S^{1} are homeomorphic, then also $M \backslash\{x\}$ and $S^{1} \backslash\{y\}$ are also homeomorphic, where we choose x to be an "interior point "of the square and y is the image of x under isomorphism. But $M \backslash\{x\}$ has the same homotopy type as the "boundary " $|L|$, while $S^{1} \backslash\{y\}$ is contractible. We obtain contradiction, since a) implies that $H_{1}(M \backslash\{x\}) \cong \mathbb{Z} \oplus \mathbb{Z}$, in particular not trivial.
4. a) Let $n>0, i \in\{1, \ldots, n+1\}$ and let $\iota_{i}: S^{n} \rightarrow S^{n}$ be defined by $\iota_{i}(x)=$ $\left(x_{1}, \ldots, x_{i-1},-x_{i}, x_{i+1}, \ldots, x_{n}+1\right)$. Show that that

$$
\left(\iota_{i}\right)_{*}(x)=-x
$$

for all $x \in H_{n}\left(S^{n}\right), i=1, \ldots, n$, assuming this is known for ι_{n+1} (proved in the lecture notes). (Hint: use the fact that $\iota_{i}=f \circ \iota_{n+1} \circ f$ for some
homeomorphism f.)
b) Let $h: S^{n} \rightarrow S^{n}, h(x)=-x$. Prove that

$$
h_{*}(x)=(-1)^{n+1} x .
$$

for all $x \in H_{n}\left(S^{n}\right)$.

Solution: a) Let $f: S^{n} \rightarrow S^{n}$ be a mapping that interchages i th and $n+1$ th coordinates, i.e.

$$
f\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n+1}\right)=\left(x_{1}, \ldots, x_{i-1}, x_{n+1}, x_{i+1}, \ldots, x_{i}\right)
$$

Mapping f is clearly a homeomorphism and

$$
\iota_{i}=f \circ \iota_{n+1} \circ f .
$$

Now $f \circ f=\mathrm{id}$, so for every $x \in H_{n}\left(S^{n}\right)$ we have

$$
\left(\iota_{i}\right)_{*}(x)=f_{*}\left(\left(\iota_{n+1}\right)_{*}\left(f_{*}(x)\right)=f_{*}\left(-f_{*}(x)\right)=-\left(f_{*} \circ f_{*}\right)(x)=-x\right.
$$

b)Since

$$
h=\iota_{1} \circ \iota_{2} \circ \ldots \circ \iota_{n} \circ \iota_{n+1}
$$

claim follows easily from a).
5. Suppose $D=\left\{0=t_{0}<t_{1}<\ldots<t_{n}=1\right\}$ be a finite subdivision of $I=[0,1]$. Define for every $i=0, \ldots, n-1$ a path $\alpha_{i}: I \rightarrow S^{1}$ by

$$
\alpha_{i}(t)=\cos \left(2 \pi t_{i}(1-t)+t 2 \pi t_{i+1}\right)+i \sin \left(2 \pi t_{i}(1-t)+t 2 \pi t_{i+1}\right) .
$$

In other words α_{i} is an arc that connects $x_{i}=e^{2 \pi t_{i}}$ and $x_{i+1}=e^{2 \pi t_{i+1}}$.
Define $\gamma_{D} \in C_{1}\left(S^{1}\right)$ as

$$
\gamma_{D}=\sum_{i=0}^{n-1} \alpha_{i}
$$

Show that γ_{D} is a cycle. By induction on n prove that $\left[\gamma_{D}\right]=[\gamma] \in H_{1}\left(S^{1}\right)$, where $\gamma=\gamma_{D_{0}}, D=\{0,1\}$. (Hint: exercise 4.7).

Conclude that $\left[\gamma_{D}\right]$ is a generator of $H_{1}\left(S^{1}\right)$ for every D.

Solution: Suppose $n>1$ and $D=\left\{0=t_{0}<t_{1}<\ldots<t_{n}=1\right\}$ be a finite subdivision of $I=[0,1]$. Then $0<t_{n-1}<1$. Let $D^{\prime}=\{0=$ $\left.t_{0}<t_{1}<\ldots<t_{n-2}<t_{n}=1\right\}$ be subdivision with smaller amount of points (t_{n} is removed). It is enough to show that $\left[\gamma_{D}\right]=\left[\gamma_{D^{\prime}}\right]$, since then we may proceed by induction. First we show that $\left[\gamma_{D}\right]=\left[\gamma_{E}\right]$, where $E\left\{0=t_{0}<t_{1}<\ldots<t_{n-1}^{\prime}<t_{n}=1\right\}$ is a subdivision with the same points as D, except $t_{n-1}^{\prime}=\left(t_{n-2}^{\prime}+t_{n}\right) / 2$. Define for every subdivision D as above the continuous mapping $f_{D}: I \rightarrow S^{1}$ as following.

Let $D_{n}=\{0,1 / n, \ldots, i / n, n-1 / n, 1\}$ be a standard regular subdivision of I. For any subdivision of $n+1$ points $D=\left\{0=t_{0}<t_{1}<\ldots<t_{n}=1\right\}$ we let a_{D} be a piecewise linear mapping $a_{D}: I \rightarrow I$ which maps i / n to t_{i} and is linear on the subintervals $\left[t_{i}, t_{i+1}\right]$. In other words

$$
a_{D}(t i / n+(1-t)(i+1) / n)=t t_{i}+(1-t) t_{i+1}, i=0, \ldots, n-1 .
$$

We also define $b_{D}: I \rightarrow S^{1}$ by

$$
b_{D}(x)=e^{2 \pi i a_{D}(x)}
$$

and notice that $b_{D}(0)=b_{D}(1)$, so b_{D} induces a mapping $c_{D}: S^{1} \rightarrow S^{1}$ so that

$$
c\left(e^{2 \pi t}\right)=b_{D}(t) .
$$

It is easy to see that a_{D} and a_{E} are homotopic rel $\{0,1\}$, so c_{D} is homotopic to c_{E}. It follows that

$$
\left[\gamma_{D}\right]=\left(c_{D}\right)_{*}\left(\left[\gamma_{D_{n}}\right]\right)=\left(c_{E}\right)_{*}\left(\left[\gamma_{D_{n}}\right]\right)=\left[\gamma_{E}\right] .
$$

Now for subdivision E we have that $\alpha_{n-2} \cdot \alpha_{n-1}=\alpha_{n-2}^{\prime}$, where α_{n-2}^{\prime} is the last summond in $\gamma_{D^{\prime}}$. Exercise 4.7 implies that

$$
\left[\gamma_{D}\right]=\left[\gamma_{D^{\prime}}\right] .
$$

Since $\left[\gamma_{D_{0}}\right.$] is known to be the generator of $H_{1}\left(S^{1}\right)$, the last claim follows. 6. a) Suppose K is a simplicial complex and L_{1} and L_{2} are subcomplexes of K such that $K=L_{1} \cup L_{2}$. Show that $\left(|K| ;\left|L_{1}\right|,\left|L_{2}\right|\right)$ is a proper triad. (Hint: use the equivalence of simplicial and singular homologies).
b)Show that ($S^{n} ; B_{+}, B_{-}$) is a proper triad using a). Write down the MayerVietoris sequence of this triad and use it to prove that $H_{n}\left(S^{n}\right) \cong H_{n-1}\left(S^{n-1}\right)$ for $n>1$.
c) Can you prove that $\left(S^{n} ; B_{+}, B_{-}\right)$is a proper triad using the properties of the singular homology, such as homotopy axiom and Mayer-Vietoris sequence for the open covering by 2 sets?

Solution: a) Consider the commutative diagram

where vertical mappings k are canonical embeddings of simplicial chain group into singular chain group and horizontal mappings are defined as usual in Mayer-Viatoris sequence. Notice that $\left|L_{1}\right| \cap\left|L_{2}\right|=\left|L_{1} \cap L_{2}\right|$. This diagram induces the commutative diagram in homology

Five-lemma implies that $k_{*}: H_{n}(K) \rightarrow H_{n}\left(C\left|L_{1}\right|+C\left|L_{2}\right|\right)$ is an isomorphism. On the other hand there is a commutative diagram

which shows that $i_{*}: H_{n}\left(C\left|L_{1}\right|+C\left|L_{2}\right|\right) \rightarrow H_{n}(|K|)$ is an isomorphism.
b) Since $\left(S^{n} ; B_{+}, B_{-}\right)$is homeomorphic to $\left(|K| ;\left|L_{1}\right|,\left|L_{2}\right|\right)$ for a Δ-complex $|K|$, which consists of two n-simplices U and V glued by their boundary, where U generates L_{1} and V generates L_{2}, the first claim follows from a).

Since $B_{+} \cap B_{-}=S^{n-1}$, the exact Mayer-Vietoris sequence of the triad ($S^{n} ; B_{+}, B_{-}$) looks like

$$
\ldots \longrightarrow H_{n}\left(B_{+}\right) \oplus H_{n}\left(B_{-}\right) \longrightarrow H_{n}\left(S^{n}\right) \xrightarrow{\partial} H_{n-1}\left(S^{n-1}\right) \longrightarrow H_{n-1}\left(B_{+}\right) \oplus H_{n-1}\left(B_{-}\right) \longrightarrow \ldots
$$

If $n>1$, then $H_{n}\left(B_{+}\right)=H_{n}\left(B_{-}\right)=H_{n-1}\left(B_{+}\right)=H_{n-1}\left(B_{-}\right)=0$, since both B_{+}and B_{-}are contractible. Hence from exactness it follows that $\partial: H_{n}\left(S^{n}\right) \rightarrow H_{n-1}\left(S^{n-1}\right)$ is an isomorphism.
c) Let

$$
\begin{gathered}
U_{+}=S^{n} \backslash\left\{-e_{n+1}\right\} \\
U_{-}=S^{n} \backslash\left\{e_{n+1}\right\} .
\end{gathered}
$$

Then $\left\{U_{+}, U_{-}\right\}$is an open covering of S^{n}, in particular (S^{n}, B_{+}, B_{-}) is a proper triad. Moreover inclusions $i: S^{n-1} \hookrightarrow U_{-} \cap U_{+}=S, i: B_{+}: U_{+}, i: B_{-}: U_{-}$ are all homotopy equivalences, hence induce isomorphisms in homology.
Consider the commutative diagram

which is induced by the standard looking diagram

By the Five-Lemma we see that $i_{*}: H_{n}\left(C\left(B_{+}\right)+C\left(B_{-}\right)\right) \rightarrow H_{n}\left(C\left(U_{+}\right)+\right.$ $\left.C\left(U_{-}\right)\right)$is an isomorphism for all $n \in \mathbb{N}$. On the other hand $j-*: H_{n}\left(C\left(U_{+}\right)+\right.$ $\left.C\left(U_{-}\right)\right) \rightarrow H_{n}\left(S^{n}\right)$ is an isomorphism for all $n \in \mathbb{N}$. Hence their composition, which is mapping $H_{n}\left(C\left(B_{+}\right)+C\left(B_{-}\right)\right) \rightarrow H_{n}\left(S^{n}\right)$ induced by inclusion of chain complexes, is an isomorphism.

Bonus points for the exercises: $25 \%-1$ point, $40 \%-2$ points, $50 \%-3$ points, $60 \%-4$ points, $75 \%-5$ points.

